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1. Introduction

With the rise in sensor technology and computational power in the last four decades, structural health
monitoring (SHM) becomes an indispensable field in civil engineering applications. Moreover,
assessment and maintenance of urban infrastructure become essential, as many building stocks are
subject to deteriorating effects such as natural hazards, fatigue, operational loads, and more. Besides,
observing structural condition gains crucial importance, knowing that the modern structural design
allows a certain extent of controlled damage for commercial and architectural purposes. In other
words, engineering design targets to meet the safety criteria by keeping the structural performance
above a certain level, and such qualification requires investigation using the state-of-the-art analytical
and experimental capabilities.

To monitor the structural integrity of existing buildings or estimate structural safety under damaging
events, a wide variety of methodologies and techniques are developed. For example, in earthquake-
prone regions, seismic performance assessment is conducted to determine whether the structure meets
the requirements of codes and regulations. Such a procedure heavily relies on modelling assumptions
that may deviate from the reality resulting from many sources of uncertainties. Visual inspection is
another exemplary application for post-event damage assessment. However, it is challenging to
practice it efficiently since it requires a long and detailed inspection procedure with engineers'
presence. This leads to subjectivity in results, which is unwieldy to quantify the structural conditions.

The advent of SHM brought several solutions to understand civil infrastructure's status to a better
extent. For instance, compared with the models which solely depend on design drawings and
guidelines, it is seen that updated models using SHM tools can provide much more accurate solutions
in terms of performance assessment. What is more, considering visual inspection as a qualitative and
subjective damage identification method, it is evident that SHM can offer complementarily
modernized and technology-driven results in a rapid, remote, automated, and objective fashion.

As the nature of monitoring problem changes according to the application and discipline, there has
been a wide variety of existing SHM approaches. (Doebling S. W., 1996) and (Carden, 2004)
presented literature reviews to provide the essence, previous work, and future goals of SHM. To
provide a framework for a typical SHM methodology (Rytter, A., 1993) divided SHM content into
four main elements. These elements attempted to lead SHM researchers to seek answers to the
following questions:

-Level 1, Detection: Is there any damage introduced to the structure?

-Level 2, Localization: If so, where is the damage concentration?

-Level 3, Quantity: To what extent is the structure damaged?

-Level 4, Consequence: What is the safety level or remaining useful life of the structure?

Following these definitions, SHM society agreed on a standard set of goals which can reduce the
ongoing ambiguity in SHM literature.

In the past four decades, numerous SHM, system and modal (Peeters, 2001), (Reynders E. , 2012), as
well as damage identification methodologies (Salawu, 1997), (Doebling S. W., 1998) have been
introduced, yet, there is still limited access to systematically combined usage of multiple methods.
ERA/OM, N4SID, and MOESP methods have been compared based on a small-scale structure
(Abdelghani, 1998). Modal analysis results of a benchmark bridge are collected from different
researchers pursuing a variety of methods (Peeters B., 2003). ERA/DC, least squares, and SSI based
approaches are implemented on a laboratory model, and identified parameters are compared (Giraldo,
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2009). In addition to small scale and experimental studies, four different identification techniques
(FDD, ERA, SSI, P-LSCF) are applied to real-life structures with comparative results (Rahman, 2012).
Automation initiatives in modal identification have compared SSI-based modal analysis results with
FDD (Ubertini F. G., 2013). Despite, all these efforts, an automated and objective framework fusing
different identification algorithm findings have yet to be made.

Encouraged by the lack of a unification perspective expressed above, this paper presents collocated
deployments of different system identification methods on a numerical beam example for verification,
and two large-scale testbeds for implementation. These are Frequency Domain Decomposition (FDD),
Observer Kalman Filter Identification (OKID) using Eigensystem Realization Algorithm (ERA),
Combined Deterministic-Stochastic Subspace Identification (D-SSI), System Realization Using
Information Matrix (SRIM), and Autoregressive Exogenous Models (ARX). The first example is a
numerical beam with three degree-of-freedom. The second one, Bridge 1, tested in the University of
Nevada, Reno laboratories, and subjected progressive damage resulting from several shaking table
tests. The third example, Bridge 2, includes field tests of a pedestrian link bridge connecting two
multistory buildings. Based on the multi-output accelerometer readings from white noise and ambient
vibration response measurements, modal parameters such as modal frequencies, mode shapes, and
damping ratios are identified using FDD, OKID, D-SSI, SRIM, and ARX, and variation in
identification results are investigated with crude quantified features on damage progression or intact
states. Furthermore, a collaborative usage of multiple system identification methods is established as
an improvement in identification confidence by systematically removing the outliers through a self-
ranking approach with quantified lack of agreement. Eventually, the other identification studies
addressing the same benchmark bridges act for further assessment of varying features in terms of
modal characteristics and their association with damage under environmental effects pertain under the
synergistic findings from this study.

2. System Identification Methods

In this study, five different system/modal identification methods, such as FDD, OKID, D-SSI, SRIM,
and ARX, are used. With the assumption that the input excitation is low-amplitude and broad-band, the
system identification procedure can be considered as an output-only problem by setting the input
vectors equal to zero where needed. The formulation of these identification methods is explained
taking an n degree-of-freedom system and / numbers of time history data into consideration. The
methods are classified according to the domains represented with FDD for the frequency domain,
OKID, D-SSI, SRIM, and ARX for the time domain.

2.1 Frequency domain system identification

Frequency Domain Decomposition (FDD) (Brincker R. Z., 2001) is used to extract modal properties of
the system using output-only measurements. Power spectral density matrix of the output y is
decomposed by singular value decomposition as shown in Eq. (1)

S, (W) =UmW) Z(w) U" (w), (M

where X.(w)is the diagonal matrix of singular values, U(w)is the unitary matrix of singular vectors. By

plotting the singular values as a function of frequency, the modal frequencies can be determined by
picking the spectral peaks. What is more, the eigenvectors compose a set of square matrices spanning
the frequency domain and the matrix corresponding to a modal frequency contains mode shape. In this
way, modal frequencies and mode shapes can be identified with the output-only procedure. Moreover,
using half-power bandwidth method or inverting the set of arrays from the frequency domain to the



O J o) U W DN

OO UTUTUTUTUIUTUTUTUT O DB D DD WWWWWWWWwWwWNNNNNNNNNNNE R R e
B WNROWOJINTEWNRLOWOO-JAUEWNROW®OWJANTEAEWNR,OWOW-JONUSWNREFROWG®-J6 U s WK F O

4

time domain, the decrement of the inverted time history contains the information regarding damping
ratio, which is called Enhanced Frequency Domain Decomposition (EFDD) (Brincker R. V., 2001)
(Jacobsen, 2006).

2.2 Time-domain system identification methods

Four different time-domain identification methods using multi-input multi-output measurements,
including OKID/ERA, D-SSI, SRIM and ARX, are considered. The main idea of OKID approach
(Phan, 1992) is to introduce a gain matrix into the state equation of a real system and make use of least
square solutions to handle noisy data optimally. The approach turns OKID into a deterministic
identification problem in which Markov parameters are obtained from an optimal steady-state
observer. The combined D-SSI method (Van Overschee, 1994), (Van Overschee P., 1996) determines
the non-steady Kalman filter state sequence directly from the input-output data using geometrical and
linear algebra tools, e.g., orthogonal, oblique projections, and singular value decomposition. System
matrices then are extracted from the estimated states and an extended observability matrix. The SRIM
method (Juang J. N., 1997) identifies the system matrices directly from the input-output data by
introducing a new system realization algorithm using data correlation concept and algebra
manipulations. For system identification using ARX models, state-space matrices can be estimated via
ARX coefficients. Representative mathematical formula of these four methods is detailed in the next
sections. Herein, a general state-space system and Kalman filter observers are formulated as below.

