
 1

Test of Oracle JSON support
in the view of CMS JSON
data

August 2016

Author:
Sartaj Singh Baveja

Supervisor(s):
Katarzyna Maria Dziedziniewicz-Wójcik
Valentin Kuznetsov

CERN openlab Summer Student Report 2016

CERN openlab Summer Student Report 2016

Abstract

Oracle has introduced native support for Javascript Object Notation (JSON) data
in its 12c release with relational database features, including transactions,
indexing, declarative querying and views.

The requirements for the CMS WMArchive project, whose goal is to reliably store
its Workflow and Data Management framework job report (FWJR) documents,
include storing deep nested JSON structures, running queries over them and
aggregating data in an effective way.

The objective of this project is to assess, evaluate and test the capabilities and
performance of Oracle JSON with respect to the currently used solution,
MongoDB. The comparison is based on functionality, read/write rates and
indexing.

Initially, JSON documents are created by randomizing a sample CMS FWJR
document and inserted into both MongoDB and Oracle to evaluate the
performance. Then, the data stored in these databases is queried with and
without indexes. Performance is then evaluated and a comparison is made.
Other performance metrics such as CPU Usage, data and index size are also
compared.

CERN openlab Summer Student Report 2016

Table of Contents

1 Introduction ..4
1.1 What is JSON? ..4
1.2 Importance of JSON ..5

2 CMS WMArchive Project ..6
2.1 Introduction ...6
2.2 Architecture ...7
2.3 Data Collection ...7
2.4 Requirements ...7

3 Current Solution: MongoDB ...9

4 JSON in Oracle Database .. 10
4.1 Oracle Database 12.1 Release ... 10
4.2 Oracle Database 12.2 Beta .. 13
4.3 Issues with Oracle 12.1 Release ... 14

5 Procedure .. 15
5.1 Generating JSON Documents .. 15
5.2 Inserting Data ... 15
5.2 Querying Data .. 19
5.3 Creating Indexes ... 20
5.4 Indexed vs Non Indexed Queries ... 21
5.5 CPU Performance.. 26

6. Comparison .. 27

7. Conclusion ... Error! Bookmark not defined.

8. Appendix………………………………….……………………………………………………………………………………….29

9. References ... 32

CERN openlab Summer Student Report 2016

4 | P a g e S a r t a j B a v e j a I T - D B - D B R

1 Introduction

1.1 What is JSON?

JSON (JavaScript Object Notation) is a lightweight data-interchange format,
which is easy for humans to read and write. Because it is (almost a subset of)
JavaScript notation, JSON can often be used in JavaScript programs without any
need for parsing or serializing.

Although it was defined in the context of JavaScript, JSON is in fact a language-
independent data format. A variety of programming languages can parse and
generate JSON data. It is often used for serializing structured data and
exchanging it over a network, typically between a server and web applications.

JSON is built on two structures:

 A collection of name/value pairs
 An ordered list of values. In most languages, this is realized as an array,

vector, list, or sequence.

An object is an unordered set of name/value pairs. An object begins with { (left
brace) and ends with } (right brace). Each name is followed by: (colon) and the
name/value pairs are separated by , (comma).

An array is an ordered collection of values. An array begins with [(left
bracket) and ends with] (right bracket). Values are separated by , (comma).

CERN openlab Summer Student Report 2016

5 | P a g e S a r t a j B a v e j a I T - D B - D B R

An example of a json structure would be :

1.2 Importance of JSON

JSON is becoming really popular these days because of the following reasons :

 Lightweight data interchange format used in web services responses

 Easy to parse by different programming languages

 Almost a subset of JavaScript notation and thus, can be used in
JavaScript programs without any need for serializing or parsing

CERN openlab Summer Student Report 2016

6 | P a g e S a r t a j B a v e j a I T - D B - D B R

2 CMS WMArchive Project

2.1 Introduction

The Compact Muon Solenoid (CMS) is one of the two general purpose particle
physics detectors operated at the LHC. It is designed to explore the frontiers of
physics and provide physicists with the ability to look at the conditions presented
in the early stage of our Universe. More then 3,000 physicists from 183
institutions representing 38 countries are involved in the design, construction and
maintenance of the experiments.

