Dataset Open Access
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.6123879</identifier> <creators> <creator> <creatorName>Kowald Dominik</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3230-6234</nameIdentifier> <affiliation>Know-Center GmbH, TU Graz</affiliation> </creator> </creators> <titles> <title>Fair RecSys Datasets</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2022</publicationYear> <subjects> <subject>multimedia recommender systems</subject> <subject>fairness</subject> <subject>popularity bias</subject> </subjects> <dates> <date dateType="Issued">2022-02-17</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/6123879</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.6123878</relatedIdentifier> </relatedIdentifiers> <version>1.0</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Four multimedia recommender systems datasets to study popularity bias and fairness:</p> <ol> <li>Last.fm (lfm.zip), based on the LFM-1b dataset of JKU Linz (http://www.cp.jku.at/datasets/LFM-1b/)</li> <li>MovieLens (ml.zip), based on MovieLens-1M dataset (https://grouplens.org/datasets/movielens/1m/)</li> <li>BookCrossing (book.zip), based on the BookCrossing dataset of Uni Freiburg (http://www2.informatik.uni-freiburg.de/~cziegler/BX/)</li> <li>MyAnimeList (anime.zip), based on the MyAnimeList dataset of Kaggle (https://www.kaggle.com/CooperUnion/anime-recommendations-database)</li> </ol> <p>Each dataset contains of user interactions (user_events.txt) and three user groups that differ in their inclination to popular/mainstream items: LowPop (low_main_users.txt), MedPop (med_main_users.txt), and HighPop (high_main_users.txt).</p> <p>The format of the three user files are &quot;user,mainstreaminess&quot;</p> <p>The format of the user-events files are &quot;user,item,preference&quot;</p> <p>Example Python-code for analyzing the datasets as well as more information on the user groups can be found on Github (https://github.com/domkowald/FairRecSys) and on Arxiv (https://arxiv.org/abs/2203.00376)</p> <p>&nbsp;</p> <p>&nbsp;</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 306 | 306 |
Downloads | 38 | 38 |
Data volume | 145.6 MB | 145.6 MB |
Unique views | 252 | 252 |
Unique downloads | 21 | 21 |