Given input and output measurements, system matrices of a physical system can be identified through
input-state-output relation at a discrete-time & as follows

X, =Ax, +Bu, +p,

(2
y,=Cx, +Du, +m,, 3)

where x, is an nx1 state vector at time index k (k = 1: /), uy is an <1 input vector (r inputs), yx is an

mx1 output vector (m sensors), pr and my are assumed as zero-mean, white process and measurement
noise, respectively, and uncorrelated with u; and yx. System matrices A, B, C, and D are nxn system
matrix, nXr input matrix, mxn output matrix, and mxr direct influence matrix, respectively.

Linear estimation of the real system, known as Kalman filter observer in non-steady states, can be
performed in an innovation form as below

X, =Ax, +Bu, +K,¢, )
», =Cx, +Du,+¢, ®)

with &, is the estimation error of system output,& =y, —J,, X,and J, are observers of state and
output, respectively. A Kalman gain matrix K is given by

Ki = (ATLC" + R,,,)(R . + CTLCTY1, (6)
i+ = AIAT — (AIICT + Rpn)(Rym + CICT) ! (AITC T + Rym) T+ Ry, (7)

where R,, and R,, are covariance matrices of process noise pr and measurement noise my,
respectively, Ry 1s a cross-covariance matrix of px and my. Equation (7) represents the covariance
matrix of state estimation error, known as the Riccati equation. Following sections describe four
identification methods which may require different dynamic performances of the system.
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2.2.1 Observer Kalman Filter Identification Using ERA

Assuming that the process noise p; and measurement noise mjy are stationary, mutually uncorrelated,
and time step k—oo, Eq. (4) and (5) become linear time-invariant Kalman filter observers in a steady-
state;

X, = Gx, + Hu +Ky, ®)
Y =Cx, +Du, +g )

where G, H, and K are matrices independent with time index £, given by

G=A-KC, (10)
H=B-KD, (11)
K = AIICT (R, + CIICT)", (12)
M = ATIAT - ATICT (R,.,,, + CTICT)! CIIAT + R ,,, (13)

Equation (9) can be written in a matrix form with considering time step & > p, with p chosen
sufficiently large (p>>n) to ensure the Kalman filter in the steady-state

Y=YW+E (14)

where Y = [yp, Yp+1s - Viit], W = [Wp, Wpr1,..., wi1] With Wi = [uk; wit1; yicts... Uip; Yiepl, ¥ = [D, CP,
CGP, ..., CGP?P, CGF-'P] with P =[H, K], and E = [, &+1 ,..., &-1].

Solving Eq. (14) by the Least Square (LS) method yields ¥ = YW (WW")", where W is the Markov
parameter sequence of the Kalman filter observer. The direct influence matrix D can be identified by

the first partition ‘i’o of ¥ as shown in ¥ = (¥, ¥,¥,,..¥ p] . Other system Markov parameters CA*

n

'B and observer gain Markov parameters CA“'K (k = 1, 2, 3...) can be recovered from ¥,,¥,,....,'¥ »

, where the recovery process is detailed in (Juang J. N., 1993). Finally, the identification process can be
completed by determining A, B, C, and K from the Markov parameters by ERA (Juang J. N., 1985).

2.2.2 Combined Deterministic-Stochastic System Identification (D-SSI)

With some algebraic manipulations, Eq. (2) and (3) can be rewritten in matrix forms as follows
Y0|i—l = Oixg + TidU0|i—1 + EZ‘,_I

(15)
+E’
i2i-1 (1 6)

d_ nxj d_ nxj
where X = [xo, Xiyees X j_1] , XTI = [xi,xw..., X, j_l] are non-steady Kalman filter state sequences,

1

Yi|2i—1 = OiX;i + TidU

i2i-1

E' and E’ . are im % j measurement noise matrices, O, =[C;CA;CA”;..;CA™'™" is an extended

0‘1—1 i‘ZI

observability matrix (i > n), and T is a Toeplitz matrix,
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r —jimxir

D 0 0 .. 0
CB D 0 .. 0

T’ =| CAB CB D .. 0

i-2 i-3 i—4
|CA™B CA™B CA"B .. D] : (17)

and Block Hankel matrices of input and output measurements are respectively defined as follows

irxj imx j
Uy U Uy e U Yo M V2o oo Vi
uoou, U, .. U, o M Vs o
B 1 5 3 j _ 1 2 3 J
Upa =« ¢ ¢ : Yo = : : : (18)
U, u, U, Ui Yo Vi Vi o Visjoo

where i is the block row number defined by users (i > n) and j (j =/ - 2i +1) covering the entire length /
of data. Similarly, U0|i R Y0|i , U Y U

it Y, sipic are defined in the same manner as Eq.
(18).

i2i-12 i+1[2i-1?

To determine system matrices which will be shown later, the non-steady Kalman filter observers of the
system described in Eq. (4) and (5) can be rewritten under following matrix form

X..| [A B] X | [q
= + , (19)
Yi|i C D Ui|i )
where e) and e; are residuals of the state sequence and system output, U, and Yi|i are the i” block row

matrices of input and output measurements, respectively. Herein, oblique and orthogonal projections
are introduced. These projections are useful to interpret the relation between the state sequence, system
matrices and input/output data

Y

Li — i|2i—l U W0|i_l , (20)
il2i-1

W0|i—l U0|i—l
Z = Yi|21'—1 W0|i—1 -
U . Yol._l
#1 ] with N 21)
Z Y “,i+1|2i—1 th W Ui+1\zz—1 (22)
i+l = i+1|2i— w1 ipi-l = :
llz l Ui+l|2i—1 | Yi+1\2f—1

By taking Singular Value Decomposition (SVD) of weighted oblique the projection, L/ U;H ,

N S, 0|V,
L /U =[U,U,]
= 0 0]V,

(23)
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7
the system order and the extended observability matrix O; can be determined. The system order
theoretically equals to the number of non-zero singular values of the diagonal matrix S; and
0, = UIS}/ *. Hereafter, system matrices A, B, C, and D can be identified using the estimated states
and/or the extended observability matrix O; as presented in two following algorithms.

Algorithm 1. Following the Theorem 12 in (Van Overschee P., 1996), the non-steady state Kalman
filter state sequence can be estimated directly from the input-output data without known system

matrices, X =O/L,, where (.)'symbolizes for the Moore-Penrose pseudo-inverse. A similar

procedure is also applied for Xm =0}, L

i+

System matrices can be identified from Eq. (19) by the

LS method given the estimated state sequences, and further details can be found in Chapter 4 (Van
Overschee P., 1996). When one of the following conditions, such as i—oo, purely deterministic system
or white noise input is not satisfied, LS solutions will produce biased estimates of the system matrices.

Algorithm 2: Another way to determine system matrices is by using the extended observability matrix

O; resulted from SVD of Z;, which will be applied in this paper. Equation (19) can be rewritten as a set
of linear equations by hiding all unknown states following Theorem 11 in (Van Overschee P., 1996)

OT_I Zi+1 A e]
’ =| .|0'Z +AU,  +
Yi|i C l )

B|O], T )-AO T’
(D|0)-CO] T’

(24)
where A = [(

System matrices A and C can be estimated by solving Eq. (24) with the LS method. To increase the
accuracy of the estimates, the observability matrices O and O], can be recomputed from known A

and C matrices. Besides, matrices B and D can be then determined by the minimization of residuals in
Eq.(24). By avoiding the use of non-steady Kalman filter observers, Algorithm 2 can be considered as
a robust identification method in practice, e.g., finite measurement and non-white noise inputs.