Experiment of this magnitude requires a vast and complex distributed computing
and data model. CMS spans more than a hundred data centers in a three-tier
model and generates around 10 petabytes (PB) of data each year in real data,
simulated data and meta-data.

This information is stored and retrieved from relational and non-relational data-
sources, such as relational databases, document databases, blogs, wikis, file
systems and customized applications.

WMAgent is a set of services used by CMS to provide a grid workload
management system. It is comprised of:

 A SQL based database (default MySQL) to keep the WMAgent state
 A non-relational database for storage of job reports and state information
 The RequestManager, which handles the creation and approval of

requests for new work
 The WorkQueue, a multi-level system that deals with finding and injecting

files when the system is ready for new work
 The Agent which creates, submits, and evaluates the actual jobs

Retrieving the log file for any particular job is a difficult and time consuming
process involving several database lookups:

 Groups of log files are saved in a single archive file
 Retrieving the correct archive file
 Extracting the correct log file from that archive
 It takes multiple tries to finally get the log file

The WMArchive project aims at storing and further analyzing job log files to
better understand the processing time of the job and help planning on future
processing and resource requirements. WMArchive should also make it easier to
generate reports for reviews or meetings.

CERN openlab Summer Student Report 2016

7 | P a g e S a r t a j B a v e j a I T - D B - D B R

2.2 Architecture

 WMAgent/JobStateMachine will be the data source of WMArchive.

 WMArchive should not be a burden to WMAgent

 WMArchive should be robust, losing data is not acceptable

 WMArchive should be flexible enough to allow adding or removing new

information

 Quick document inserting is more important that data retrieving

2.3 Data Collection

Everyday, there are 200K-300K documents being generated by dozens of
WMAgents running at different sites. These documents represent the CMS
Workflow and Data Management Framework Job Report documents
(FWJR). Each document is around 12kB in size which means that 3GB of data is
produced every single day.

Every document is in a JSON data format whose structure is not subject to
change and has a deep nested structure

2.4 Requirements

WMArchive should implement the following requirements for both failed and
succeeded jobs:

 WMAgent Framework Job Report (FWJR) will be the source of
WMArchive.

 when a job fails and it is resubmitted again, two FWJR will be created in
WMArchive as two separated docs.

 gather as many statistics as possible for each job
o date and time of the job ran
o CMSSW version used
o CPU information
o LFN of the log file

 it should include all the information monitored in WMStats
 store log file location for all the jobs
 provide flexible queries

CERN openlab Summer Student Report 2016

8 | P a g e S a r t a j B a v e j a I T - D B - D B R

Here’s an example of the CMS FWJR document

CERN openlab Summer Student Report 2016

9 | P a g e S a r t a j B a v e j a I T - D B - D B R

3 Current Solution: MongoDB

Initially, CouchDB was chosen to implement the WMArchive DB backend.
However, it was not possible to have flexible queries and large data storage.
Therefore, MongoDB was chosen.

MongoDB is a free and open-source cross-platform document-oriented database.
Classified as a NoSQL database, MongoDB avoids the traditional table
based relational database structure in favor of JSON-like documents with
dynamic schemas (MongoDB calls the format BSON), making the integration of
data in certain types of applications easier and faster.

Some of the features of MongoDB are :

1. Ad Hoc Queries

MongoDB supports field, range queries, regular expression searches.
Queries can return specific fields of documents and also include user-
defined JavaScript functions. Queries can also be configured to return a
random sample of results of a given size.

2. Indexing

Any field in a MongoDB document can be indexed – including within
arrays and embedded documents. Primary and secondary indices are
available.

3. Replication

MongoDB provides high availability with replica sets. A replica set consists
of two or more copies of the data. Each replica set member may act in the
role of primary or secondary replica at any time. All writes and reads are
done on the primary replica by default. Secondary replicas maintain a
copy of the data of the primary using built-in replication.

