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“Click” dendrimer-Pd nanoparticle assemblies as enzyme mimics: 

Catalytic o-phenylenediamine oxidation and application to 

colorimetric H2O2 detection  

Yue Liu,a Renata Pereira Lopes,a,b,* Tanja Lüdtke,c Desire Di Silvio,c Sergio Moya,c Jean-René Hamon,d 
Didier Astruca,*

Dendrimers have already successfully been used in nanoparticle (NP) catalysis for many years, particularly for Pd NP 
protection for carbon-carbon coupling reactions. In this paper, assemblies between Pd nanoparticles and two generations 
of “click” dendrimers, with respectively 27 (dendrimer-1) and 81 (dendrimer-2) triethylene glycol (TEG) termini are examined 
for catalytic peroxidase-like oxidative activity. This catalysis is investigated with o-phenylenediamine (OPD) and H2O2 as the 
substrates in water, displaying different colours. The dendrimer effect is negative upon increasing generation, i.e., 
dendrimer 1-Pd nanoparticles show the best results, providing values with a Vmax of 1.51 × 10-9 M s-1 and Km of 3.06 mM as 
obtained with the Michaelis-Menten model. The detection limit is 0.82 µM of H2O2 detection with dendrimer-1-PdNPs, and 
both dendrimer-Pd nanocatalysts exhibit excellent robustness of catalytic activity, a water-dispersive state being stable for 
at least 2 months, thus showing a promising mimic as peroxidase catalysts.

Introduction
Hydrogen peroxide (H2O2) is a strong oxidant, appearing as a 

beenby-product of many oxidase enzymes. Thereby, it is an 
important mediator in food, pharmaceutical, clinical, industrial 
and environmental analysis.1-5 Peroxidase enzymes uses H2O2 to 
catalyse substrate oxidation. Peroxidase activity can be as well 
used for the detection of hydrogen peroxide, which is essential 
to biochemical analysis for application in biological and 
environmental processes. 6,7 Natural enzymes, such as for 
example horseradish peroxidase (HRP),8 have the 
disadvantages of expensive cost and complex preparation. As a 
result, much work has been devoted to produce stable, highly 
sensitive and low-cost enzyme mimics as H2O2 biosensors. Since 
Gao et al. first reported that Fe3O4 nanoparticles (NPs) could be 
used to detect H2O2 and showed peroxidase-like activity similar 
to HRP,9 various nanomaterials have been proposed as enzyme 
mimics in the detection of hydrogen peroxide, such as magnetic 

NPs,5,10,11 silver alloys nanostructure,4 Au@Pt nanostructures,12 
and ruthenium nanomaterials.13

There are examples of dendrimers14-16 that have proposed as 
enzyme mimics.17,18  Dendrimer-RNA NPs have been shown to 
generate protective immunity against several lethal viruses.19 
Polyamidoamine (PAMAM) dendrimers with encapsulated 
metal NPs have also been shown to function as catalysts for 
some reactions,20,21 and this principle has been extended to 
some other dendrimer families.22,25 In particular “click” 
dendrimers synthesized by CuAAC “click” reactions between 
azido-terminated dendrimers and alkynes show excellent 
performances as catalytic NP supports due to their 
encapsulating properties and compromise between the 
stabilising triazole coordination to transition metals and 
freedom of nanoparticle surface sites.26-29

We report here “click” dendrimer-palladium (Pd) NPs as 
peroxidase enzyme mimics of H2O2 sensing using o-
phenylenediamine (OPD) oxidation by H2O2 to 2,3-
diaminophenazine (DAP). Pd NPs that do not require 
sophisticated ligands are among the best NPs in catalysis, and 
their catalytic properties, comparable to those of molecular 
catalysts, are already well known.29-32,33 The two “click” 
dendrimers used here are known27,34 and contain respectively 
27 (dendrimer-1) and 81 (dendrimer-2) triethylene glycol (TEG) 
termini and 9 and 27 1,2,3-triazole ligands (Figure 1). So far, 
dendrimer-NP assemblies have not yet been employed as 
peroxidase enzyme mimics. Equation 1 shows the oxidation of 
o-phenylenediamine (OPD) by H2O2 forming 2,3-
diaminophenazine (DAP) in the presence of the Pd-dendrimer 
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nanocatalysts. The impact of OPD concentration, H2O2 
concentration and pH as well as the role of dendrimer 
generation are assessed to determine their influence on the 
peroxidase-like activity.