2.2.3 System Realization Using Information Matrix (SRIM)

A new realization algorithm SRIM using data correlation concept of shifted input and output (Juang J.
N., 1997) is introduced to identify system matrices directly from data. Using the previously defined
matrices in section 2.2.1, the input-state-output relation in Eq. (2) and (3) can be performed for each
time index k (k=0, 1, 2, ..., /) in a matrix form as follows:

Y, =0X, +TU, +E,, (25)

where definitions of O, T, and E; are like those of O;, T and E‘;‘H in Eq. (15), with 7 integer defined

by users (i > n/m+1), n is the desired system order. The state matrix X, =[xk,xk+l,...,xk+ /—l]n " with

integer j chosen such that j=1/- k- i+ 2 covering the data length /,
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irxj imx j
u w,, U, .. U, Vi Vi Vi o Virja
u u u u, y y y I
k+1 k+2 k+3 k+j k+1 k+2 k+3 k+
Uy =| M M B e gy | T P e B o
Wi Wy Weyn - Wi Vivict Viei Viwinn o Visinj2

To determine system matrices A, C from O and B, D from T, following autocorrelation and cross-
correlation matrices are used to eliminate either T or O from Eq. (25)

Ryy = (1) YY", Ruu = (1//)UdUL", Rx = (1) XiXs"
Ryu = (1)) Y4Ui", Ryx = (1)) Y4Xs", Ryu = (1//)X5Ui"

Post-multiplying both sides of Eq. (25) by (1/)U", (1/)Y.", and (1//)X;" yields Eq. (27), (28), and
(29), respectively

Ryu = ORxu + TRuu (27)
Ryy = ORTyx + TRTyu (28)
Ryx = ORxx + TRTxu. (29)

Substituting T = (Ryu - ORxu)R'wu (if Ruu > 0) deduced from Eq. (27) into Eq. (28) and (29) returns

R, =OR_O' (30)
where R, =R, —R, RLR!,, 31
I_{xx = Rxx - quR;lllRiu N (32)

Then, taking Singular Value Decomposition of the im x im matrix Ryy yields

_ S o]lu”
R, = [Ul,Uz]{O O}[UIT } =USU’
2

(33)
Equation (30) and (33) imply O = U;. With O known, matrices A and C can be easily identified from
the observability matrix O =[C;CA;CA’;...;CA™']"". To determine B and D from T, the matrix O

should be eliminated from Eq. (25). Post-multiplying Eq. (25) by the im x n matrix U;T and utilizing
orthogonality property of U; (U1 = O) and U: produces

_ —1
T=R, R, (34)

Based on the previous definition of Toeplitz matrix T in Eq. (17), one can partition T into parts to
extract matrices B and D.

2.2.4 Auto-regressive Exogenous Models (ARX)

The input-output relationship can be approximated using auto-regressive time series with exogenous
inputs, called ARX model. The ARX model represents the simple linear input-output structure with

two main parts, an auto-regressive part and an exogenous input part to predict the future response y,
from past measurements, as presented in the following equation:
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Vet Oy Ty, e,y = Bou, +Pu,_, +Pu, ,+..+ B,,”k_,, +e, (35)
where o, (mxm) and B, (mXr) are constant coefficient matrices, with i = 1, 2,..., p and p is an ARX
order chosen by users. The term e, accounts for the disturbance factor from modelling errors and
measurement noise. The equattion (35) can be rewrited in the following matrix form:

Y=YV+E, (36)
u, u,, u,, u,
up—l up up+1 u!‘—l
yp—l yp yp+l o yf—l
u u u, - ou
. . -2 —1 1=2
where, input matrix V=| 7 r r ,

Yoo Vo YV, 7 Vi

u, u, u, = U,

Yo Wi Yo v Vi

L =S(p(mtry+rx(l=p+l)
output matrix Y =[y,,¥,. 1> L_pi) » cOetficient matrix ¥ =[B,.B,,-a,,....p ,,—a,]

mx(p(m+r)+r)

and E=[e e, ,....€] The coefficient matrix can be estimated by Least Square, and used for

mx(l—p+1) *
calculating system matrices, A, B, C and D:

00 - 0 -a
10 .0
A=[0 1 - 0 -a

p-1

00 - I -—a

L Ampxmp
B= I:Bp _apBO’ Bp—l _ap—lﬂO’ ﬁp—z _ap—QBO o B] _G1Bo:|mpxr 5
C=[0, 0, 0 - I] . and D=,.
Modal parameters can be then determined from those state-space matrices by eigenvalues and
eigenvectors as presented in the next section.
2.2.5 Modal Parameter Identification from State-space Matrices

The modal parameters as frequencies, damping ratios, and mode shapes from above time-domain SI
methods can be identified from the state-space matrices A and C. The system matrix A can be
decomposed into eigenvectors and eigenvalues as follows:

A=VSV™, (37)
with S (n x n) is a diagonal matrix containing eigenvalues y; and V (n X n) is an eigenvector matrix.
The eigenfrequency f;, damping ratio £, and mode shape ¢, are then determined by

fi=In(w,)/dt, (38)

& =—H /|/ui ) (39)
and

¢=CV, (40)
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with g/ is the real part of a complex number and | M-| is a complex modulus.

The time-domain system identification procedures determining modal parameters depend on the order
of selection. Singular values as a function of system order indicate the proper order where a sudden
value drop is observed. However, in extreme noise cases, such a drop may not be prevalent, and further
steps may need to be pursued, such as a stabilization diagram for accurate identification. The
stabilization diagram reveals the repetitiveness of modal behaviour at a series of different system
orders, and stable poles can be distinguished based on the consistency over the domain.

2.2.6 Stabilization Diagram and Model Order Selection

Modal identification with parametric methods is prone to non-physical modal findings, which need to
be discarded through stabilization diagrams. When modal identification is conducted in consecutive
system orders, stability criteria can quantify pole stability and visualize distinction of physical modes
from mathematical ones via vertical lines. The stabilization criteria for frequency, damping ratio, and
mode shape is formulated as:

u < lim (%)

j (41
S <lim, (%)

S (42)
1-MAC, . =1 [#6 <lim,,,.(%) (43)

il — YT T T
(¢1 ¢1)(¢1+1 ¢z+l)
where i and i+1 are consecutive system orders, f is frequency, & is damping ratio, ¢ is mode shape,

()7 is a complex conjugate transpose, lim,, lim,, and lim,,,. are limits defined as 0.01, 0.05, and 0.05,

respectively. By default, this study uses 0.01, 0.05, and 0.05 limit measures associated with frequency,
damping ratio, and 1 - MAC, respectively.

2.2.7 Collection of Method Characteristics for the Synergistic Combination

From the methodologies expressed above, it can be observed that many features of the proposed
algorithms are discovered in the literature, which can serve for judgement of the method performances
under the synergistic scheme. Table 1 summarizes the existing literature's observations denoting the
characteristics, weaknesses, and strengths of each method referred by former studies. An outcome of
such an evaluation can guide expert decisions if one method is superior to others; however, one should
note that such a process might possess a qualitative and subjective nature. For example, according to
the authors’ opinion, D-SSI might be more favourable with least penalties over alternatives, but
another expert may disagree with doing so. A more systematic approach to prioritize methods’ weights
on the synergistic process requires a quantitative framework, which is discussed further in Section 7.
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3. Numerical Example of a Single-Span Beam

In this section, a proof-of-concept application is performed on a single-span beam structure
simulated numerically. A 12-meter-long beam supported with fixed and pinned ends has three
lumped masses along the length. Therefore, the structure represents a 3-degree-of-freedom
(3DOF) system and is subjected to white noise excitation at supports in the vertical direction.
The beam mechanical properties are given as E = 25x10° MPa, L=12m, =03 m* m=91.81t,
§=0.02, v=0.2 and the layout is given in Figure 1.

L L/Aj LA | LA | LA

Figure 1. Numerical beam example's layout and characteristics.