4. Scaling

MongoDB scales horizontally using sharding. The data is split into ranges
and distributed across multiple shards. MongoDB can run over multiple
servers, balancing the load and/or duplicating data to keep the system up
and running in case of hardware failure.

5. Aggregation

MapReduce can be used for batch processing of data and aggregation
operations. The aggregation framework enables users to obtain the kind of

CERN openlab Summer Student Report 2016

10 | P a g e S a r t a j B a v e j a I T - D B - D B R

results for which the SQL GROUP BY clause is used. The aggregation
framework includes the $lookup operator which can join documents from
multiple documents.

4 JSON in Oracle Database

4.1 Oracle Database 12.1 Release

Unlike relational data, JSON data can be stored, indexed, and queried without
any need for a schema that defines the data. Oracle Database supports JSON
natively with relational database features, including transactions, indexing,
declarative querying, and views.

JSON data has often been stored in NoSQL databases such as Oracle NoSQL
Database and Oracle Berkeley DB. These allow for storage and retrieval of data
that is not based on any schema, but they do not offer the rigorous consistency
models of relational databases.

To compensate for this shortcoming, a relational database is sometimes used in
parallel with a NoSQL database. Applications using JSON data stored in the
NoSQL database must then ensure data integrity themselves.

Native support for JSON by Oracle Database obviates such workarounds. It
provides all of the benefits of relational database features for use with JSON,
including transactions, indexing, declarative querying, and views.

Oracle Database queries are declarative. You can join JSON data with relational
data. And you can project JSON data relationally, making it available for
relational processes and tools. You can also query, from within the database,
JSON data that is stored outside the database in an external table. You can
access JSON data stored in the database the same way you access other
database data.

JSON data is stored in Oracle Database using SQL data
types VARCHAR2, CLOB and BLOB. Oracle recommends that you always use
an is_json check constraint to ensure that column values are valid JSON
instances.

In SQL, you can access JSON data stored in Oracle Database using the
following:

 Functions json_value, json_query, and json_table.
 Conditions json_exists, is json, is not json, and json_textcontains.

CERN openlab Summer Student Report 2016

11 | P a g e S a r t a j B a v e j a I T - D B - D B R

 A dot notation that acts similar to a combination
of json_value and json_query and resembles a SQL object access
expression, that is, attribute dot notation for an abstract data type (ADT)

Oracle JSON Path Expressions

Oracle Database provides SQL access to JSON data using Oracle JSON path
expressions. An Oracle JSON path expression selects zero or more JSON
values that match, or satisfy, it.

Oracle SQL condition json_exists returns true if at least one value matches, and
false if no value matches. If a single value matches, then SQL
function json_value returns that value if it is scalar and raises an error if it is non-
scalar. If no value matches the path expression then json_value returns
SQL NULL.

Oracle SQL function json_query returns all of the matching values, that is, it can
return multiple values.

Wrapper Clause for Oracle SQL Functions

Oracle SQL functions json_query and json_table accept an optional wrapper
clause, which specifies the form of the value returned by json_query or used for
the data in a json_table relational column.

CERN openlab Summer Student Report 2016

12 | P a g e S a r t a j B a v e j a I T - D B - D B R

The wrapper clause takes one of these forms:

 WITH WRAPPER – Use a string value that represents a JSON array
containing all of the JSON values that match the path expression. The
order of the array elements is unspecified.

 WITHOUT WRAPPER – Use a string value that represents
the single JSON object or array that matches the path expression. Raise
an error if the path expression matches either a scalar value (not an object
or array) or more than one value.

 WITH CONDITIONAL WRAPPER – Use a string value that
represents all of the JSON values that match the path expression.

Simple Dot Notation Access to JSON Data

A simple dot-notation syntax is provided for queries, as an alternative to using
the more verbose but more flexible Oracle SQL functions json_query
and json_value. The dot notation is designed to return JSON values whenever
possible.

The behavior of a query using the dot notation is different from
both json_query and json_value. In effect, it combines their behavior to return
one or more JSON values whenever possible.