Eq.1

Experimental
Chemicals and reagents

Sodium hydroxide, sodium borohydride, disodium 
tetrachloropalladate palladium acetate, hydrogen peroxide, 
o-phenylenediamine and sodium citrate dihydrate were 
obtained from Sigma-Aldrich. Ultrapure water (Thermo Fisher 
Scientific INC., USA) was utilized for the preparation of all 
aqueous solutions.

Synthesis of the dendrimer-1-PdNPs and dendrimer-2-PdNPs 
assemblies

Dendrimer-1 and dendrimer-2 (Fig. 1) have been 
synthesized following a previous report.34 The 1H NMR spectra 
of dendrimer-1 and dendrimer-2 are shown in Fig. S1 and Fig. 
S2. The nanocatalyst dendrimer-1-PdNPs and dendrimer-2-
PdNPs were prepared by a facile one-step method. Typically, 
dendrimer-1 (0.4 mg, 1.5 equiv. TEG branch per metal) 
dissolved in 1 mL water and Na2Cl4Pd (2.94 mg, 1 equiv) 
dissolved in 1 mL water were mixed in 2 mL water by magnetic 
stirring for 30 min at room temperature (rt 25 C), then 1 mL 
of freshly prepared NaBH4 aqueous solution (10 equiv. per 
metal) was quickly added. The mixture was allowed to stir for 
30 min at rt, and the resulting nanocatalyst was directly used in 
situ without further treatment. For the synthesis of dendrimer-
2-PdNPs, the steps are similar to those used for dendrimer-1-
PdNPs, the molar ratio of Pd: TEG branch: NaBH4 is 1: 1.5: 10.

Fig. 1 Molecular structures of dendrimer 1 and dendrimer 2.

General procedure for oxidation of o-phenylenediamine

In a quartz cuvette with 1 cm optical path, were added 0.4 
mL of H2O2 30%, 0.2 mL of OPD solution (0.1 mol L-1, (freshly 
prepared) and 2 mL of citrate buffer (pH 3.0). For the pH study, 
the pH of the citrate solution was adjusted to 5 and 7 by 
addition of a small amount of HCl. Then, 0.1 mL dendrimer-1-
PdNPs or dendrimer-2-PdNPs were added to the system. 
For the synthesis of Pd/Fe3O4@dendrimer-1, dendrimer-1 (0.4 
mg, 1.5 equiv. TEG branch per metal) dissolved in 1 mL water 
and Fe3O4 (0.23 mg, 1 equiv per metal) were mixed in 1 mL 
water by magnetic stirring for 20 min at rt, then Na4Cl2Pd (2.94 
mg, 1 equiv) dissolved in 1 mL water was added. The reaction 
mixture was stirred for 10 min, then 1 mL of freshly prepared 
aqueous solution of NaBH4 (10 equiv. per metal) was quickly 
added. The mixture was allowed to stir for 30 min at rt. 
The reactions were monitored by UV-vis. spectroscopy (Varian Cary 
100 scan) in full scan mode (350-600 nm) in the interval of 30 min at 
22 C. A new band at 450 nm started to increase in the presence of 
the catalyst indicating the formation of the oxidation product (DAP). 
The absorbance data were converted to DAP concentration using the 

extinction coefficient (log 450 = 4.33).35 The effect of OPD 
concentration (1.725 - 17.25 mM), H2O2 concentration (6.3 - 75.6 
µM) and pH (3.0 - 7.0) were assessed to determine their influence on 
the peroxidase-like activity.

The limit of detection (LD) was calculated using Eq. 2.

