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dedicated to the memory of Oliver Heaviside 1850-1925

https://en.wikipedia.org/wiki/Oliver_Heaviside


a word about Oliver Heaviside . . .

Wikipedia article: “Oliver Heaviside FRS (18 May 1850 – 3
February 1925) was an English mathematician and physicist
who brought complex numbers to circuit analysis, invented a
new technique for solving differential equations
(equivalent to the Laplace transform), independently developed
vector calculus, and rewrote Maxwell’s equations in the
form commonly used today. He significantly shaped the way
Maxwell’s equations are understood and applied in the decades
following Maxwell’s death. His formulation of the
telegrapher’s equations became commercially important
during his own lifetime, after their significance went unremarked
for a long while, as few others were versed at the time in his
novel methodology. Although at odds with the scientific
establishment for most of his life, Heaviside changed the
face of telecommunications, mathematics, and science.”

https://en.wikipedia.org/wiki/Oliver_Heaviside


how did we get here?

I a popular science video by Veritasium
I a bit of oversimplification . . . and fine print . . .
I I posted an initial complaint, a commenting video . . .
I but, what actually goes on?
I it turned out to be analytically (and numerically) solvable!
I . . . easier than by plain numerical simulation . . .
I . . . and providing more insight!
I I had a lot of fun in solving the problem . . .
I this much that I bothered to make this presentation . . .
I to share that joy with you!
I I really admire Oliver Heaviside and Jean le Rond

d’Alembert . . . and some others . . .
I who actually solved the problem . . .

https://youtu.be/bHIhgxav9LY
https://youtu.be/rG4KEdQadmQ
https://en.wikipedia.org/wiki/Oliver_Heaviside
https://en.wikipedia.org/wiki/Jean_le_Rond_d%27Alembert
https://en.wikipedia.org/wiki/Jean_le_Rond_d%27Alembert


the problem: setup
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2 s ≈ 1.5× 108 m = 150Mm = 150000 km



the problem: question

In my perception: How long after closing the switch the light
bulb will turn on? Offered answers:

a) 0.5 s
b) 1 s
c) 2 s
d) 1 m

c

e) none of the above

Suggested answer: d).

Some truth is there. But, is this representative part of the
process?

Fine print followed: any voltage makes the light bulb shine!

I’d rather opt for e), and I’ll explain that here.



a misbelief

vL

VB

t0 1 m

c
≈ 3.33 ns

I if you believe that after 1 m
c ≈ 3.33 ns the light bulb voltage

reaches its final voltage, or even the light bulb starts to
shine, this is not what would happen

I however, if this is not, what actually would happen?
I we’ll cover that here!
I something quite different and more complex would happen!



our setup . . . for numerical examples
I we have D = 1m and l = 150Mm . . .
I but we do not have d, diameter of the wire . . .
I which is really important . . .
I I have chosen d = 1.382mm, corresponding to
ACu = 1.5 (mm)2, sufficient for 10A RMS

I I have also chosen VB = 12V . . .
I and PL = 21W, resulting in RL = 6.8571 Ω . . . when hot!
I such light bulb is common for brake lights and turn

indicators . . .
I . . . and IL = VB/RL = 1.75A < 10A, the wire is thick

enough, with margin! the setup is fair enough!
I bad part: VCu = 900m3, mCu = 8064Mg (metric tons),

cost ≈ 78MUS$, Rw = 6.720MΩ, and Rw is going to be the
biggest problem!

I superconducting version first, with Rw later . . .

https://en.wikipedia.org/wiki/Superconductivity


a word about incandescent light bulbs . . . at 10%



a word about light bulbs . . . at 20%



about light bulbs . . . at 100% of the rated voltage



a word about fine print: warning!

I be careful with fine print!
I be careful when common notions are redefined!
I what is our goal in communication? to convey meaning?
I the goal is to understand the system and to learn

something that might be useful in analyzing other systems
I words are to convey meaning, not to misguide
I the setup turned out to be an excellent example!
I so, no hard feelings, let’s enjoy analyzing the system and

learning something out of that!
I thanks to all of the people who got involved!
I and, please, no hard feelings!
I the answer is not one bit of information!



the transient: beginning
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the transient: end
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RL

i = VB/RL i = VB/RL

i = VB/RL i = VB/RL

0.5 s × c

i = VB/RL i = VB/RL

WT = l L′
(
VB
RL

)2

= 1336 J = 0.371Wh

to get this in 3.33 ns you would need PB ≈ 400GW source

besides, any effect of closing the switch in 3.33 ns could reach
only 1m



the transient

I clearly, there is a transient that lasts much longer than
1 m
c ≈ 3.33 ns, in the order of seconds, at least

I there is a light cone
I but, how does the current in the loop change over time and

over the loop, in space?
I is it possible that initial current of the bulb, at t = 0+,

equals the value at the end, at t→∞, and that the
transient occurs somewhere else, away from the bulb?

I it will be shown here that even that is possible, but with
slightly modified setup and at much lower final voltage than
required to light the bulb really

https://en.wikipedia.org/wiki/Light_cone


simplified model . . . for the most of the analysis
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1. thick lines represent transmission lines . . .
2. the light bulb is replaced by a linear resistor



solution, Rw = 0
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ACu = 1.50 (mm)2 , d = 1.38 mm, PL = 21 W, RL = 6.86 Ω



solution, Rw = 0
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solution, Rw = 0
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solution, Rw = 0, nonlinear load, light bulb
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total disaster, Rw 6= 0, RL = 0.5 Ω since VL ≈ 0
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a much cheaper alternative for the setup
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the same answer if you ask the question clearly: “when the first
information (signal) about closing of the switch would reach the
light bulb?”

answer: in ∆t =
D

c



the same initial voltage in many cases . . .
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ε0
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)
≈ 119.92 Ω arccosh

(
D

d

)
actually, since 2019 the constant is exactly 119.9169832 Ω

https://en.wikipedia.org/wiki/Impedance_of_free_space


the same initial voltage . . . white wire (6m)
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the same initial voltage . . . blue-white wire (10m)
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equivalent circuit for the initial voltage . . .
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vL initial =
RL

RL + 2Zc
VB ≈

RL
2Zc

VB

Zc ∼ 500Ω, RL ∼ 10 Ω,
RL
2Zc

∼ 1%

parameter choices favorable for vL initial



“no transient” case . . .
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“no transient” case . . . delayed

vL
RL

RL + 2 Zc
VB

t0 1 m

c
≈ 3.33 ns

vL =
RL

RL + 2Zc
VB ≈

RL
2Zc

VB ∼ 1%VB



“no transient” case . . . actually computed
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motivation: why did I do this?