4.2 Oracle Database 12.2 Beta

Oracle Database 12c Release 2 (12.2.0.1) is an improvement over the earlier
release. It has the following new features :

a) Simple Dot-Notation Syntax Supports Array Access

You can now access arrays and their elements using the simple dot-notation

CERN openlab Summer Student Report 2016

13 | P a g e S a r t a j B a v e j a I T - D B - D B R

syntax.

b) Path Expression Enhancements

JSON path expressions can now include filter expressions that must be satisfied
by the matching data and transformation methods that can transform it.

c) SQL/JSON Functions and Conditions Added to PL/SQL

SQL/JSON functions json_value, json_query, json_object, and json_array, as
well as SQL/JSON condition json_exists, have been added to the PL/SQL
language as built-in functions (json_exists is a Boolean function in PL/SQL).

d) Search Enhancements

  You can create a JSON search index. Range search is now available for
numbers and JSON strings that can be cast as built-in date and time types.  

e) JSON Columns In the In-Memory Column Store

You can now store JSON columns in the in-memory column store, to improve
query performance.

f) SQL/JSON Functions for Generating JSON Data

You can now construct JSON data programmatically using SQL/JSON functions
json_object, json_array, json_objectagg, and json_arrayagg.

CERN openlab Summer Student Report 2016

14 | P a g e S a r t a j B a v e j a I T - D B - D B R

4.3 Issues with Oracle Release 12.1

1. Simplified dot notation doesn’t work on accessing array elements in 12.1
whereas it works in 12.2

In Oracle 12.1

In Oracle 12.2

2. Faced ORA-600 and ORA-7445 errors stating “No Data to be read from
socket” in 12.1

3. Oracle Error “Missing right parentheses” occurred due to some issue in
Release 12.1. Queries such as “SELECT count(*) FROM table” were giving the
same error output. Due to this, the entire table had to be dropped

CERN openlab Summer Student Report 2016

15 | P a g e S a r t a j B a v e j a I T - D B - D B R

5 Procedure

5.1 Generating JSON Documents

Initially, based on a sample CMS FWJR document, various fields of the
document were randomized by a python script. For this, the mongo client from
the pymongo library was imported for MongoDB and cxOracle was installed for
Oracle. Then, some fields were modified such as LFNArray, PFNArray, wmaid,
site among a few.

The steps for installing cxOracle on MacOSX were documented here :
https://gist.github.com/sartaj10/03936b3dc5f9d0499f93e06cc12eb52e

5.2 Inserting Data

5.2.1 MongoDB

One Million(1M) JSON documents were randomly generated by the Python script
and inserted into MongoDB using a row by row insert.

 db.collection.insert()
Inserts a document or documents into a collection.

1. def loadFiles(db, doc):
2.
3. for idx in range(1000000):
4. newdoc = dict(doc)
5. del newdoc["_id"]
6.
7. newdoc["wmaid"] = idx
8.
9. db.production.insert(newdoc)

https://gist.github.com/sartaj10/03936b3dc5f9d0499f93e06cc12eb52e

CERN openlab Summer Student Report 2016

16 | P a g e S a r t a j B a v e j a I T - D B - D B R

To achieve better performance, we switched to Bulk Inserts. For this, we used
the initialize_ordered_bulk_op() method.

 db.collection.initialize_ordered_bulk_op()

Initializes and returns a new Bulk() operations builder for a collection. The
builder constructs an ordered list of write operations that MongoDB
executes in bulk.