                   Eq. 2LD =
3 × standard deviation of blanc

sensitivity of the analytical curve

The Michaelis Menten model, usually employed to model 
enzymatic reactions with substrate concentration in excess, was 
adjusted to the experimental data in order to obtain the kinetic 
parameters Vmax and Km (Eq. 3).

                                            Eq. 3V0 =
Vmax.[S]
Km + [S]

Therein, V0 is the initial reaction rate, Vmax the maximum 
reaction rate, Km is the Michaelis constant which represents the 
affinity of enzyme toward substrate, the value of Km being 
equal to the substrate concentration at which the reaction rate 
is half of the maximum reaction rate. And [S] is the substrate 
concentration.

Results
Characterization of the nanomaterials

Dendrimer-1-PdNPs and dendrimer-2-PdNPs were fabricated in 
a one-step process in which NaBH4 acted as the reductant of 
Na2PdCl4. The triazole groups in the dendrimers terminated by 
27 resp. 81 triethylene glycol (TEG) termini (Fig. 1) stabilized the 
Pd NPs. The obtained Pd NPs were characterized by TEM and 
XPS. The average size of dendrimer-1-PdNPs determined by 
TEM is 2.5 ± 1 nm, and the shape of the Pd NP core is quasi-
spherical (Fig. 3a). Dendrimer-2-PdNPs also showed a quasi-
spherical shape with a size of 3.6 ± 2 nm (Fig. 2b).
The dendrimers were further characterized by XPS 
measurements to investigate the surface composition (Fig. 3 for 

2,3-diaminophenazine(DPD)

2 H2O2

o-phenylenediamine(OPD)

2
NH2

NH2 N

N NH2

NH2

4 H2O
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Fig. 2 Transmission Electronic Microscopy (TEM) of a) 
dendrimer-1-PdNPs; Pd NPs size: 2.9 ± 1 nm; b) dendrimer-2-
PdNPs; Pd NPs size: 3.6 ± 1.5 nm.

dendrimer-1-PdNPs and Fig. S3-S6 and Table S1-S2 for 
dendrimer-2-PdNP). The bands at 284.8, 286.4, 288.2 and 289.4 
eV in the C1s spectra for dendrimer-1-PdNPs correspond to C-
C, C-O/C-N, C=O and O-C=O, respectively. The band N 1s in 
400.4 eV is assigned to N-C binding, whereas the band O 1s in 
532.4 eV is attributed to C=O binding. In the Pd 3d spectra of 
dendrimer-1-PdNPs, the band at 334.8 eV is assigned to Pd(0) 
NPs, whereas the bands at 335.5 and 337.4 eV are assigned to 
PdII (with two distinct types). These results further support the 
successful formation of Pd NPs with dendrimer generations.

Fig. 3 XPS signal from (a) C 1s of dendrimer-1-PdNPs (b) N 1s of 
dendrimer-1-PdNPs (c) O 1s of dendrimer-1-PdNPs and (d) Pd 
3d of dendrimer-1-PdNPs.

Nanocatalysed oxidation of o-phenylenediamine

Several factors affect the catalytic activity of OPD oxidation 
including the solution pH, OPD concentration and H2O2 

Fig. 4 OPD oxidation by dendrimer-1-PdNPs at various pH values. 
General conditions: 0.1 M OPD; 10 mM H2O2 30%; 2 mM 
dendrimer-1-PdNPs.

concentration. The pH effects on the reaction are shown in Fig. 
4 and Fig. S11 (Supporting Information). 