I because I feel that transmission line theory is not taught
enough on the undergraduate level

I because the problem proposed by Veritasium is great to
illustrate:
I mathematical modeling
I solving systems in electrical engineering
I circuit analysis techniques
I circuits with distributed parameters
I transmission line theory
I wave equation
I discrete time modeling
I analysis of nonlinear circuits
I analysis of transmission lines in frequency domain
I transforms, impulse response, step response . . .

I because I had fun in solving the problem (← that’s it)
I because I’d like to share this joy with you



why Oliver Heaviside?

because Oliver Heaviside invented the most of the techniques
needed to solve this problem:

I Heaviside step function turns the switch on
I Heaviside response is our problem
I although I did not use the full potential of his operational

calculus: the problem is simple enough, used in a part of
the analysis

I Maxwell’s equations, although I dd not use his vector
calculus, the model is simplified using his ↓

I telegrapher’s equations reduced the problem to one spatial
dimension; actually to decouple: 3D = 2D + 1D

I coaxial cable I used in my examples

https://en.wikipedia.org/wiki/Oliver_Heaviside
https://en.wikipedia.org/wiki/Heaviside_step_function
https://en.wikipedia.org/wiki/Step_response
https://en.wikipedia.org/wiki/Operational_calculus
https://en.wikipedia.org/wiki/Operational_calculus
https://en.wikipedia.org/wiki/Maxwell%27s_equations
https://en.wikipedia.org/wiki/Vector_calculus
https://en.wikipedia.org/wiki/Vector_calculus
https://en.wikipedia.org/wiki/Telegrapher%27s_equations
https://en.wikipedia.org/wiki/Coaxial_cable


with some help across the Channel . . .

mathematics part:
I one-dimensional wave equation is going to be our model
I solved by Jean le Rond d’Alembert, ingeniously!
I but our example allows reduction to linear algebraic

equations that model DC circuits

overall:
I our 21st century problem is solved by 19th physics and 18th

century mathematics
I affordable 21st century computers provided nice typesetting

and graphs, some simulation, communication,
dissemination, resources, references . . . well, this is
important

I and the computers I use are run by free software

https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/Jean_le_Rond_d%27Alembert
https://en.wikipedia.org/wiki/Free_software


a word about scaling, space . . .
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I all of the labeled dimensions are length!
I and the figure is geometry, about length
I let’s put it in scale!



a word about scaling, space . . .
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I one dimension is really pronounced!
I decoupling?
I possible to reduce the space to one dimension?



a word about scaling, space . . .
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a word about scaling, space . . .
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150 mm

1 nm is the size of several atoms

https://en.wikipedia.org/wiki/Atomic_radius


another word about scaling, time . . .

vL

V1

t0 1 m

c
≈ 3.33 ns 1 s

V2

I labeled quantities are time
I presented as length
I but we can also put it in scale!



another word about scaling, time . . .

vL

V1

t0 1 m

c
≈ 3.33 ns 1 s

V2

1 mm 300 km

1 nm 30 cm

1 nm is the size of several atoms

https://en.wikipedia.org/wiki/Atomic_radius


another word about scaling, time . . .

vL

V1

t0 1 s

V2

I 3.33 ns� 1 s, in this context 3.33 ns ≈ 0

I and I’ll do that!



overview of scaling

I we do not execute algorithms (any more)
I we create algorithms
I we should distinguish relevant and negligible
I we are here to create mathematical models
I and this is a quantitative issue . . .
I . . . mapped to our mind somehow
I do you have a feeling about the problem?
I quantitative information is frequently lost in symbols
I an example: a person has Am money on his/her account

a) Am = 3.33 US$ ∼ 3.33 ns
b) Am is one billion US$ ∼ 1 s

I a quantitative issue, but a big difference in the quality of life
I do you feel the problem?



about incandescent light bulbs . . .

I incandescent light bulb . . .
I a really simple system . . .
I a wire heated up to shine . . .
I in a bulb to isolate the wire from oxygen to prevent burning
I low pressure gas to prevent explosions . . .
I dynamic system, thermal inertia, thermal conduction . . .
I black-body radiation . . .
I initiated development of quantum mechanics . . .
I did I say a really simple system?
I used as an indicator (a poor one) in our story . . .
I examples that follow, light bulbs: 12V DC, 21W, and

230V AC, 60W

https://en.wikipedia.org/wiki/Incandescent_light_bulb
https://en.wikipedia.org/wiki/Black-body_radiation
https://en.wikipedia.org/wiki/History_of_quantum_mechanics


about incandescent light bulbs . . . at 10%



about light bulbs . . . at 10%



about light bulbs . . . at 20%



about light bulbs . . . at 20%



about light bulbs . . . at 100% of the rated voltage



about light bulbs . . . at 100% of the rated voltage



a word about AC light bulbs . . . at 10%



about AC light bulbs . . . at 20%



about AC light bulbs . . . at 100% of the rated
voltage



about light bulbs . . . DC nonlinearity
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about light bulbs . . . power
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about light bulbs . . . power, PL ∼ v
3
2

L
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light bulbs: square root law?

I curve fitting, assumed law iL = IL0

√
vL
1V

I linear least squares to fit IL0 . . .
I for the actual light bulb IL0 = 0.4953A
I fits amazingly well!
I why?