1. def init():
2. for i in range(4):
3. bulkInsert(db,doc,i)
4.
5. def bulkInsert(db, doc, index):
6. bulk = db.production.initialize_ordered_bulk_op()
7. x = 250000
8.
9. for idx in range(x):
10. newdoc = randomizeDoc(doc, idx, index, x)
11. bulk.insert(newdoc)
12.
13. result = bulk.execute()

5.2.2 Oracle

First, a connection to the Oracle database was made using cxOracle which is a
Python extension module that enables access to Oracle databases. Insertion
was both carried out using row-by-row insert as well as bulk inserts.

a) Row inserts,

1. for i in range(1000000):
2. json_doc = generateJSON(doc, i)
3. cursor.execute("INSERT INTO testDocument VALUES (:input)", input = json_doc)

 cx_Oracle.Cursor.execute(statement, [parameters])

This method can accept a single argument - a SQL statement - to be run
directly against the database. Bind variables assigned through the
parameters can be specified as a dictionary, sequence, or a set of
keyword arguments. This method returns a list of variable objects if it is a
query, and None when it's not.

To improve the time, we used bind variables and prepare statements.

Bind variables are core principles of database development. They do not only
make programs run faster but also protect against SQL injection attacks. By
using bind variables you can tell Oracle to parse a query only once.
Otherwise, when run one-by-one, each need to be parsed separately which adds
extra overhead to your application.

CERN openlab Summer Student Report 2016

17 | P a g e S a r t a j B a v e j a I T - D B - D B R

query1 = cursor.execute('SELECT * FROM employees WHERE

department_id=:dept_id AND salary>:sal', named_params)

When binding, you can first prepare the statement and then execute None with
changed parameters. Oracle will handle it such that one prepare is enough when
variables are bound.

1. cursor.prepare("INSERT INTO testDocument VALUES (:input)")
2. for i in range(1000000):
3. json_doc = generateJSON(doc, i)
4. cursor.execute(None, input = json_doc)

b) Bulk Inserts

Large insert operations don't require many separate inserts because Python fully
supports inserting many rows at once with the cursor.executemany method.
Limiting the number of execute operations improves program performance a lot
and should be the first thing to think about when writing applications heavy on
INSERTs.

1. def batch_insert(cursor, doc, db):
2. cursor.prepare("INSERT INTO testDocument VALUES (:1)")
3.
4. for j in range(4):
5. document = []
6. for i in range(250000):
7. json_doc = generateJSON(doc, j, i)
8. row = (json_doc,)
9. document.append(row)
10.
11. cursor.executemany(None, document)
12. db.commit()

Figure: Variation of time as the BindArraySize variable is changed from the default

value i.e. 50 till 100,000 when number of rows in the table are 1M

CERN openlab Summer Student Report 2016

18 | P a g e S a r t a j B a v e j a I T - D B - D B R

Figure: Variation of Insert Time with/without the bind variable when number of rows to
be inserted is 10,000

Figure: Comparison of injection rate of 1M JSON Documents in both Oracle and
MongoDB (row-by-row and bulk insert)

CERN openlab Summer Student Report 2016

19 | P a g e S a r t a j B a v e j a I T - D B - D B R

5.2 Querying Data

Queries were run on the data stored in both Oracle as well as MongoDB. A few
queries were executed to :

 Search for a specific string

 Aggregate data

 Find records based on provided pattern

 Comparison Query Operators

 Logical Query Operators

Initially, these queries were run without creating indexes. Indexes support the
efficient execution of queries in MongoDB. Without indexes, MongoDB must
perform a collection scan, i.e. scan every document in a collection, to select
those documents that match the query statement. If an appropriate index exists
for a query, MongoDB can use the index to limit the number of documents it must
inspect.

The following diagram illustrates a query that selects and orders the matching
documents using an index:

MongoDB provides the db.collection.find() method to read documents from a
collection. The db.collection.find() method returns a cursor to the matching
documents.

For the db.collection.find() method, you can specify the following optional fields:

 Query filter to specify which documents to return.

 Query projection to specifies which fields from the matching documents to

return. The projection limits the amount of data that MongoDB returns to

the client over the network.

https://docs.mongodb.com/manual/reference/method/db.collection.find/#db.collection.find
https://docs.mongodb.com/manual/reference/method/db.collection.find/#db.collection.find
https://docs.mongodb.com/manual/tutorial/iterate-a-cursor/

CERN openlab Summer Student Report 2016

20 | P a g e S a r t a j B a v e j a I T - D B - D B R

Figure: Writing queries for MongoDB

Figure: Writing Query for Oracle

5.3 Creating Indexes

To create indexes in MongoDB, db.collection.createIndex(keys, options) where
keys is a document containing the key value pairs of the fields which need to be
indexed.