The activity increased with decreasing pH from 7.0 to 3.0, 
with the maximum absorbance being found at pH 3.0. The 
reaction rate decreases 
in the order pH 3.0 > pH 5.0 > pH 7.0 (Fig. 4). This indicates that, 
for pH 3.0, the maximum absorption wavelength in the UV-vis. 
spectrum is 450 nm (Fig. S7). Upon pH increase from 3.0 to 7.0, 
a hypsochromic shift is observed, with a maximum absorption 
at 412 nm for pH 7.0. This effect is associated to the chemical 
behaviour of the DAP molecule whose pKa1 is 1.0-2.0 and pKa2 is 
5.1.36 Therefore, for the other experiments, pH was fixed at 3.0. 
Both dendrimer generations (dendrimers 1 and 2) were used to 
stabilize the Pd NPs and applied in the OPD oxidation reaction. 
Besides that, the fresh and two-month-old PdNP@dendrimer 
were compared, and the addition of magnetic Fe3O4 NPs on 
PdNP@dendrimer was also evaluated. The experiments were 
performed at pH 3.0 in order to evaluate the effect of different 
catalysts in the OPD oxidation reaction, and the results are 
shown in Fig. 5.

In 80 minutes of reaction, the efficiency followed the order: 
dendrimer-1-PdNPs (aged 2 months) < Pd/Fe3O4@dendrimer-1 
< dendrimer-2-PdNPs < dendrimer-1-PdNPs. These results show 
that dendrimer-1-PdNPs is the best catalyst. Besides, there is a 
negative influence of Fe3O4 on the catalyst dendrimer-1-PdNPs, 
i.e., the peroxidase-like activity of Fe3O4/dendrimer-1-PdNPs is 
not as good as that of dendrimer-1-PdNPs, although Fe3O4 has 
often been used previously as support for this type of 
reaction.5,9,10 

Importantly, dendrimer-1-PdNPs was used in water-
dispersive state at least 2 months and then still possessed 
peroxidase-like catalytic activity.37

The third parameter that was evaluated in the OPD oxidation 
reaction, using the dendrimer-1-PdNPs, was the OPD 
concentration. According to the UV-vis. curve (Fig. S8 and Fig. 
S9), the colour of the solution changes with the increase of OPD 
concentration, and the reaction kinetics was found to follow the 
Michaelis-Menten model (Fig. 6). The Vmax and Km values 
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Fig. 5 OPD oxidation by dendrimer-1-PdNPs, dendrimer-2-
PdNPs and dendrimer-1-PdNPs (aged 2 months). General 
conditions: 0.1 M OPD; 10 mM H2O2 30%; 2 mM of the catalyst 
and pH 3.0

obtained were, respectively, 1.51×10-9 M s-1 and Km = 3.06 mM. 
Vmax is an indicator of the catalytic activity, whereas Km indicates 
the affinity of the catalyst for the substrate.8,38 The values of 
Vmax and Km are favourably comparable to those of other 
materials as shown in Table S3.The system was used for the 
quantification of H2O2 and, for this purpose, an analytical curve 
was constructed (Fig. 7). A satisfactory correlation was 
observed (correlation coefficient > 0.9), and the absorbance of 
oxidized OPD increased with the increase of the H2O2 
concentration (Fig. 7a). Meanwhile, these changes with the 
increase of H2O2 concentration were observed by the naked eye 
(Fig. 7b), the solution containing the dendrimer-1-PdNPs 
becoming yellow-orange from colourless. There is a linear 
relationship between the absorbance of oxidized OPD 
concentration ranging from 6.3 to 75.6 µM (Fig. 7c), and this 
reaction kinetics also followed the Michaelis-Menten model. 
The Vmax and Km values obtained were, respectively, 1.06 × 10-8 
M s-1 and 9.04 mM. The detection limit for dendrimer-1-PdNPs 
was found to be 0.5 M (Table 1). These parameters are 
compared to those reported in other studies of the literature 
(Table 1). 

