Conference paper Open Access

A Peer-to-Peer Protocol and System Architecture for Privacy-Preserving Statistical Analysis

Zamani, Katerina; Charalambidis, Angelos; Konstantopoulos, Stasinos; Dagioglou, Maria; Karkaletsis, Vangelis


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Privacy-Preserving statistical analysis</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Secure summation protocol</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Statistical processing of health records</subfield>
  </datafield>
  <controlfield tag="005">20200120174352.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">Published as Springer LNCS 9817.</subfield>
  </datafield>
  <controlfield tag="001">61017</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">31 August 31 - 2 September 2016</subfield>
    <subfield code="g">PAML 2016</subfield>
    <subfield code="a">Workshop on Privacy Aware Machine Learning for Health Data Science</subfield>
    <subfield code="c">Salzburg, Austria</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NCSR "Demokritos"</subfield>
    <subfield code="a">Charalambidis, Angelos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NCSR "Demokritos"</subfield>
    <subfield code="a">Konstantopoulos, Stasinos</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NCSR "Demokritos"</subfield>
    <subfield code="a">Dagioglou, Maria</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">NCSR "Demokritos"</subfield>
    <subfield code="a">Karkaletsis, Vangelis</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">369273</subfield>
    <subfield code="z">md5:848aae8e1f32d6a84cc293fd6981b2f4</subfield>
    <subfield code="u">https://zenodo.org/record/61017/files/paml16.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2016-08-23</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-deg</subfield>
    <subfield code="p">user-ecfunded</subfield>
    <subfield code="p">user-radio</subfield>
    <subfield code="o">oai:zenodo.org:61017</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">NCSR "Demokritos"</subfield>
    <subfield code="a">Zamani, Katerina</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A Peer-to-Peer Protocol and System Architecture for Privacy-Preserving Statistical Analysis</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-deg</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ecfunded</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-radio</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">643892</subfield>
    <subfield code="a">Robots in assisted living environments: Unobtrusive, efficient, reliable and modular solutions for independent ageing</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Other (Attribution)</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The insights gained by the large-scale analysis of health-related data can have an enormous impact in public health and medical research, but access to such personal and sensitive data poses serious privacy implications for the data provider and a heavy data security and administrative burden on the data consumer. In this paper we present an architecture that fills the gap between the statistical tools ubiquitously used in medical research on the one hand, and privacy-preserving data mining methods on the other. This architecture foresees the primitive instructions needed to re-implement the elementary statistical methods so that they only access data via a privacy-preserving protocol. The advantage is that more complex analysis and visualisation tools that are built upon these elementary methods can remain unaffected. Furthermore, we introduce RASSP, a secure summation protocol that implements the primitive instructions foreseen by the architecture. An open-source reference implementation of this architecture is provided for the R language. We use these results to argue that the tension between medical research and privacy requirements can be technically alleviated and we outline a research plan towards a system that covers further requirements on computation efficiency and on the trust that the medical researcher can place on the statistical results obtained by it.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isIdenticalTo</subfield>
    <subfield code="a">http://link.springer.com/chapter/10.1007%2F978-3-319-45507-5_16</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/978-3-319-45507-5_16</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
233
112
views
downloads
Views 233
Downloads 112
Data volume 41.4 MB
Unique views 211
Unique downloads 110

Share

Cite as