Dataset Open Access

Fair RecSys Datasets

Kowald Dominik


JSON-LD (schema.org) Export

{
  "inLanguage": {
    "alternateName": "eng", 
    "@type": "Language", 
    "name": "English"
  }, 
  "description": "<p>Four multimedia recommender systems datasets to study popularity bias and fairness:</p>\n\n<ol>\n\t<li>Last.fm (lfm.zip), based on the LFM-1b dataset of JKU Linz (http://www.cp.jku.at/datasets/LFM-1b/)</li>\n\t<li>MovieLens (ml.zip), based on MovieLens-1M dataset (https://grouplens.org/datasets/movielens/1m/)</li>\n\t<li>BookCrossing (book.zip), based on the BookCrossing dataset of Uni Freiburg (http://www2.informatik.uni-freiburg.de/~cziegler/BX/)</li>\n\t<li>MyAnimeList (anime.zip), based on the MyAnimeList dataset of Kaggle (https://www.kaggle.com/CooperUnion/anime-recommendations-database)</li>\n</ol>\n\n<p>Each dataset contains of user interactions (user_events.txt) and three user groups that differ in their inclination to popular/mainstream items: LowPop (low_main_users.txt), MedPop (med_main_users.txt), and HighPop (high_main_users.txt).</p>\n\n<p>The format of the three user files are &quot;user,mainstreaminess&quot;</p>\n\n<p>The format of the user-events files are &quot;user,item,preference&quot;</p>\n\n<p>Example Python-code for analyzing the datasets as well as more information on the user groups can be found on Github (https://github.com/domkowald/FairRecSys) and on Arxiv (https://arxiv.org/abs/2203.00376)</p>\n\n<p>&nbsp;</p>\n\n<p>&nbsp;</p>", 
  "license": "https://creativecommons.org/licenses/by/4.0/legalcode", 
  "creator": [
    {
      "affiliation": "Know-Center GmbH, TU Graz", 
      "@id": "https://orcid.org/0000-0003-3230-6234", 
      "@type": "Person", 
      "name": "Kowald Dominik"
    }
  ], 
  "url": "https://zenodo.org/record/6123879", 
  "datePublished": "2022-02-17", 
  "version": "1.0", 
  "keywords": [
    "multimedia recommender systems", 
    "fairness", 
    "popularity bias"
  ], 
  "@context": "https://schema.org/", 
  "distribution": [
    {
      "contentUrl": "https://zenodo.org/api/files/211a824d-9957-495a-a7e9-5786d4715697/anime.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/211a824d-9957-495a-a7e9-5786d4715697/book.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/211a824d-9957-495a-a7e9-5786d4715697/lfm.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }, 
    {
      "contentUrl": "https://zenodo.org/api/files/211a824d-9957-495a-a7e9-5786d4715697/ml.zip", 
      "encodingFormat": "zip", 
      "@type": "DataDownload"
    }
  ], 
  "identifier": "https://doi.org/10.5281/zenodo.6123879", 
  "@id": "https://doi.org/10.5281/zenodo.6123879", 
  "@type": "Dataset", 
  "name": "Fair RecSys Datasets"
}
304
38
views
downloads
All versions This version
Views 304304
Downloads 3838
Data volume 145.6 MB145.6 MB
Unique views 250250
Unique downloads 2121

Share

Cite as