Discussion

The “click” dendrimers being known as excellent templates for 
late transition-metal NPs, and particularly Pd NPs, they were 
certainly good candidates as enzyme mimics when associated 
to Pd NPs. The “click” dendrimers 1 and 2 therefore stabilise 
very small PdNPs due to the intra-dendritic triazole 
coordination. Such a small NP size is a condition for good 
efficiency, since the efficiency is related to the total NP surface. 
Another parameter to consider is the substrate access to the 
PdNP surface. With the dendrimers, the intra-dendritic location 
of the PdNPs may introduce a steric constraint for substrate 
access to the PdNP surface. The dendritic effect involving a 
lower reaction rate of the larger dendrimer-2-PdNPs compared 
to dendrimer-1-PdNPs may be taken into account by this 
parameter. Finally, the H2O2 concentration is also directly 
related to the peroxidase-like catalytic reaction rate. Therefore, 

Fig. 6 [OPD]-Velocity curve obtained using the Michaelis–
Menten model. General conditions: 10 mM H2O2 30%; 2 mM 
dendrimer-1-PdNPs and pH 3.0

Fig. 7 Variation of the H2O2 concentration with dendrimer-1-
PdNPs. General conditions: 0.1M OPD; 2 mM dendrimer-1-
PdNPs. (a. UV-vis. spectra for various H2O2 concentrations; b. 
colour changes of oxidized OPD in the presence of dendrimer-
1-PdNPs with H2O2 at various concentrations; c. linear 
calibration plots of absorbance of oxidized OPD at 450 nm; d. 
[H2O2] velocity curve using the Michaelis-Menten model). 

reaction rates recorded here were lower than in some other 
reports, which is are directly caused by H2O2 concentration that 
was lower in the present study. The values obtained here are 
comparable to the best literature data, demonstrating that the 
present nanocatalyst not only has a comparable lower 
detection limit, but also possesses the advantages of excellent 
water dispersion and stability, which emphasizes the potential 
of dendrimer-1-PdNPs to function as an excellent catalyst in 
peroxidase-like reactions. Table 1 concerns only OPD for 
comparison with the results obtained in this work. Catalyst.

Page 4 of 19Inorganic Chemistry Frontiers
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Table 1. Comparison of the analytical parameters for the 
quantification of H2O2 reported in other nanomaterial-based 
enzyme mimics.

Catalyst
Linear 
range
(µM)

Detect-
ion 

limit
(µM)

pH
Reaction
Tempera-

ture
Ref.

Ag-CoO NPs 5 - 20 3.47 5.0 r.t.* [4]

MnFe2O4
100 - 

15000 30 7.0 r.t.* [38]

Fe3O4@Cu@
Cu2O

400 - 
1500 200 8.0 25 C [39]

CuS 
nanorods

1.0 - 
1000 0.11 4.0 45 C [40]

Cu co-doped 
carbon dots

5 - 
200 1.1 6.0 35 C [41]

dendrimer-
1-PdNPs

6.3 - 
75.6 0.5 3.0 22 C

This 
work

*Room temperature

 
mimicking peroxidase have sometimes also previously been 
used for 3,3',5,5'-tetramethylbenzidine. 8,42-44 

Since the diameter size of dendrimer 1 is about 10 nm,27,28 
the smallest PdNPs are much smaller than the dendrimers and 
stabilised by the intradendritic triazole ligands along the 
dendritic triazole tethers, whereas larger PdNPs are most 
probably stabilised inter-dendritically. Concerning dendrimer-2 
PdNPs, their dispersity is clearly, from the TEM images, much 
larger than that of the dendrimer-1-PdNPs, with a size 
culminating around 3.6 nm. The kinetic results with dendrimer-
1-PdNPs show that they are more efficient than dendrimer-2-
PdNPs due to their small size and easier access of substrates in 
less bulky tethers.

Conclusion
Stable “click” dendrimer-Pd NP assemblies, utilizing the synergy 
between intradendritic triazole coordination to the Pd NP 
surface and bulk of the dendritic core, tethers and cavities, 
mimic peroxidase enzyme for OPD oxidation in aqueous 
solutions. A typical Michaelis–Menten kinetics is observed for 
the reaction in the presence of the dendrimer-Pd NP assemblies 
with a low detection limit of H2O2. Comparison with literature 
results indicates that the performances reached in H2O2 
detection using this excellent method are among the very best 
ever obtained. With these advantages, the optimized 
dendrimer-1-PdNP nano-assembly is a promising biomimetic 
nanocatalyst with possible other applications in biosensing and 
environmental monitoring.
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1. Procedure for the preparations of the dendrimer-1 and dendrimer-2