The white noise excitation reaches an absolute maximum amplitude of 0.01 g, and accordingly,
the nodal responses are simulated based on the parameters expressed above. Figure 2 shows the
acceleration response time histories and spectral characteristics of each node's vibration. For the
given features, the first, second, and third modal frequencies and mode shapes can be derived
from the stiffness and mass matrices' eigenvalues and eigenvectors as a reference set. 2% modal
damping ratio applies to all three vibration modes.

%107 |
Node 1
2
T , 0 S it
a2 2000 4000 6000 & 0 10 20 30 40 50
5 a4 ‘Z .01 Node 2
e 0 £
= O
u -0.2 | g 0
2 2000 4000 6000 5 0 10 20 30 40 50
< 02 o 0.01 Node 3
0 0.005
-0.2 0
2000 4000 6000 0 10 20 30 40 50
Time (s) Frequency (Hz)

Figure 2. Acceleration time history and Fourier spectra at Node 1, 2, and 3.

The simulated response is then used for modal analysis following each identification method.
Figure 3 shows stabilization diagrams for parametric methods distinguishing physical poles from
the mathematical ones through the stabilization criteria mentioned in the previous section. As a
result, together with the actual values, the modal frequencies and damping ratios are identified as
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in Table 2, and Figure 4 visualizes the mode shapes. These identification results will feed the

ranking process expressed in Section 6.

Model Order

Model Order

Figure 3. Stabilization diagrams from a) OKID, b) D-SSI, ¢) SRIM and d) ARX, respectively.

According to Table 2, the lowest error percentage between actual values and individual methods
are D-SSI, D-SSI, D-SSI for 1° (0.027%), 2" (0.013%), and 3™ (0.009%) modal frequencies, D-
SSI, D-SSI, and D-SSI, for 1 (0%), 2" (0.5%) and 3™ (2%) modal damping ratios, respectively.
Regarding mode shapes, D-SSI, OKID, and OKID has the smallest 1-MAC values such as 0.00,
0.0001, and 0.00, respectively. It is expected that the ranking procedure described in the

P3O (dBfHz)

Madel Order

50

S oy
e
=

o O
158 = =
LA ol
ﬂ g 2

: i)

20 D 10 20 30 40 5

Frequency (Hz) Freguency (Hz)
‘ » stable pole = stable freq. & MAC stable freq. & damp. stable fteq-‘

Table 2. Identified modal frequencies and damping ratios of the numerical beam.

Frequency (Hz) Damping ratio
Method  Node 1 Mode2 Mode3 Model Mode2 Mode 3
Actual 8.679 26.493  46.786  0.020 0.020 0.020
FDD 8.691 26.465 46.875  0.017 0.017 0.017
OKID 8.672 26.490  46.777  0.022 0.020 0.020
D-SSI 8.681 26.490  46.782  0.020 0.020 0.020
SRIM 8.779 26.223  46.122  0.018 0.016 0.015
ARX 8.748 26.508  46.852  0.031 0.016 0.015

following section favours a similar outcome.

PSD (dB/Hz)
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Figure 4. Identified mode shapes of the numerical beam (elevation view).
4. Bridge 1: Shaking Table Experiments

The system identification methods discussed in Section 2 are initially used to identify modal
parameters of a quarter-scale bridge structure, Bridge 1, which is subjected to seismic shaking
table tests at the University of Nevada, Reno. The details of the experimental setup, procedure,
and identification results are presented in the following subsections.

4.1. Setup and Procedure

The first testbed presented in this study is a two-span, three-bent reinforced concrete bridge
structure that is subjected to shaking table tests under the supervision of Professor Saiidi and
Sanders. The bridge structure, Bridge 1, has three bents, each consisting of two columns with the
same cross-sections and material properties. However, each of these bents has a different height,
dominating torsional behaviour in dynamic characteristics. Additional masses are added on top
of the outer bents to represent the adjacent spans of a typical bridge. The structure is excited in
the transverse direction by three separate, but synchronous shaking table tests. Eleven
accelerometers are placed on the shaking tables, bent columns, and bridge deck, to measure input
ground motion and structural response in the excitation direction. Figure 5 shows the sensor
orientation, configuration, and 3-dimensional bridge model. Extensive documentation and
dataset are provided on NEES Project Warehouse, Large-scale experimental seismic studies of a
two-span  reinforced concrete bridge system, which is accessible online from
https://www.designsafe-ci.org/data/browser/public/nees.public/NEES-2005-0032.groups/.  The
condensed review of the testing procedure can be found in (Johnson N. R., 2008) and a detailed
report provided by NEES website (Johnson, N., 2006) as well as a large number of studies
presented by (Soyoz, S., & Feng, M. Q., 2008), (Chen, 2008), (Banerjee, 2008), (Soyoz, S.,
Feng, M. Q., & Shinozuka, M., 2009), (Johnson N. S., 2009) (Johnson N. S., 2009), (Frizzarin,
2010), (Jafarkhani, 2011), (Ozer, E., & Soyoz, S., 2015), (Banerjee, S., & Chi, C., 2013), (Saiidi,
2013), and (Ozer, E., Feng, M. Q., & Feng, D., 2015).
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The structure is subjected to several different shaking table tests of varying intensities. As the
intensity of shaking table tests increases, the structure experiences progressive damage, which is
documented by crack marks and strain gauge measurements. The shaking table

tests include high-amplitude, narrow-band earthquake excitations, as well as low-amplitude,
broad-band white noise excitations between each damaging event. Assuming that the structural
integrity does not change during white noise excitations, the system can be considered as linear-
time-invariant. Therefore, the proposed methods can be used for system identification. What is
more, white noise excitation has no particular frequency content; thus, structural response under
white noise excitation can be reduced to an output-only system identification problem. Hence,
the data used in this study is limited to the five-channel data as output response obtained from
Sensor 4, 5, 7, 8, and 11 located on the bridge deck.

Four different sets of white noise response data are used to investigate the change in structural
damage throughout the shaking table tests. Between each of these sets, many earthquake tests are
performed to introduce structural damage. These tests are conducted with a sampling rate of 200
Hz leading to a Nyquist frequency of 100 Hz. To avoid direct current components, bias, and
aliasing effects, the vibration signals are band-pass filtered with lower and upper cutoff
frequencies of 0.5 and 49 Hz, respectively. Figure 6 shows the acceleration time history and the
Fourier spectra of Set 1-4 measured by Sensor 7. The peak values on each of these spectra show
that the dominant peak shifts leftwards as a result of the damage progress. In other words, it can
be observed that modal frequencies decrease as the shaking table tests proceed, and damage level
increases.

= Accelerometor

Figure 5. Experimental setup and sensor layout of the Bridge 1 test, conducted at UN, Reno.
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Figure 6. Acceleration time history and Fourier spectra at Sensor 7.

4.2. Identification Results

Using the time and the frequency domain methods discussed in Section 2, each of the data sets
corresponding to a different structural state is used for system identification. The scope of the
identification study only covers the 1%, 2%, and 3™ modes of vibration in the transverse direction,
which is the direction of excitation. Table 3 presents the 1%, 2%, and 3" jdentified modal
frequencies and damping ratios corresponding to different data sets (Set 1, 2, 3, and 4) and
identification methods (FDD, OKID, D-SSI, SRIM and ARX). Figure 7 shows mode shapes

obtained from different data sets and identification methods.

Table 3. Identified modal frequencies and damping ratios of Bridge 1.