I empirical data:
RL, rated

RL, at 0
=

6.857 Ω

0.5 Ω
≈ 13.71

I I’ll stop here with the light bulb electrical model . . .
I in our application: the light bulb is a DC nonlinear element
I we’ll neglect the dynamics . . .
I we know DC dependence of vL and iL and that’s all we need
I . . . at this point . . .



about light bulbs . . . curve fitting
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about light bulbs . . . RL(VL), 1 : 14, RL(0) = 0.5 Ω
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another light bulb, a bigger one, AC



AC light bulb . . . AC linear (almost)
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AC light bulb . . . AC linear (almost)
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AC light bulb . . . AC linear
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AC light bulb . . . AC linear
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AC light bulb . . . DC clearly nonlinear
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AC light bulb . . . power
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AC light bulb . . . RL(VL)
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about AC light bulbs . . .

I AC linear element, vL and iL linearly dependent
I DC nonlinear element, VL,RMS and IL,RMS not linearly

related
I again, square root law perfectly fits the data:

IL,RMS ≈ IL0

√
VL,RMS

1V
, IL0 ≈ 0.0176A

I why?

I empirical data:
RL, rated

RL, at 0
=

881.67 Ω

65.9 Ω
≈ 13.38, again

I behavior amazingly similar to 12V DC light bulb!



overview of light bulbs

I somewhere between 10% and 20% of the rated
voltage some light appears; in steady state, after the
filament is heated up; this also takes time

I light bulb is a nonlinear element, DC nonlinear
I on the other hand, light bulb is a linear element, AC

linear . . .
I significant variation of DC resistance over the applied

voltage (RMS value), typically RL(0) : RL(Vrated) = 1 : 14

I light bulb is a dynamic element, filters out AC variations
at 50Hz or 60Hz, almost perfectly

I dynamics dominantly thermal (important for AC linearity,
no power quality problems, current and voltage linearly
dependent over ∼ 20ms, harmonic pollution not generated)

I a really interesting system! simple, but complex!
I at first, we’ll simplify: light bulb → linear resistor



more words about light bulbs . . .

I light bulb is a poor indicator, especially when it comes to
3.3 ns as a time to indicate

I significant dependence of luminosity on the voltage applied
I significant dynamic response, slow system!
I when the light bulb is on? do we need a fine print?
I are all the light bulbs in the universe on, due to the cosmic

microwave background radiation?
I except for those in perfect Faraday cages without internal electromagnetic sources

I and this started all the of the problems . . .
I and caused all of the benefits: interest in the topic!
I when the light bulb is on turned out to be a complex

question!
I thanks Andres!

https://en.wikipedia.org/wiki/Cosmic_microwave_background
https://en.wikipedia.org/wiki/Cosmic_microwave_background
https://en.wikipedia.org/wiki/Faraday_cage


Maxwell’s equations . . . from a T-shirt

And God said . . .

~∇ · ~D = ρ

~∇ · ~B = 0

~∇× ~E = −∂
~B

∂t

~∇× ~H = ~J +
∂ ~D

∂t

. . . and then there was light.



Maxwell’s equations . . . from another T-shirt

. . . or if you like it better in the integral form . . .
‹
∂V

~D · d~S =

˚
V
ρ dV

‹
∂V

~B · d~S = 0

˛
∂S

~E · d~l = −
¨
S

∂ ~B

∂t
· d~S

˛
∂S

~H · d~l =

¨
S

(
~J +

∂ ~D

∂t

)
· d~S

. . . which looks much easier . . .

whatever: formulated by Oliver Heaviside

https://en.wikipedia.org/wiki/Oliver_Heaviside


Maxwell’s equations . . .

I why did I mention God in Maxwell’s equations?
I because you frequently need God to solve them!
I in some cases even humans can solve them
I in some cases we apply numerical methods and computers
I in some cases we simplify them neglecting some effects . . .
I . . . that should be negligible . . .
I and this is a quantitative issue . . .
I essentially: a great achievement of 19th century physics
I unification theory
I birth of theoretical physics, ∂ ~D∂t out of equations . . .
I c = 1√

ε0 µ0
: light is an electromagnetic phenomenon?

I basis for special relativity . . .
I present formulation by Oliver Heaviside

https://en.wikipedia.org/wiki/Maxwell%27s_equations
https://en.wikipedia.org/wiki/Oliver_Heaviside


Gustav Kirchhoff and circuit theory
I Kirchhoff’s circuit laws are formulated by Gustav Kirchhoff

in 1845, while he was a student, before Maxwell’s equations
I in essence, simplification and reduction of Maxwell’s

equations in cases where applicable
I many applicable cases: all lumped parameter electric

circuits!
I in this analysis there is no space, three variables are gone,

the circuit is a “material point”
I well, not really a point, there are nodes and branches that

form loops, as well as circuit components inside that “point”
I partial differential equations reduced to ordinary

differential equations over time variable
I definitely applicable to DC circuits, in that case even time

variable is gone, just algebraic equations remain
I ubiquitous in electrical engineering, used wherever possible,

really frequently, really useful!

https://en.wikipedia.org/wiki/Kirchhoff%27s_circuit_laws
https://en.wikipedia.org/wiki/Gustav_Kirchhoff
https://en.wikipedia.org/wiki/Lumped-element_model


Kirchhoff’s current law

I continuity equation, charge conservation ~∇ · ~J = −∂ρ
∂t

I integral form,
‹
∂V

~J · d~S = −
˚

V

∂ρ

∂t
dV

I define currents as ik ,
¨
Sk

~J · d~S

I assume
˚

V

∂ρ

∂t
dV ≈ 0 for “nodes”

I for any closed surface ∂V =
⋃
k

Sk we get

I KCL:
∑
k

ik = 0

I simple equation: linear, algebraic, homogeneous

https://en.wikipedia.org/wiki/Continuity_equation


Kirchhoff’s voltage law

I Faraday’s law of induction, ~∇× ~E = −∂
~B

∂t

I integral form,
˛
∂S

~E · d~l = −
¨
S

∂ ~B

∂t
· d~S

I define voltages vk ,
ˆ
lk

~E · d~l

I assume
¨
S

∂ ~B

∂t
· d~S ≈ 0 over “loops”