Scheme 1. Synthesis of dendrimer-1 

Dendrimer 1 has been synthesized following previous reports. S1, S2 1,2 9-N3 (see Scheme 1, 0.012 mmol,) and the TEG dendron 

(see Scheme 1, 0.13 mmol, 1.2 equiv. per branch) are dissolved in THF. CuSO4.5H2O is added (0.032 g, 0.13 mmol, 1.2 equiv. 

per branch, 1M in aqueous solution), followed by dropwise addition of a freshly prepared solution of sodium ascorbate (0.051 

g, 0.26 mmol, 2.4 equiv. per branch, 1M in water solution) in order to set a 1:1 THF/water ratio. The reaction mixture is stirred 

for 3 days at 25 C under N2. After removing THF in vacuo, CH2Cl2 (100 mL) and an aqueous ammonia solution (2.0 M, 50 mL) 

are successively added. The mixture is allowed to stir for 10 minutes in order to remove all the Cu(II) trapped inside the 

dendrimer as [Cu(NH3)2(H2O)2][SO4]. The organic phase is washed twice with water, and this operation is repeated three more 

times to ensure complete removal of copper ions. The organic phase is dried with sodium sulfate, and the solvent is removed 

in vacuo. The product is washed with 50 mL pentane several times in order to remove the excess of the dendron. Dendrimer 1 

is obtained in 72.8 % yield. The procedure for the synthesis of dendrimer 2 is similar to that used for 1, and use the procedure 

reported in reference S1, 2 is obtained in 70 % yield. 

Dendrimer 2
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2. 1H NMR of the dendrimer-1 and dendrimer-2

1H NMR (CDCl3, 300 MHz) dppm: 7.51 (CH-triazole), 6.99 (CH-arom. intern), 6.60 (CH-arom. extern), 4.63 (triazole-CH2-O), 4.48 

(O-CH2-arom. extern), 3.85-4.15 (CH2CH2O-arom. extern), 3.80 (Si-CH2-triazole), 3.53-3.77 (OCH2CH2O), 3.37-3.40 (CH3O), 1.70 

(CH2CH2CH2Si), 1.13 (CH2CH2CH2Si), 0.66 (CH2CH2CH2Si), 0.07 (Si(CH3)2).

Figure S1. 1H NMR spectrum of dendrimer-1 in CDCl3.
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1H NMR (CDCl3, 300 MHz) dppm: 7.51 (CH-triazole), 6.89-7.15 (CH-arom. intern), 6.60 (CH-arom. extern), 4.64 (triazole-CH2-O), 

4.48 (O-CH2-arom. extern), 3.85-4.15 (CH2CH2O-arom. extern), 3.80 (Si-CH2-triazole), 3.56-3.74 (OCH2CH2O), 3.55 (CH2O-arom. 

intern) 3.36-3.40 (CH3O), 1.63 (CH2CH2CH2Si), 1.12 (CH2CH2CH2Si), 0.63 (CH2CH2CH2Si), 0.06 (Si(CH3)2). 

Figure S2. 1H NMR spectrum of dendrimer-2 in CDCl3.
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3. XPS experiments for the dendrimer-1-PdNPs and dendrimer-2-PdNPs.

XPS experiments were performed in a SPECS Sage HR 100 spectrometer with a non-monochromatic X-ray source (Magnesium 

Kα line of 1253.6 eV energy and 252 W), placed perpendicular to the analyzer axis and calibrated using the 3d5/2 line of Ag 

with a full width at half maximum (FWHM) of 1.1 eV.

3.1 Carbon 1s region of the dendrimer-1-PdNPs and dendrimer-2-PdNPs.
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Figure S3. Carbon 1s region of dendrimer-2-PdNPs

Table S1 C 1s peak BE obtained by deconvolution and reported in Figure S3 and Figure S4.