Method Frequency (Hz) Damping ratio (%)
Mode No. Set1 Set2 Set3 Set4 Setl Set2 Set3 Setd
FDD 293 254 156 156 570 6.12 276 2.76
1 OKID 296 243 142 146 273 381 332 249
D-SSI 2.84 251 168 1.54 529 343 279 211
SRIM 285 248 172 153 05 02 090 0.85
ARX 303 246 164 154 476 505 299 234
FDD 371 332 176 156 570 6.12 276 2.76
) OKID 377 3.69 202 171 325 634 301 254
D-SSI 3.84 354 205 - 6.17 6.82 6.95 -
SRIM 390 334 228 - 0.13 123 1.77 -
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Modal Displacement

ARX 382 3.66 189 1.60 4.62 746 552 3.76
FDD 13.67 13.28 13.09 13.18 5.70 6.12 276 248
3 OKID 13.77 1333 1335 13.10 286 142 2.08 1.50
D-SSI  13.82 1335 13.52 13.14 3.46 4.03 7.80 3.92
SRIM 13.85 13.42 13.11 13.12 0.1 0.15 1.14 0.27
ARX 13.98 13.27 1294 13.00 384 142 230 194
Note: 2™ mode cannot be captured using D-SSI and SRIM based on Set 4 data.
—o o ™| Mode 1 Set 1 =6~ Unieormei|  ogle 1 Set 2
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Figure 7. Identified mode shapes of Bridge 1 (top view).
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S. Bridge 2: Field Tests

The second testbed is a single-span steel link bridge, which serves as a connection between two
multistory buildings at Columbia University Morningside Campus. The following subsections
explain the details regarding the structural properties, instrumentation, and identification results,
respectively.

5.1. Structural Layout

The bridge is instrumented with six accelerometers oriented in the vertical direction; therefore,
vibration characteristics in the lateral and longitudinal direction are omitted in this study. The
sensor configuration spans the entire bridge in longitudinal direction evenly spaced at six
locations. Therefore, the proposed arrangement does not intend to reveal torsional modes,
although peaks corresponding to these modes are observed in the frequency domain. The
instrumentation photographs and bridge dimensions are shown in Figure 8.

Extensively large-sized data (5 hours) is obtained at nighttime to minimize pedestrian-induced
vibration and take measurements under ambient vibration. The data is sampled at 100 Hz, and
band-pass filtered with cutoff frequencies of 0.5 and 49 Hz. Figure 9 shows acceleration time
histories and Fourier spectra obtained from Sensor 4, which is close to the mid-span of the bridge
structure. Almost no change in vibration amplitude and stable spectral characteristics over time
shows that the ambient vibration conditions are maintained throughout the tests.

=8
2
&
=
i

3 [ 5 [
1

27m

Plan Yiew

40m
1 12 Bt s s

= 1.5m
Elevation View ““‘\ ¥

Figure 8. Inner, outer views, and sketches of Bridge 2, connecting Mudd-Schapiro Buildings.
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Figure 9. Acceleration time history and Fourier spectra at Sensor 4.

5.2. Identification Results

System identification is performed using six sensor data obtained from ambient vibration
measurements. Low-amplitude ambient vibrations include a wide range of frequencies, which
can be idealized as an output-only identification problem. Therefore, using a similar procedure as
described before, in order to use OKID, D-SSI, SRIM, and ARX methods, input data is
considered as an array of zeros. The identification results provide the 1%, 2", and 3™ modes of
vibration in the vertical direction, which is the measurement direction of sensors. Table 4 shows
the 1%, 2 and 3™ modal frequencies and damping ratios obtained from FDD, OKID, D-SSI,
SRIM, and ARX methods. Figure 10 shows the 1%, 2", and 3" mode shapes obtained from FDD,

OKID, D-SSI, SRIM, and ARX methods.

Table 4. Identified Modal Frequencies and Damping Ratios of Bridge 2.

Method Frequency (Hz) Damping ratio (%)
Mode No. Set1 Set2 Set3 Set4 Setl Set2 Set3 Setd
FDD 879 859 879 850 175 192 209 1.68
1 OKID 8.67 860 893 891 348 1.69 343 346
D-SSI.  8.60 862 847 864 382 337 620 3.62
SRIM 872 865 899 865 176 275 184 0.30
ARX 857 861 856 8.67 433 423 444 3.65
2 FDD 18.95 1895 1895 1895 1.75 192 209 1.68
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Figure 10. Identified mode shapes of Bridge 2 (elevation view).
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6. Comparative and Collaborative Analysis

In the previous sections, FDD, OKID, D-SSI, SRIM, and ARX system identification methods are
applied on two exemplary bridge vibration datasets for the identification of modal parameters as
damage indicators. However, looking at the individual results, one can see that the identification
results from different methods do not perfectly fit each other, and there is particular dispersion in
terms of modal frequencies, mode shapes, and damping ratios. Such non-uniformity of identified
modal parameters due to different methods include the damaged and undamaged cases. In
addition to the environmental variation of dynamic behaviour, the sensitivity of modal
parameters to structural damage, and lack of input measurements and high noise in the response
signals, incorrect identification results can mislead the opinions regarding the structural state. A
comparison of different identification results is a starting action to overcome this problem;
however, it is not enough to get the maximum outcome from the advantages of a collaborative
system identification algorithm plethora. In this paper, a method-centric synergistic scheme
guides the quantitative combination of FDD, OKID, D-SSI, SRIM, and ARX. The ranking
procedure inheriting the optimal identification method findings is discussed as follows.

Method-centric approach lines up the multiple identification methods according to their
correlation with the remainder of the techniques in which the highest rank technique is ultimately
selected in terms of modal parameters. For modal frequencies and damping ratios, the difference
between the two methods can impose the quantity of lack of agreement through error sums.
Without a reference value, the Natural Frequency Difference (NFD) suggests to use the
minimum value as the denominator (see (Ewins, 2009), (Ebrahimi, 2013) , and similar
comparisons can be made accordingly.

| fmethod; = Fmethod;
Af}-l(%) _ - method method; ) (100) (44)
min (fmethodir fmethodj)
i $methodi — Emethodj
AEH(%) = |— - (100) (45)
min (fmethodi: fmethodj)

where f and & are modal frequencies and damping ratios. Sum of errors related to the method
and mode numbers will return the eventual agreement between a method and the rest of the
method population.

=5

M N=3
Rank Term (f);th yosnod = piz. ) Zk ) Aff (46)
]= —1

M=5N=3
Rank Term (€);th yornoq = piz. ) Zk ) A&f (47)
]= —

where i, j, and k refer to the method of interest, method of comparison and modal parameter
indices, respectively. The smaller the error, the better match between the two methods in
comparison occurs. Such a comparison process can perform for each of the alternatives and
mode numbers, eventually leads to the error sum for each particular technique. Moreover, p;
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corresponds to the penalty coefficient, which weighs prioritized methods over others if a prior
opinion is present in terms of algorithm reliability. For cases where such information is absent,
all methods are treated as equivalent, and the penalty coefficient becomes unity for each method
by default. It is noted that self-comparison returns empty-sequence results by nature and is
uninfluential in the final rank due to zero error contribution.

In addition to the modal frequencies and damping ratios, mode shapes can serve as ranking
indicators quantifying coherence among different identification methods. In the case of mode
shapes, such a ranking method can utilize via modal assurance criteria (MAC), quantifying the
similarity between two modes. The MAC value lies within the range 0 to 1, defining the interval
from no correlation to maximum correlation. Similar to the zero addends given for modal
frequency and damping ratio, self-comparison resulting in zero addends will not affect the
overall rank of the method.

Modal Assurance Criteria (MAC) can be formulated as follows,
. 2
|¢methodi ) ¢methodj|

T T
(¢methodi ' (pmethodi) ' (¢methodj ' (pmethodj)

MAC} = , (48)

where @ represents the mode shape vector. If a similar ranking procedure repeats for each of M
identification methods and N mode shapes, an eventual value associating one mode's closeness
with the others can infer the rank.