I for any closed loop ∂S =
⋃
k

lk we get

I KVL:
∑
k

vk = 0

I simple equation: linear, algebraic, homogeneous

https://en.wikipedia.org/wiki/Faraday%27s_law_of_induction


constitutive relations

I Kirchhoff’s laws do not mutually relate voltages and
currents, neither care about circuit components, they model
effects caused by element interconnections

I elements are described by constitutive relations (CRs): they
may cause some trouble, but not as Maxwell’s equations

I resistor, : v = R i; linear, algebraic, homogeneous

I capacitor, , i = C dv
dt , linear, differential, homogeneous

I inductor, , v = L di
dt , linear, differential, homogeneous

I voltage source,

+−

, v = eg (t); linear, nonhomogeneous

I current source, , i = ig (t); linear, nonhomogeneous
I R, L, C: linear homogeneous CRs, some have d

dt , “dynamic”
I voltage and current source: linear, but not homogeneous
I there are also nonlinear elements, like diodes, light bulbs . . .



circuit theory

I circuit theory is based on Kirchhoff’s laws
I to solve a circuit one half of the equations originate from

Kirchhoff’s laws, the other half from constitutive relations
I about equations and solving circuits
I essentially, applied mathematics
I behavior of classes of circuits (linear, nonlinear, resistive,

dynamic, 1st order, 2nd order, . . . )
I circuit synthesis, like filters . . .
I „lumped parameter“ circuits: there is no space for space in

the model (electrical material point)
I everything is close together enough
I detailed modeling avoided (imagine home wiring model)
I solving Maxwell’s equations avoided

https://en.wikipedia.org/wiki/Electrical_network


EM field theory versus electric circuit theory

I electromagnetic field theory:
I deals with fields: electric ~E and ~D and magnetic ~H and ~B
I bundles electric and magnetic field with partial differential

equations (in vector form by Oliver Heaviside)
I there is space in the model
I hard to describe the system analytically (like home wiring)
I hard to solve the equations

I electric circuit theory:
I deals with voltages and currents, v and i
I spatial dimensions are neglected, encapsulated in the circuit

graph, in the interconnections
I Kirchhoff’s laws: linear homogeneous algebraic equations,

simple
I much easier to solve the model
I frequently used, I make my living using it
I field carries energy . . .
I encapsulated in voltages and currents here

https://en.wikipedia.org/wiki/Oliver_Heaviside


transmission line theory: circuits with distributed
parameters (something in between)

let the space be one dimensional . . . transmission lines . . .

L′ ∆x

C′ ∆x

R′ ∆x

G′ ∆x

∆x

+

−

v(t, x) v(t, x + ∆x)

i(t, x) i(t, x + ∆x)

+

−

again, by Oliver Heaviside!

https://en.wikipedia.org/wiki/Transmission_line
https://en.wikipedia.org/wiki/Oliver_Heaviside


telegrapher’s equations

telegrapher’s equations:

∂v(t, x)

∂x
= −L′ ∂i(t, x)

∂t
−R′ i(t, x)

∂i(t, x)

∂x
= −C ′ ∂v(t, x)

∂t
−G′ v(t, x)

I partial differential equations over v(t, x) and i(t, x)

I by Oliver Heaviside, 1876
I linear, homogeneous
I symmetry over v(t, x) and i(t, x)

I voltages and currents are mutually related
I when you solve for v(t, x) you also get i(t, x) and vice versa

https://en.wikipedia.org/wiki/Telegrapher%27s_equations
https://en.wikipedia.org/wiki/Oliver_Heaviside


telegrapher’s equations

solved over v(t, x) and i(t, x):

∂2v(t, x)

∂x2
− L′ C ′ ∂

2v(t, x)

∂t2
= (R′ C ′ +G′ L′)

∂v(t, x)

∂t
+G′R′ v(t, x)

∂2i(t, x)

∂x2
− L′ C ′ ∂

2i(t, x)

∂t2
= (R′ C ′ +G′ L′)

∂i(t, x)

∂t
+G′R′ i(t, x)

I hyperbolic partial differential equations
I complete symmetry over v(t, x) and i(t, x)

I but v(t, x) and i(t, x) are still related!
I if you know i(t, x), you would know v(t, x), and vice versa
I techniques to solve? transformations?
I well, at this point we would keep in time domain, without

any transformations . . . later on phasors would enter the
stage . . .

https://en.wikipedia.org/wiki/Hyperbolic_partial_differential_equation


overview of the methods

I analysis of macroscopic electromagnetic systems . . .
I three methods covered:

1. Maxwell’s equations, field equations
2. electric circuit theory
3. transmission line theory

I make it as simple as possible, but not simpler than that . . .
I after the geometry of the problem had been analyzed . . .
I transmission line theory + circuit theory are chosen to

address the problem . . .
I so, let’s solve the problem!



lossless case . . . will be our case in time domain

neglect losses, substitute R′ = 0, G′ = 0

∂v(t, x)

∂x
= −L′ ∂i(t, x)

∂t

∂i(t, x)

∂x
= −C ′ ∂v(t, x)

∂t

and we get famous wave equation

∂2v(t, x)

∂x2
− L′C ′ ∂

2v(t, x)

∂t2
= 0

∂2i(t, x)

∂x2
− L′C ′ ∂

2i(t, x)

∂t2
= 0

https://en.wikipedia.org/wiki/Wave_equation


some new variables: Zc and c

c =
1√
L′C ′

Zc ,
√

L′

C′

∂2v(t, x)

∂x2
− 1

c2

∂2v(t, x)

∂t2
= 0

∂2i(t, x)

∂x2
− 1

c2

∂2i(t, x)

∂t2
= 0

∂v(t, x)