In case of Oracle, there are various types of indexes that can be created.
Bitmap Indexes are used when there are only few possible values for the field in
your data.

Function Based JSON_VALUE or JSON_QUERY indexes can also be created
with a returning data type and an ERROR on ERROR clause. The use
of ERROR ON ERROR here means that if the data contains a record that either
doesn’t have that field or has that field with a non-number value then index
creation fails.

CERN openlab Summer Student Report 2016

21 | P a g e S a r t a j B a v e j a I T - D B - D B R

5.4 Indexed vs Non Indexed Queries

5.4.1 MongoDB

The following results were obtained when a few queries were run on MongoDB
with and without an index.

Query 1/2/3: Search for specific string
Query 4: Aggregate data

CERN openlab Summer Student Report 2016

22 | P a g e S a r t a j B a v e j a I T - D B - D B R

Query 5: Find a string
Query 6/7: Find records based on provided pattern
Query 8,9: Logical / Comparison Query Operators

CERN openlab Summer Student Report 2016

23 | P a g e S a r t a j B a v e j a I T - D B - D B R

5.4.2 Oracle Database

The following results were obtained when the queries were run in Oracle.

Query 1/2/3: Search for specific string
Query 4: Aggregate data

Query 5: Find a string
Query 6/7: Find records based on provided pattern
Query 8,9: Logical / Comparison Query Operators

When the same queries were run after creating indexes, the Oracle Optimizer
chose the Full Table Scan path rather than executing the query using the index.

CERN openlab Summer Student Report 2016

24 | P a g e S a r t a j B a v e j a I T - D B - D B R

After analyzing the 10053 Trace, it was seen that the optimizer determined that
the cost of computing the result with Index was higher than the cost of computing
without an index

Next, hints were given to the optimizer to use the available index.

CERN openlab Summer Student Report 2016

25 | P a g e S a r t a j B a v e j a I T - D B - D B R

Indexing on smaller tables

In a table of 50 rows, it was observed from the explain plan that Oracle
Optimizer selected the index for calculating the results. Therefore, tests were
performed on the same queries with and without indexes on this table.

CERN openlab Summer Student Report 2016

26 | P a g e S a r t a j B a v e j a I T - D B - D B R

5.5 CPU Performance

To monitor the CPU Performance, the psutil library was used. The process id
was noted down and passed to a python script that calculated the CPU Usage
and stored it in a file after every time interval of 1second.

To obtain the graph, pyplot, a module of matplotlib was used and it read the data
from a text file. For Oracle, pandas was used and matplotlib displayed the graph.

CERN openlab Summer Student Report 2016

27 | P a g e S a r t a j B a v e j a I T - D B - D B R

6. Comparison

Both MongoDB and Oracle’s JSON Library perform good in terms of read/writes
and querying. A table shows below the difference between both the technologies.

MongoDB Oracle JSON

Higher Data Size
1.3 GB for 1M documents

Lower Data Size
54 MB for 1M documents

223 MB Index Size 1.14 GB Index Size

Queries are not atomic Queries are atomic

Lower Insert Time Higher Insert Time

Indexing works Indexing not straightforward

No such errors Internal errors such as “No Data to be
read from socket” occur frequently

CERN openlab Summer Student Report 2016

28 | P a g e S a r t a j B a v e j a I T - D B - D B R

7. Conclusion

Oracle’s JSON Library looks promising and it was able to perform most of the
tasks successfully. Insertion of numerous JSON documents into Oracle didn’t
seem to be a problem. Along with that, it was able to perform different kinds of
queries ranging from searching a string to regular expressions. However, there
were some issues with the usage of indexes in the queries.

MongoDB on the other hand performed well on both insertion of documents as
well as running queries and creating indexes. It showed a better insert time than
Oracle and ran queries faster. However, it was seen that there were some areas
when the CPU Usage was really high and also, it used larger storage space to
store the data.