M=5 < N=3 ,
Rank Term (@) ;th y10tn0a = Pi Z Z (1—MAC}) (49)
j=1 &=k=1

The scheme expressed above identifies the best-ranked identification method; however, it
requires further information to quantify the agreement between the method population
contributors. In other words, high intra-agreement likely represents a more confident
identification, whereas, dispersion among the proposed methods implies more uncertainty in the
synergistic identification results. Thus, quantifying this uncertainty can specify a deviation range
for better representation of the collaborative finding's reliability. An additional term
incorporating deviation among methods, yet, disregarding the outliers can be represented with
median absolute deviation (MAD) accompanying the synergistic result. More complex ensemble
learning methods covering uncertainty can also be found in the literature (Hastie, T., Tibshirani,
R., & Friedman, J., 2009) (Polikar, 2009). It should be noted that identification uncertainty
within a particular method is omitted in this paper; however, it can be incorporated with
probabilistic modal analysis approaches. The MAD values for each of the case studies are
summarized in Table 8.

As a result of the process mentioned above, the highest frequency, damping ratio, and mode
shape rank will refer to the method with minimal values. To implement the ranking scheme,
FDD, OKID, D-SSI, SRIM, and ARX are quoted as Method 1 to 5. The error rates in terms of
frequency (Eq. 44) and damping ratio (Eq. 45) and coherence of mode shape (Eq. 48) are
visualized for each bridge testbed in Figure 11 (numerical example), Figure 12 (Bridge 1 Set 1)
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and Figure 13 (Bridge 2 Set 1). Table 5, 6, and 7 presents the summary of the ranking results
(Eq. 46, 47 and 49) and the chosen identification result for all data sets from the numerical
example, Bridge 1 and Bridge 2, respectively. According to Table 5, outperforming system
identification methods are D-SSI, D-SSI, and OKID for modal frequencies, damping ratios, and
mode shapes, respectively. The actual values from Table 2 (D-SSI for modal frequencies and
damping ratios, dominantly OKID for mode shapes) agree well with these outcomes.

M1 vs All M2 vs All M3 vs All

f Err. Rata (%]

A

Mz vs All

Mode No

M4 vs AN M5 vs All

Method No

W4 vs All M5 vs All

Mathod No
M4 vs All M5 vs All

Figure 11. Modal Parameter Similarity Bar Chart (numerical example).

Table 5. Rank Chart for the numerical example (* smallest value favourable).

Parameters Methods Set (Only 1)

f FDD 0.0536
OKID 0.0542
D-SSI 0.0509*
SRIM 0.1381
ARX 0.0598

¢ FDD 2.4783
OKID 2.4397
D-SSI 2.4083*
SRIM 24374
ARX 3.8898

D FDD 0.2754
OKID 0.1156*
D-SSI 0.2047
SRIM 0.2040
ARX 0.1355
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Figure 12. Exemplary Modal Parameter Similarity Bar Chart (Bridge 1, Set 1).
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Figure 13. Exemplary Modal Parameter Similarity Bar Chart (Bridge 2, Set 1).

Table 6. Rank Chart for Bridge 1 (* smallest value favourable).

Parameters Mecthods Set 1 Set 2 Set 3 Set 4
f FDD 0.2865 0.4181 1.0824  0.1422
OKID 0.2262*  0.3843 1.0476  0.1404*
D-SSI 0.2471 0.2909*  0.7916  0.1573
SRIM 0.2814 0.3572 1.2165 0.1495
ARX 0.3121 0.3273 0.7624* 0.1436
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'3 FDD 113.8039 82.4857  9.2269* 12.6344
OKID 62.4485* 37.1499* 10.2135 9.6128*
D-SSI 93.0515 524073  21.0515 19.8320
SRIM 335.4062 188.3898 24.5162 40.2845
ARX 83.4385 44.4287 10.2999 12.7729

D FDD 0.7920 0.7771 3.7276  1.1720*
OKID 1.9102 0.8361 2.5239  1.1922
D-SSI 0.7298*  0.6888*  2.5641  1.3399
SRIM 2.1088 1.7728 2.2010* 1.1850
ARX 1.0999 1.1206 4.7966  4.0954

Table 7. Rank Chart for Bridge 2 (* smallest value favourable).

Parameters Methods Set 1 Set 2 Set 3 Set 4

f FDD 0.2138 0.2362 0.3026 0.2498
OKID 0.0998*  0.0940* 0.1876*  0.1877
D-SSI 0.1110 0.1345 0.2239 0.1045
SRIM 0.1096 0.1035 0.2063 0.1023*
ARX 0.1226 0.1025 0.1885 0.1142

& FDD 66.5730  165.6427 78.7575 154.1031
OKID 352775 71.7035 554915 48.0620*
D-SSI 58.7014  38.9206* 38.6919  63.8281
SRIM 52.3558 169.3686 46.3812  187.7667
ARX 25.8819* 92,0870  23.0093* 50.3005

)] FDD 2.5769 2.7437 3.3921 2.8834
OKID 2.3747 2.1596 1.9953 3.5139
D-SSI 2.2246 1.6231 1.5608 1.6592*
SRIM 2.0358 1.2405 2.8580 1.7300
ARX 1.7307* 1.0923*  1.3238* 1.8534

Table 8. Median absolute deviations for frequencies and damping ratios from the three case

studies.

Parameters Set  f4 f2 f3 &4 &y &3

Numerical - 0.0194 0.0181 0.0705 0.0018 0.0009 0.0021

Bridge 1 1 0.0749 0.0532 0.0496 0.0094 0.0137 0.0060
2 0.0299 0.1493 0.0517 0.0124 0.0048 0.0127
3 0.0630 0.1251 0.2003 0.0008 0.0124 0.0039
4 0.0244 0.0401 0.0245 0.0037 0.0011 0.0085

Bridge 2 1 0.0677 0.0976 0.0054 0.0085 0.0077 0.0014
2 0.0137 0.1584 0.0054 0.0083 0.0062 0.0009
3 0.1995 0.0341 0.0058 0.0134 0.0013 0.0026
4 0.0200 0.0023 0.0051 0.0019 0.0040 0.0006

7. Results and Discussion
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Following implementation of the proposed ranking scheme and successful verification on the
numerical model, this section discusses benchmark comparisons, synergistic outcomes,
environmental effects on modal analysis results and frequency-damage dependence for Bridge 1
and Bridge 2. Prior studies related to Bridge 1 presented in Table 9 serve as benchmarks and
support the modal identification discussions in this section.

Table 9. Identification results of Bridge 1 published by different authors.

1%, 2", 3" Frequencies (Hz) 1%, 2", 3" Damping Ratios (%)

Set1l Set2 Set3 Set4 Setl Set2 Set3 Set4
Soyoz S., & Feng, M. Q., 2008 293 254 176 1.56 - - - -
3.70 - - - - - - -

13.70 - - -

Frizzarin M. et al. 2010 291 253 1.63 1.51 7.4 6.6 2.8 1.3

Authors

Jafarkhani R., & Masri S. F., 2011 3.09 246 153 139 - - - -
415 344 182 157 - - - -
12.90 1233 11.95 11.94 - - - -
293 - - - 50 60 96 115
3.66 - - - - - - -
13.87 - - - - - - -

Ozer E., & Soyoz, S., 2015

7.1. Bridge 1 Benchmark Comparisons

The 1% modal frequency results from FDD, OKID, D-SSI, SRIM, and ARX (2.93, 2.96, 2.84,
2.85, and 3.03 Hz respectively) corresponding to Set 1 data are compared with previous studies
presented in Table 9. For instance, the errors between FDD, OKID, D-SSI, SRIM, ARX and
(Soyoz, S., & Feng, M. Q., 2008) are 0%, 1.0%, 3.1%, 2.7%, and 3.4%, respectively. Another
example is the comparison of 22 modal frequencies of Set 1 (3.71, 3.77, 3.84, 3.90, and 3.82 Hz)
with (Jafarkhani, 2011). The errors corresponding to FDD, OKID, D-SSI, SRIM, and ARX are
10.6%, 9.2%, 7.5%, 6.0%, and 8.0% respectively. As a result, the identification frequencies
slightly vary according to the identification method.