∂x
= −Zc

c

∂i(t, x)

∂t

∂i(t, x)

∂x
= − 1

cZc

∂v(t, x)

∂t



wave equation and its solutions . . .

wave equation, one dimension in space, over a general variable y

∂2y (x, t)

∂x2
− 1

c2

∂2y (x, t)

∂t2
= 0

solution, ingenious (I’d never guess it):

y (x, t) = y→ (x− c t) + y← (x+ c t)

please note: y→ (•) and y← (•) are functions of one variable!

x− c t and x+ c t bundle the space and time together

physical dimension of that variable is length here

I’ll repack the solution for my convenience . . . we record
waveforms with time as an independent variable, so let the time
be the base variable! I tend to think in the terms I see!

https://en.wikipedia.org/wiki/Wave_equation#Wave_equation_in_one_space_dimension
https://en.wikipedia.org/wiki/Dimensional_analysis


solutions!

v (t, x) = v→
(
t− x

c

)
+ v←

(
t+

x

c

)
i (t, x) =

1

Zc
v→
(
t− x

c

)
− 1

Zc
v←
(
t+

x

c

)
please note: v→ (t→) and v← (t←) are single variable functions,
its physical dimension is time here

and these variables are in turn functions of two variables:

t→ = t− x

c
and t← = t+

x

c

and there is a trade-off between space and time:

x = t→ + c t, x goes forward, and x = t← − c t, x goes backward

time and space bundled together

https://en.wikipedia.org/wiki/Dimensional_analysis


“initial conditions”

i(t, x)

v(t, x)

+

−

x



initial conditions of a line at t = t0

the initial conditions are v (t0, x) and i (t0, x) for 0 ≤ x ≤ l

v (t0, x) = v→
(
t0 −

x

c

)
+ v←

(
t0 +

x

c

)
i (t0, x) =

1

Zc
v→
(
t0 −

x

c

)
− 1

Zc
v←
(
t0 +

x

c

)
after some elementary linear algebra:

v→
(
t0 −

x

c

)
=

1

2
(v (t0, x) + Zc i (t0, x))

v←
(
t0 +

x

c

)
=

1

2
(v (t0, x)− Zc i (t0, x))

at t = t0 for 0 ≤ x ≤ l



integration constants (DC components)?

let’s get back to the relations between the voltage and the
current across the line . . .

∂v(t, x)

∂x
= −Zc

c

∂i(t, x)

∂t

∂i(t, x)

∂x
= − 1

cZc

∂v(t, x)

∂t

that result in:

v (t, x) = v→
(
t− x

c

)
+ v←

(
t+

x

c

)
i (t, x) =

1

Zc
v→
(
t− x

c

)
− 1

Zc
v←
(
t+

x

c

)
integration constants?



integration constants are included!

+

−
V

+

−

v(t, x) = V

l

Zc, c

i(t, x) = I

I

V = v→ + v←

I =
v→
Zc
− v←
Zc

⇒
v→ =

1

2
(V + Zc I)

v← =
1

2
(V − Zc I)



a hypothetical example

parameter values made up to get numbers easy to compute
with, very far from realistic values:

Zc = 1 Ω

c = 1 m
s

l = 6m

and that’s all we need for the transmission line electrical model



solution: initial conditions at t = 0

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3
v

(0
,x

)
[V

]

0 1 2 3 4 5 6

x [m]

−3

−2

−1

0

1

2

3

i
(0
,x

)
[A

]



is this feasible?

yes, it is!

+

−

+

−
Zc, c

Zc Zc

vG1 vG2

i(t, x)

v(t, x)

+

−

0 xl

in theory this is easy; in practice, there would be some problems
to synchronize the generators, but solvable . . .

a mathematical note: if you care about differentiability,
smooth up the functions a little bit, generalized functions . . .

https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Generalized_function


voltages of the generators

−3 −2 −1 0 1 2 3

−4

−2

0

2

4
v G

1
(t

)
[V

]

−3 −2 −1 0 1 2 3

t [s]

−4

−2

0

2

4

v G
2

(t
)

[V
]



back to the solution: initial conditions at t = 0

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3
v

(0
,x

)
[V

]

0 1 2 3 4 5 6

x [m]

−3

−2

−1

0

1

2

3

i
(0
,x

)
[A

]



initial conditions, wave functions at t = 0

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3
v →

(t
x
)

[V
]

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
tx [s]

−3

−2

−1

0

1

2

3

v ←
(t
x
)

[V
]



initial conditions, wave functions at t = 0

I please remember, initial conditions encode what already is
on the line

I tx is a dummy variable
I for v→ let us follow tx = −1 s
I for v→ the argument is tx = t− x

c

I the v→ pulse would move along the line according to
x = 1 m

s (1 s + t)

I for v← let us follow tx = 5 s
I for v← the argument is tx = t+ x

c

I the v← pulse would move along the line according to
x = 1 m

s (5 s− t)



initial conditions, wave functions at t = 0

I v→ encodes past at x = 0, what has been sent to the line
I v← encodes future at x = 0, what is already on the line and

will be received
I both functions cover ∆t = l

c in time:
v→ in the past,
v← in the future

I classical length based assumed solutions are more intuitive
for specifying initial conditions, since the initial conditions
are length based

I measurements are time based, you fix the position and
measure what is going on in time

I in this presentation, I favored measurements . . .
I since measurements judge everything . . .



another way to look at initial conditions

I vf (t0, x) , 1
2 (v (t0, x) + Zc i (t0, x))

I vf (t, x) is the wave that travels forward
I vb (t0, x) , 1

2 (v (t0, x)− Zc i (t0, x))

I vb (t, x) is the wave that travels backward
I actual meanings of “forward” and “backward” are

determined by the reference direction for the current
I finally, connection with v→ (tx) and v← (tx):
v→
(
t0 − x

c

)
= vf (t0, x)

v←
(
t0 + x

c

)
= vb (t0, x)

I for vf (t0, x) just rescale x to time, shift to t0 and flip over
t0 to get v→ (tx)