CERN openlab Summer Student Report 2016

29 | P a g e S a r t a j B a v e j a I T - D B - D B R

8. Appendix

a) Query : Find specific string in PFNArray

MongoDB :

1. cursor = db.production.find({'PFNArray':'root://test.ch/Run123/file0.root'})

Oracle :

1. SELECT M.*
2. FROM testDocument p,
3. json_table(
4. p.doc,
5. '$'
6. columns (
7. wmaid varchar2(2000 char) path '$.wmaid',
8. meta_data varchar2(2000 char) format json with wrapper path '$.meta_da

ta',
9. nested path '$.PFNArray[*]'
10. columns (
11. pfn varchar2(2000 char) path '$'
12.)
13.)
14.) M
15. WHERE pfn = 'root://test.ch/Run16/file0.root';

b) Query : Find Records for provided run number

MongoDB :

1. cursor = db.production.find({'steps.output.runs.runNumber':2})

Oracle :

1. SELECT M.*
2. FROM testDocument p,
3. json_table(
4. p.doc,
5. '$'
6. columns (
7. names varchar2(2000 char) format json with wrapper path '$.LFNArray',

8. nested path '$.steps.output.runs[*]'
9. columns (
10. runNumber VARCHAR path '$.runNumber'
11.)
12.)
13.) M
14. WHERE runNumber = 2;

CERN openlab Summer Student Report 2016

30 | P a g e S a r t a j B a v e j a I T - D B - D B R

c) Query : Find Records Based on provided site

MongoDB :

1. cursor = db.production.find({'steps.site':'T2_US_FNAL_Disk'})

Oracle :

1. SELECT M.*
2. FROM testDocument p,
3. json_table(
4. p.doc,
5. '$'
6. columns (
7. site varchar2 (2000 char) path '$.steps.site'
8.)
9.) M
10. WHERE site = 'T2_US_FNAL_Disk';

d) Query : Aggregate Data

MongoDB :

1. cursor = db.production.aggregate([
2. { "$unwind" : "$steps"},
3. { "$group" : { "_id": None,
4. "sum_totalMB": { "$sum" : "$steps.performance

.storage.writeTotalMB"},
5. "max_cp": { "$max" : "$steps.performance.cp.T

otalJobCP" },
6. "avg_eventTime": { "$avg" : "$steps.performan

ce.cp.AvgEventTime"},
7. "max_valueRss" : { "$max" : "$steps.performan

ce.memory.PeakValueRss"}
8. }
9. }
10.])

Oracle :

1. SELECT SUM(M.totalMB) totalMB_sum,
2. MAX(M.totalCP) totalCP_max,
3. AVG(M.avgEventTime) eventTime_avg,
4. MAX(M.peakValueRss) Rss_max
5. FROM testDocument p,
6. json_table(
7. p.doc,
8. '$.steps.performance'
9. columns (
10. totalMB number path '$.storage.writeTotalMB',
11. totalCP number path '$.cp.TotalJobCP',
12. avgEventTime number path '$.cp.AvgEventTime',
13. peakValueRss number path '$.memory.PeakValueRss'
14.)
15.) M;

CERN openlab Summer Student Report 2016

31 | P a g e S a r t a j B a v e j a I T - D B - D B R

e) Query : Find Specific wmaid

MongoDB :

1. cursor = db.production.find({'wmaid':'88JEntUcP6G5rbCGudEO7rakfWjfg5rg'})

Oracle :

1. SELECT test.doc.wmaid FROM testDocument test WHERE test.doc.wmaid = '88JEntUcP6G
5rbCGudEO7rakfWjfg5rg';

f) Query : Find Records based on provided PFN pattern

MongoDB :

1. cursor = db.production.find({'PFNArray':{'$regex':'^root://test.ch/Run214'}})

Oracle :