C-C/C-H 

(eV)

[at%]

C-O/C-N

(eV)

[at%]

C=O

(eV)

[at%]

OC=O

(eV)

[at%]

Pd-27TEG
284.8

[61.2]

286.4

[32.3]

288.2

[4.2]

289.3

[2.3]

Pd-81TEG
284.8

[43.2]

286.5

[51.1]

288.2

[4.0]

289.2

[1.7]

3.2 Oxygen 1s region of the dendrimer-1-PdNPs and dendrimer-2-PdNPs.

The oxygen peak is generally wide and difficult to resolve discrimination of the different species. In the literature, the O-Metal 

bond is <530eV, C=O 530-531 eV, C-O and Si-O 531-533 eV, OC=O and C-OH and H2O >534eV. Pd 3p3/2 BE can vary from 532 

(Pd0) eV up to 535 eV (PdCl2).
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Figure S4. Oxygen 1s region of dendrimer-2-PdNPs

3.3 Nitrogen 1s region of the dendrimer-1-PdNPs and dendrimer-2-PdNPs.
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Figure S5. Nitrogen 1s region of dendrimer-2-PdNPs

Table S2 N 1s peak BE obtained by deconvolution and reported in Figure S7 and Figure S8.

N-C

(eV)

[at%]

NH+

(eV)

[at%]

Pd-27TEG
400.4

[100]
-

Pd-81TEG
400.0

[59]

401.5

[41]
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3.4 Pd 3d region of the dendrimer-1-PdNPs and dendrimer-2-PdNPs.

Pd is readily reduced by X-ray and for this reason the acquisition time was reduced to minimum.  The 3d region is represented 

by a doublet with average splitting of 5.3eV. Pd 3d5/2 is found below 335 eV in Pd0 while PdII has higher BE. Several species, 

most likely made of PdII, were detected and indicated as (I) and (II). 

CasaXPS (T his string can be edit ed in CasaXPS.DEF/PrintFootNot e.t xt )

Pd 3d [R1,1]

Name
Pd 0 3d5/2
Pd 0 3d3/2
Pd II 3d5/2
Pd II 3d3/2

Pos.
335.38
340.68
337.78
343.08

Area
65033.15
43357.60
4391.08
2927.53

%Area
93.68
0.00
6.32
0.00

x 103

30

35

40
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C
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Binding Energy (eV)

Figure S6. Pd 3d region of dendrimer-2-PdNPs
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4. OPD oxidation catalyzed by dendrimer-1-PdNPs at various pH values. 

Fig. S7. OPD oxidation catalyzed by dendrimer-1-PdNPs at various pH.  

General conditions: 0.1M OPD; 0.4 mL H2O2 30%; 2 mM dendrimer-1-PdNPs
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5. Variation of OPD concentration

Fig. S8. Color changes during oxidization of OPD catalyzed by dendrimer-1-PdNPs in the presence of OPD with increased 

concentrations.

Fig. S9. Variation of OPD concentration during the catalytic oxidation by dendrimer-1-PdNPs. 

General conditions: 0.4 mL H2O2 30%; 2 mM dendrimer-1-PdNPs 
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Table S3. Comparison of the apparent Michaelis–Menten constant (Km)

 and maximum reaction rate (Vm) for OPD as substrate

Material CH2O2 Ccat Vmax×10-8 

(M s-1)

Km 

(mM)

Ref.

MnFe2O4 60 mM 0.06mg mL-1 10.4 27.5 3

Cu-based carbon dots (Cu-CDs) 0.625 mM 0.05mg mL-1 3.315 0.548 4

Co3O4 0.67 mM 0.05 nM 3.22 0.61 5

Fe3O4@Cu@Cu2O 2.0 mM 0.05mg mL-1 13.1 0.85 6

Horseradish peroxidase 0.625 mM 0.05mg mL-1 0.12 1.8 4

dendrimer-1-PdNPs 0.4 mL 2 mM 0.151 3.06 This work
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