I for vb (t0, x) just rescale x to time, shift to t0, no flipping to
get v← (tx)



wave functions and physical reality, finally

I you can exchange space for time and vice versa:

I v→
(
t− x

c

)
= vf (t, x)

I v←
(
t+

x

c

)
= vb (t, x)

I measurable quantities:
I v (t, x) = vf (t, x) + vb (t, x)

I i (t, x) =
1

Zc
(vf (t, x)− vb (t, x))

I forward and backward:

I vf (t, x) =
1

2
(v (t, x) + Zc i (t, x))

I vb (t, x) =
1

2
(v (t, x)− Zc i (t, x))



decomposition at t = 0

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3
v f

(0
,
x

)
[V

]

0 1 2 3 4 5 6

x [m]

−3

−2

−1

0

1

2

3

v b
(0
,
x

)
[V

]



again and again, initial conditions at t = 0

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3
v

(0
,x

)
[V

]

0 1 2 3 4 5 6

x [m]

−3

−2

−1

0

1

2

3

i
(0
,x

)
[A

]



solution: evolution, t = 1 s

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3
v

(1
s,
x

)
[V

]

0 1 2 3 4 5 6

x [m]

−3

−2

−1

0

1

2

3

i
(1

s,
x

)
[A

]



solution: evolution, t = 2 s

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3
v

(2
s,
x

)
[V

]

0 1 2 3 4 5 6

x [m]

−3

−2

−1

0

1

2

3

i
(2

s,
x

)
[A

]



decomposition at t = 2 s

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3
v f

(2
s,
x

)
[V

]

0 1 2 3 4 5 6

x [m]

−3

−2

−1

0

1

2

3

v b
(2

s,
x

)
[V

]



solution: evolution, t = 3 s

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3
v

(3
s,
x

)
[V

]

0 1 2 3 4 5 6

x [m]

−3

−2

−1

0

1

2

3

i
(3

s,
x

)
[A

]



solution: evolution, t = 4 s

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3
v

(4
s,
x

)
[V

]

0 1 2 3 4 5 6

x [m]

−3

−2

−1

0

1

2

3

i
(4

s,
x

)
[A

]



solution: pulses received, t = 5 s, full duplex

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3
v

(5
s,
x

)
[V

]

0 1 2 3 4 5 6

x [m]

−3

−2

−1

0

1

2

3

i
(5

s,
x

)
[A

]



solution: pulses died out, t = 6 s

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3
v

(6
s,
x

)
[V

]

0 1 2 3 4 5 6

x [m]

−3

−2

−1

0

1

2

3

i
(6

s,
x

)
[A

]



it takes some time to gain intuition . . .

I not intuitive?
I to gain feeling, just do more examples . . .
I and if you are not sure that you are right, do some

experiments, the experiment would judge!
I verify along the way
I “practice makes perfect”
I that’s what we are going to do now
I and a nice video from the superposition principle

https://en.wikipedia.org/wiki/Superposition_principle#/media/File:Standing_waves1.gif
https://en.wikipedia.org/wiki/Superposition_principle


step response setup

+

−

Rg
S

Vg

+

−

v(t, x)

l

Zc, c

i(t, x)i(t, 0) i(t, l)

+

v(t, 0)

−

+

v(t, l)

−

Rl



step response setup, current-based version

Gg

S

Ig

+

−

v(t, x)

l

Zc, c

i(t, x)i(t, 0) i(t, l)

+

v(t, 0)

−

+

v(t, l)

−

Gl



boundary conditions at x = 0

I voltage based: v (t, 0) +Rg i (t, 0) = Vg

I we should also cover for i (t, 0) = Ig

I general form: a0 v (t, 0) + b0 i (t, 0) = c0

I Thevenin’s source: a0 = 1, b0 = Rg, c0 = Vg

I ideal voltage source: a0 = 1, b0 = 0, c0 = Vg

I Norton’s source: a0 = Gg, b0 = 1, c0 = Ig

I ideal current source: a0 = 0, b0 = 1, c0 = Ig

I everything linear is covered, for 0 ≤ Rg ≤ +∞

https://en.wikipedia.org/wiki/L%C3%A9on_Charles_Th%C3%A9venin
https://en.wikipedia.org/wiki/Th%C3%A9venin%27s_theorem
https://en.wikipedia.org/wiki/Edward_Lawry_Norton
https://en.wikipedia.org/wiki/Norton%27s_theorem


boundary conditions at x = l

I passive, in contrast to the conditions at x = 0

I reference for the current changed, gets inside . . .
I voltage based: v (t, l)−Rl i (t, l) = 0

I we should also cover for i (t, 0) = 0

I general form: al v (t, l) + bl i (t, l) = 0

I passive, cl = 0

I Thevenin’s equivalent: al = 1, bl = −Rl
I end shorted: a0 = 1, b0 = 0

I Norton’s equivalent: a0 = Gg, b0 = 1

I end opened: a0 = 0, b0 = 1

I everything linear is covered, for 0 ≤ Rl ≤ +∞



three special cases at x = l: open, short, and Zc

I equations:
1. v (t, l) = vf (t, l) + vb (t, l)
2. i (t, l) = 1

Zc
(vf (t, l)− vb (t, l))

3. al v (t, l) + bl i (t, l) = 0

I goals:
1. eliminate v (t, l) and i (t, l)
2. express vb (t, l) in terms of vf (t, l)

I in cases:
1. short: v (t, l) = 0
2. open: i (t, l) = 0
3. matched: v (t, l) = Zc i (t, l)

I results:
1. short: vb (t, l) = −vf (t, l)
2. open: vb (t, l) = vf (t, l)
3. matched: vb (t, l) = 0



reflection at x = l, general Rl value

I equations:
1. v (t, l) = vf (t, l) + vb (t, l)
2. Zc i (t, l) = vf (t, l) + vb (t, l)
3. v (t, l)−Rl i (t, l) = 0