1. select t.doc.LFNArray , t.doc.PFNArray
2. from testDocument t
3. where json_exists(
4. t.doc,
5. '$?(@.PFNArray starts with $str)'
6. passing 'root://test.ch/Run214' as "str"
7.);

g) Query : Find records based on provided LFN pattern

MongoDB :

1. cursor = db.production.find({'LFNArray':{'$regex':'^/store/mc/Run727'}})

Oracle :

1. select t.doc.PFNArray
2. from testDocument t
3. where json_exists(
4. t.doc,
5. '$?(@.LFNArray starts with $str)'
6. passing '/store/mc/Run727' as "str"
7.);

h) Query : Logical Query Operators

MongoDB :

1. cursor = db.production.find({"$or":[
2. {"PFNArray": { "$regex" : "^root://test.ch/Run430/"} },
3. {"LFNArray": { "$regex" : "^/store/mc/Run121/"} }
4.]
5. })

CERN openlab Summer Student Report 2016

32 | P a g e S a r t a j B a v e j a I T - D B - D B R

Oracle :

1. select t.doc.LFNArray, t.doc.PFNArray
2. from testDocument t
3. where json_exists(
4. t.doc,
5. '$?(@.LFNArray starts with "/store/mc/Run1" ||
6. @.PFNArray starts with "root://test.ch/Run4")'
7.);

i) Query : Comparison Query Operators

MongoDB :

1. cursor = db.production.find({'steps.performance.storage.writeTotalMB':{'$gte': 2
00, '$lte': 250}})

Oracle :

1. select test.doc.steps.performance.storage.writeTotalMB
2. from testDocument test
3. where json_exists(test.doc,
4. '$.steps.performance.storage?(@.writeTotalMB > 390
5. && @.writeTotalMB < 400)'
6.);

9. References

JSON in Oracle database :
https://docs.oracle.com/database/121/ADXDB/json.htm#ADXDB6246

MongoDB Documentation: https://docs.mongodb.com/

CMS MongoDB : https://www.mongodb.com/customers/cern-cms

CMS WMArchive Project : https://twiki.cern.ch/twiki/bin/view/ITSDC/WMArchive

WMArchive Presentation : https://goo.gl/I6P7bQ

cx_Oracle: http://www.oracle.com/technetwork/articles/dsl/prez-python-queries-

101587.html

Wikipedia : http://www.wikipedia.com

https://docs.oracle.com/database/121/ADXDB/json.htm#ADXDB6246
https://docs.mongodb.com/
https://www.mongodb.com/customers/cern-cms
https://twiki.cern.ch/twiki/bin/view/ITSDC/WMArchive
https://goo.gl/I6P7bQ
http://www.oracle.com/technetwork/articles/dsl/prez-python-queries-101587.html
http://www.oracle.com/technetwork/articles/dsl/prez-python-queries-101587.html
http://www.wikipedia.com/

	Test of Oracle JSON support in the view of CMS JSON data
	August 2016
	Author:
	Sartaj Singh Baveja
	Supervisor(s):
	Katarzyna Maria Dziedziniewicz-Wójcik
	Valentin Kuznetsov
	CERN openlab Summer Student Report 2016

	1 Introduction
	1.1 What is JSON?
	JSON (JavaScript Object Notation) is a lightweight data-interchange format, which is easy for humans to read and write. Because it is (almost a subset of) JavaScript notation, JSON can often be used in JavaScript programs without any need for parsing ...
	1.2 Importance of JSON

	2 CMS WMArchive Project
	2.1 Introduction
	2.2 Architecture
	2.3 Data Collection
	2.4 Requirements

	3 Current Solution: MongoDB
	4 JSON in Oracle Database
	Wrapper Clause for Oracle SQL Functions

	4.2 Oracle Database 12.2 Beta
	5 Procedure
	5.1 Generating JSON Documents
	5.2 Inserting Data
	5.2 Querying Data
	5.3 Creating Indexes
	5.4 Indexed vs Non Indexed Queries

	Indexing on smaller tables
	5.5 CPU Performance
	6. Comparison
	7. Conclusion
	8. Appendix
	9. References