In the case of damping, the identification results are much more erroneous. For instance, FDD,
OKID, D-SSI, SRIM, and ARX 1st mode damping values from Set 1 (5.7%, 2.7%, 5.3%, 0.5%,
and 4.8%) are much different from those obtained by (Frizzarin, 2010) and (Ozer, E., & Soyoz,
S., 2015). The FDD, OKID, D-SSI, SRIM, and ARX results have errors of 23%, 63%, 29%,
93%, 36% according to (Frizzarin, 2010) and 14%, 45%, 6%, 90%, 5% according to (Ozer, E., &
Soyoz, S., 2015). Similar substantial differences are present looking at the other sets such as Set
2, the 1st mode FDD, OKID, D-SSI, SRIM, ARX damping ratios with 7%, 42%, 48%, 97%,
24% errors according to (Frizzarin, 2010) and 2%, 37%, 43%, 97%, 16% errors according to
(Ozer, E., & Soyoz, S., 2015). A similar variation pattern can be observed, looking at different
data sets and different modes.

By tracking the evolution of the first, second, and third frequencies in Table 3, one can observe a
gradual decrement in modal frequencies from Set 1 to 4 as well as (Soyoz, S., & Feng, M. Q.,
2008), (Frizzarin, 2010), (Jafarkhani, 2011), and (Ozer, E., & Soyoz, S., 2015) findings.
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Regarding damping, there is a clear indication of increasing damping as damage progresses
throughout the tests according to (Ozer, E., & Soyoz, S., 2015); however, such behaviour
reverses in (Frizzarin, 2010). No distinct patterns are observed looking at damping identification
results of Table 3 as shaking table tests proceed from Set 1 to Set 4. These deviations highlight
the difficulties and low confidence levels in the identification of civil infrastructure damping
features. Consequently, uncertainty in damping estimation is considerably higher than the one in
modal frequencies; therefore, the damping ratio is less trivial as a damage quantification measure
based on the results.

7.2. Bridge 2 Benchmark Comparisons

Similar to Bridge 1, Bridge 2 hosted a variety of modal identification studies addressing mobile,
smart, and citizen-engaged identification scenarios in the last five years (Ozer, E., Feng, M. Q.,
& Feng, D., 2015), (Ozer, E., & Feng, M. Q., 2016), (Ozer, E., & Feng, M. Q., 2017), (Ozer, E.,
& Feng, M. Q., 2017), (Ozer, E., & Feng, M. Q., 2019). In these studies, modal frequency values
point out approximately 8.5, 19, 30 Hz for 1st, 2nd, and 3rd modes, respectively. Based on Table
4, one can see the similar values observed over different sets without any distinct change among
the sets. No significant frequency difference except small deviations is perceived as the tests
proceed from Set 1 to 4 since the bridge is not subject to any changes within this time interval.
However, the damping ratio identification results are not as consistent, when different sets are
compared with each other. This is in line with the erroneous behaviour depicted in Bridge 1,
where tracking structural damage is not viable through the trend in damping ratio values, or the
damping ratios are not stationary despite no structural changes.

7.3. Comparison and Collaboration of Multiple Identification Methods

Regarding the ranking scheme, one can see that the method with the smallest error sum is chosen
for frequency, damping ratio, and mode shape identification as presented in Table 6 and 7. As a
result, the method ranking in the synergistic scheme becomes advantageous to remove specific
algorithm findings which are highly uncorrelated with the others. Such rank cannot express the
exact identification result, but the one which is most comprehensively confirmed by a population
of different methods.

To understand how a synergistic process can merge different identification results, Figure 14
shows the fundamental frequencies of the damaged and undamaged bridges obtained from
consecutive datasets. As expected, there is a 48% decline with the increased severity of
earthquakes imposed on the structure when Bridge 1 taken into consideration. Such change and
damage features can be more comprehensively expressed in terms of modal parameters through a
model updating approach (Mottershead, 1993). In contrast, the frequency characteristics remain
the same as the tests proceed in case of Bridge 2. Nevertheless, there are still minor fluctuations
in Bridge 2, imposing the effects of non-damage-related features. The synergistic combination of
the identification methods reduces the first modal frequency's variability from 0.52 Hz range to
0.33 Hz range (36.5% reduction) due to the inherent outlier removal nature. For the second and
third modal frequencies, the variability reduces by 79.7% and 80.0%, respectively. Such
fluctuation decrease can propose more robust identification performance for more extreme
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sensing scenarios, including novel SHM tools such as citizen science especially if the
applications require real-time action.

It should be noted that the disagreement between methods are also quantified with MAD to
express the confidence level in the optimal findings. Gray vertical lines represent the deviation
from the best ranking method’s identification result. Larger MAD values correspond to higher
disagreement between methods. In most cases, the deviations show a range smaller than the
population of results including outliers.

. E Bridge 1 Bridge 2
—— ._ ﬁ = =
= == =
= = f‘ =
. o
g ¥ g
L synergistic ey H _
1 2 3 4 2 3 4
Set No Set No

Figure 14. Progress of the fundamental frequency from different approaches and synergistic
solution for the benchmark bridge testbeds.

7.4 Consensus Difference Between Method-Centric and Parameter-Centric Approaches

The scheme proposed in this paper can be apprehended as method-centric, that is to say, depends
on identifying the outranking method rather than the statistical combination of the modal
parameter findings of different algorithms. A parameter-centric form, e.g., median values, can
combine system identification results per parameter from multiple methods in a similar way, and
for comparison, is presented in this subsection. Table 10 summarizes the identified modal
frequencies for all case studies, including the method-centric approach proposed in this paper
and the median values of the parameter-centric approach. The summary includes one numerical,
four sets of gradually damaged (Bridge 1), and four sets of undamaged (Bridge 2) modal
frequency and damping ratio identification results. Out of the 54 comparative cases, 16 cases
correspond to the same result determining the outranking modal parameter. In other words, the
method-centric ranking method performs differently than a traditional averaging procedure in 38
cases. The fundamental reason behind this is that the parameter-centric approach treats each
mode separately, whereas the method-centric approach perceives multiple modes together.
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Regarding the ground truth comparisons, Bridge 1 and Bridge 2 datasets are experimental and cannot
provide reference values. However, the numerical example shows that method-centric approach selects
6 values closest to the actual value out of 6 cases. This successful selection number reduces to 3 out of
6 (second and third modal frequencies and first modal damping ratio) in the parameter-centric
approach based on median values. Although this is a limited observation showing the difference
between the two approaches, it provides a snapshot of the method-centric ranking methodology's
worthwhile performance. In addition to these results, for the proper application of the parameter-
centric form in real-life implementations, the authors foresee the necessity to follow additional steps
securing that each identification result corresponds to the realization of interest (cleansing, clustering,
and other techniques to ensure that i mode matches other i modes in the method pool). Besides,
vectorial forms (i.e., mode shapes) may need additional effort to bring them onto an averaging
perspective.

7.5 Discussion on a Unified Ranking Description and Pathways for Determining Penalty Weights

Given the existing ranking scheme, one can observe that one method can overperform others in one
parameter, whereas, another method can lead to a different parameter. The proposed ranking scheme
currently evaluates modal frequency, damping ratio, and mode shape separately; however, it is
possible to merge multiple modal parameters in a unified domain with an integrated function. In this
case, the ranking term needs to express other coefficients defining each parameter's error contribution
since they are formed on a different basis. Hypothetically, such a function could take the form such as

M=5 N=3 ; ; ;
Rank Termn ;. . =P, ijl Zk:l (hy Afj + e A8+ ho(1=MAC))  (50)

Where hy, hg, and hg represent additional weights (modal frequency, damping ratio, mode shape)
associated with the modal parameter type. The fundamental reason for these coefficients is that
reliability on each parameter is likely to be different (for example, damping identification is more
susceptible to error, so should be accompanied by a smaller weight).