I goals:
1. eliminate v (t, l) and i (t, l)
2. express vb (t, l) in terms of vf (t, l)

I solution: vb (t, l) =
Rl − Zc
Rl + Zc

vf (t, l)

I Γl ,
vb (t, l)

vf (t, l)
=
Rl − Zc
Rl + Zc

I special cases:
1. short Rl = 0: Γl = −1
2. open: Rl →∞: Γl = 1
3. matched: Rl = Zc: Γl = 0



reflection at x = 0, general Rg value

I equations:
1. v (t, 0) = vf (t, 0) + vb (t, 0)
2. Zc i (t, 0) = vf (t, 0) + vb (t, 0)
3. v (t, 0) +Rg i (t, 0) = Vg

I goals:
1. eliminate v (t, 0) and i (t, 0)
2. express vf (t, 0) in terms of vb (t, 0)

I solution: vf (t, 0) =
Zc

Rg + Zc
Vg +

Rg − Zc
Rg + Zc

vb (t, 0)

I Γg ,
vf (t, 0)

vb (t, 0)
=
Rg − Zc
Rg + Zc

I for Rg = Zc: Γg = 0, vf (t, 0) =
1

2
Vg



matched transmission line

+

−

Zc

vg(t)

+

−

v(t, x)

l

Zc, c

i(t, x)i(t, 0) i(t, l)

+

v(t, 0)

−

+

v(t, l)

−

Zc

v (t, l) =
1

2
vg

(
t− l

c

)
∆t ,

l

c



half matched transmission line

+

−

Rg

vg(t)

+

−

v(t, x)

l

Zc, c

i(t, x)i(t, 0) i(t, l)

+

v(t, 0)

−

+

v(t, l)

−

Zc

v (t, l) =
Zc

Zc +Rg
vg

(
t− l

c

)
works for Rg = 0: v (t, l) = vg

(
t− l

c

)
∆t ,

l

c

who cares about the mirror when there is no light?



step response: cause and effect (lattice diagram)

t/∆t vf (t, 0) vb (t, 0) vf (t, l) vb (t, l)

0− 0 0 0 0
0+ Vf, 1 0 0 0
1− Vf, 1 0 0 0
1+ Vf, 1 0 Vf, 1 Vb, 1
2− Vf, 1 0 Vf, 1 Vb, 1
2+ Vf, 2 Vb, 1 Vf, 1 Vb, 1
3− Vf, 2 Vb, 1 Vf, 1 Vb, 1
3+ Vf, 2 Vb, 1 Vf, 2 Vb, 2
4− Vf, 2 Vb, 1 Vf, 2 Vb, 2
4+ Vf, 3 Vb, 2 Vf, 2 Vb, 2
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

other notations possible . . . and will be used later on . . .



bouncing rules . . .

1. Vf, 1 = αg Vg

2. Vb, k = Γl Vf, k, k ∈ {1, 2 . . .}
3. Vf, k+1 = αg Vg + Γg Vb, k = αg Vg + Γg Γl Vf, k, k ∈ {1, 2 . . .}

overall, the iteration is

1. Vf, k+1 = A+ b Vf, k

2. A , αg Vg

3. b , Γg Γl

expand it, geometric series?

https://en.wikipedia.org/wiki/Geometric_series


closed form solution

Vf, 1 = A

Vf, 2 = A+ b Vf, 1 = A (1 + b)

Vf, 3 = A+ b Vf, 2 = A+ bA (1 + b) = A
(
1 + b+ b2

)
Vf, 4 = A+ b Vf, 3 = . . . = A

(
1 + b+ b2 + b3

)
. . .

Vf, k = A

k−1∑
j=1

bj

Vf, k = A
1− bk
1− b

final value?
A

1− b?



final value?

Γl ,
Rl − Zc
Rl + Zc

=
ρl − 1

ρl + 1
, ρl ,

Rl
Zc

, 0 ≤ ρl ≤ +∞, −1 ≤ Γl ≤ +1

Γg ,
Rg − Zc
Rg + Zc

=
ρg − 1

ρg + 1
, ρg ,

Rg
Zc

, 0 ≤ ρg ≤ +∞, −1 ≤ Γg ≤ +1

−1 ≤ Γg Γl ≤ +1

−1 ≤ b ≤ +1

avoiding extremes where both of Rl and Rg are either 0 or +∞
(four combinations), −1 < b < +1, and then:

Vf,∞ =
A

1− b =
1

2

Rl + Zc
Rl +Rg

Vg

thanks, Maxima! you can get it here

https://en.wikipedia.org/wiki/Maxima_(software)
https://maxima.sourceforge.io/


just to gain some intuition: Γ(ρ) = (ρ+ 1) / (ρ− 1)
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final value!

Vf,∞ =
1

2

Rl + Zc
Rl +Rg

Vg

Vb,∞ =
1

2

Rl − Zc
Rl +Rg

Vg

v (∞, x) = V∞ = Vf,∞ + Vb,∞ =
Rl

Rl +Rg
Vg

i (∞, x) =
1

Zc
(Vf,∞ − Vb,∞) =

1

Rl +Rg
Vg

well, expected, really!

please note: two constants as a superposition of two waves!



cables: 10m, 6m, respectively, for both Zc ≈ 110 Ω



blue-white: v (t, 0), l = 10m, c = 192.31 Mm
s ,

Vg = 10V, Rg = 50 Ω, Rl varies from 0 to ∞
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white: v (t, 0), l = 6m, c = 181.82 Mm
s , Vg = 10V,

Rg = 50 Ω, Rl varies from 0 to ∞
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in theory: v (t, 0), ∆t = l/c,
Vg = 10V, Rg = 50 Ω, Rl varies from 0 to ∞
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Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl →∞
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Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl →∞
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Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl →∞
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Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl →∞
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Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl →∞
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Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl = 0
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Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl = 0
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Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl = 0
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Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl = 0
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Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl = 0
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Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl = 110 Ω
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Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl = 110 Ω

−1 0 1 2 3 4 5 6 7 8 9 10

0

2

4

6
v f

(0
,
t)