Other than weights assigned each modal parameter, each system identification method can also involve
a different level of uncertainty. As mentioned before, penalty coefficients related to each method can
prioritize some methods over others based on quantified variances. In that sense, low variance terms
associated with a method indicate low penalties in the method rank calculation. For example, some
methods, such as time domain SSI-cov algorithms, express variance within their formulation
(Mellinger, 2016) (Reynders E. M., 2016) or those in the frequency domain with Bayesian approaches
(Au, 2013). For those which lack such features, additional simulation techniques may be utilized to
reproduce the modal analysis findings in a randomized manner.

Alternatively, a training process can also quantify the optimal penalty and weighing coefficients with
many realizations from a physical model and its probabilistic products. As can be seen, these steps can
further improve the ranking scheme; on the other hand, may require additional items such as modeling
information batches, high numbers of forward (response simulations) and backward (system
identification) numerical analyses, and an optimization process. These incremental steps can offer a
more robust identification process and potentially less bias through a systematic modification of the
penalties and weights. At this stage, this paper only provides a skeleton for the synergistic modal
analyses open to the aforementioned improvements.

7.6. Discussion Concerning Environmental Effects vs Damage on Modal Characteristics

Regarding environmental effects such as temperature on modal frequency, several studies (Figueiredo,
2011), (Dervilis, 2015), (Ubertini F. C., 2017) indicate that identified modal frequency results are
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sensitive to daily and seasonal temperature changes. Therefore, damage indication based on merely
modal frequency change can lead to wrong results without consideration of variability due to
environmental effects. In this study, identified modal frequency variance using laboratory
measurements of Bridge 1 have ignorable environment effects due to the experimental setup condition.
Other than that, natural frequency reduction throughout the shaking table tests is around 47 %, which
would be even further amplified when stiffness degradation is of concern. For Bridge 2, unchanging
modal frequency results via time using consecutive ambient measurements is due to the short duration
of the entire set. The observed frequency fluctuations are within 6%, which seem reasonable
considering low-amplitude and high-noise vibration features. Long-term measurements could reflect
variation in modal parameters due to daily and seasonal features which are expected to influence
modal frequency in conjunction with damage indication. For further reference, there are examples
considering temperature influence to induce changes directly related to deterioration (Soyoz, S., &
Feng, M. Q., 2009).

7.7. Wrap-up and Additional Remarks

In summary, in realistic modal identification cases for large-scale or full-scale structures combined
using low signal to noise ratio data, reliability of identification results; therefore, quantified damage
has severe handicaps without further verification/validation sources. Counteracting similar fidelity
problems is viable due to the existing maturity in system identification literature and advanced
distributed computational skills in modern computers, multiple techniques can deploy identification in
a collaborative, yet, instantaneous manner. Moreover, a ranking procedure associating different
method findings with each other and favouring the highly correlated terms is expected to reduce
method-centric identification errors.

Other than these, the selection of the method population is naturally of importance. For the cases
where combined method perspectives are somewhat duplicates (for example, the combination of OKID
with ERA vs ERA Using Data Correlations (ERA-DC) (Juang J. N., 1988), Deterministic Intersection
(DI), Deterministic Projection (DP)) (Van Overschee P., 1996), weighing functions can justifiably
merge the algorithms of the same family. Similar weighing issues might also address contributions
from the frequency and the time domain identifications in a more unified way. Finally, as an
alternative to the method-centric unification scheme, parameter-centric schemes can also be developed,
where synergistic combination uses the statistical dispersion of parameters and removal of outliers in a
parameter-oriented framework (e.g., trimmed mean for modal frequencies and damping ratios,
quadratic combination for mode shapes).

8. Conclusions

In this study, system identification and modal parameter results of two bridge structures, Bridge 1 and
Bridge 2, and a numerical example are presented with an eventual collocation deployment. The
numerical example is a multi-degree-of-freedom beam subjected to white noise excitations. Bridge 1 is
subjected to earthquake excitations induced by multi-shaking table tests in the University of Nevada,
Reno, which results in progressive damage. Between earthquake excitations, low-amplitude white
noise excitation responses in the transverse direction are utilized for system identification. Bridge 2 is
a pedestrian link bridge in Columbia University Morningside Campus connecting two multistory
buildings, and six accelerometers in vertical direction record sequential ambient vibration
measurements. One frequency domain and four time-domain identification methods are used, which
are FDD, OKID-ERA, D-SSI, SRIM, and ARX, respectively. Eventually, a synergistic approach is
incorporated to collectively use different identification methods in a quantitative and automated
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ranking scheme with a disagreement measure formulated via MAD. In that sense, the paper brings a
collaborative solution employing numerous different algorithms which has rare examples in the
literature.

The numerical beam example provide baseline values to verify the proposed ranking scheme. The
ranking results from these simulations show that D-SSI outperforms for modal frequencies and
damping ratios, whereas OKID is the leading method for mode shapes. The baseline modal parameters
confirm these exercises. In the case of Bridge 1, system identification is conducted for four different
damage states; whereas, no damage is present on Bridge 2 throughout four cascaded datasets. The
results obtained from different methods show that there is a good agreement between identified modal
frequencies among methods, yet, outliers exist. Regarding mode shapes, the correlation between
different methods changes according to the various states; however, it reaches values above 0.9 in most
cases after the synergistic combination. In contrast, identified damping ratios significantly differ
according to the identification method and the datasets, which is in line with the other references
studying the same testbeds. In other words, the results show that identification performance of
damping ratios are more dispersed and less reliable in contrast with the modal frequencies.

Despite the variations between FDD, OKID, D-SSI, SRIM, and ARX results, it is manifest that each
method is capable of tracing Bridge 1's structural damage throughout the shaking table tests with the
help of decrement in modal frequencies as experiments proceed. Similarly, for the non-damaged
example, Bridge 2, no such pattern can be observed in modal frequencies due to the intactness of the
structure; still, mild outliers occur in some cases. Instead, the modal frequencies from different datasets
provide similar values regardless of the identification method. In contrast with the modal frequency
parameters, it is challenging to associate the damping ratio with structural damage based on the
existing datasets from Bridge 1. Likewise, in contrast with constant frequency values from different
tests in Bridge 2, identified damping ratios change significantly, although no damage is introduced.
Following system identification and modal analysis using various methods, the results merge into
single and more reliable values through a method-centric ranking scheme. This decreases the impact of
identification errors and enables removal of extreme values or outliers. It needs to be highlighted that
the ranking approach’s performance relies on its individual methods and is not necessarily bias-free
despite removal of outliers.

The results show that further improvements are needed to capture damping behaviour better under
low-amplitude and high-noise vibration testing characters. However, frequency is an indicative
parameter as damage progresses, or relatively constant and stable if no damage is introduced. It should
be noted that non-damaging environmental variants can also influence such behaviour, especially
under long-term monitoring scenarios. Nevertheless, the synthesis of different identification methods
provides a practical and technologically viable solution to improve the robustness of modal analysis
and quantification of structural damage in real-life or large-scale infrastructure scenarios. The ranking
approach is likely to improve identification accuracy in real-time operational modal analysis despite
short time segments, especially if used with advanced automation techniques. Moreover, the proposed
collaborative scheme is expected to be useful against novel bridge monitoring challenges such as
citizen-engaged SHM and crowdsourcing-based modal identification, which will be addressed in
future work.
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