−1 0 1 2 3 4 5 6 7 8 9 10

t/∆t

−0.050

−0.025

0.000

0.025

0.050

v b
(0
,
t)



Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl = 110 Ω
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Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl = 110 Ω
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Vg = 10 V, Rg = 50 Ω, Zc = 110 Ω, Rl = 110 Ω
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some more experiments: setup

+

−

50 Ω

vg(t)

+

−

v(t, x)

l

Zc = 50 Ω, c ≈ 200 Mm
s

i(t, x)i(t, 0) i(t, l)

+

v(t, 0)

−

+

v(t, l)

−

Rl

everything that can happen happens in two steps, 2 ∆t = 2 l
c

coaxial cable (by Oliver Heaviside, 1880, British patent No.
1,407) in three segments, to measure spatial (over x) effects

first, some time-domain reflectometry

https://en.wikipedia.org/wiki/Coaxial_cable
https://en.wikipedia.org/wiki/Time-domain_reflectometer


some more experiments: setup

+

−

50 Ω

vg(t)

+

−

v(t, l
3 )

+

v(t, 0)

−

+

v(t, l)

−

Rl

+

v(t, 2 l
3 )

−

l
3

l
3

l
3

I four channels, four points:
1. beginning, at x = 0, yellow
2. after l

3 , cyan
3. after 2 l

3 , magenta
4. at the end, at l, green

I three coaxial cable segments, l
3 ≈ 7.5m each

I Zc = 50 Ω, c ≈ 200 Mm
s



some more experiments: setup, pulse response



some more experiments: pulse, open



some more experiments: pulse, open



some more experiments: pulse, open
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some more experiments: pulse, short



some more experiments: pulse, short



some more experiments: pulse, short
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some more experiments: pulse, matched, Rl = 50 Ω



some more experiments: pulse, matched, Rl = 50 Ω



some more experiments: pulse, matched, Rl = 50 Ω
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some more experiments: pulse, Rl = 110 Ω



some more experiments: pulse, Rl = 110 Ω



some more experiments: pulse, Rl = 110 Ω
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some more experiments: pulse, Rl = 10 Ω



some more experiments: pulse, Rl = 10 Ω



some more experiments: pulse, Rl = 10 Ω
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some more experiments: setup, step response



some more experiments: step, open



some more experiments: step, open



some more experiments: step, open
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some more experiments: step, short



some more experiments: step, short



some more experiments: step, short
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some more experiments: step, matched, Rl = 50 Ω



some more experiments: step, matched, Rl = 50 Ω



some more experiments: step, matched, Rl = 50 Ω
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some more experiments: step, Rl = 110 Ω



some more experiments: step, Rl = 110 Ω



some more experiments: step, Rl = 110 Ω
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some more experiments: step, Rl = 10 Ω



some more experiments: step, Rl = 10 Ω



some more experiments: step, Rl = 10 Ω
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overview of lossless transmission lines

I lossless case of telegrapher’s equations
I wave equation . . .
I solution in the form of two waves . . .
I that travel the opposite directions . . .
I the waves determined by the interplay of the voltage and

the current on the line
I initial conditions . . .
I and boundary conditions . . .
I and reflections . . .
I lots of experiments . . .
I to gain intuition . . .



back to the problem that initiated this . . .

I okay, we refreshed some circuit theory and some
transmission line theory . . .

I it is clear that “the light bulb is on” is not really a firm
scientific criterion

I but this is not a big deal: how the transient would like?
I we should be able to compute that!
I the setup model suffers from the wire superconductivity:

otherwise it is okay, assumptions are reasonable, sort of
I let us assume that we have some super copper to conduct

our current, other parameters do not need makeup
I and let us compute the transient, finally!

https://en.wikipedia.org/wiki/Superconductivity


the model: transmission line

+−

D

ll
VB S

+− vL

D = 1m, l = 150Mm

clearly l� D, transmission line is a suitable model

propagation time over 1m neglected, circuit theory

overall: circuit theory + transmission line theory



the model: linear load

+−

D

ll
VB S

+− vL

RL



the model: bisection

+− +−

D

ll
VB/2 S

+− vL/2

RL/2 RL/2

vL/2

SVB/2

− +

+

−

vX = 0



the model: reduction to a half

+−

D

l

RL/2

vL/2

SVB/2

− +



the model: the use of linearity; be careful!

+−

D

l

RL/2

vL

SVB

− +

and the solution would be the same! does not apply if the
circuit is not linear, and only one nonlinear element is sufficient
to make the circuit nonlinear! be careful!

electrical parameters of the transmission line, Zc and c?

for c, it is clear; for Zc, the wire data are missing, d; this affects
the transient!



the model: transmission line parameters

dd

D

L′ =
µ0

π
arccosh

(
D

d

)
C ′ =

π ε0

arccosh

(
D

d

)
Zc =

1

π

√
µ0

ε0
arccosh

(
D

d

)

c =
1√
ε0 µ0

fine print: skin effect, complete here, “hollow conductor” . . . about 1
30

of L′ might be
questioned, only inductance affected, up to 100 nH/m



Zc (d), D = 1 m
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Zc (ACu), D = 1 m
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our example . . .

I VB = 12V
I light bulb, Vrated = 12V, Prated = 21W
I Irated = 1.75A, Rrated = 6.86 Ω, Rinitial ≈ 0.5 Ω

I d? I have chosen ACu = 1.5 (mm)2, it can stand 10A,
d = 1.382mm, fair enough

I Zc = 872.68 Ω

I just to note:
Rinitial

2Zc
= 0.0286%, not 1%, more than 30

times less than that!
I Vinitial ≈ 3.44mV!
I but this would make the light bulb shine, according to the

meaning redefined by fine print!
I scale: 3mV� 12V, 4000 times!



initial voltage versus ACu
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initial voltage versus d
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the model: final

+−

RX

vL

SVB

− +

+

−

vT

iT

l

Zc, c

I and now we have to solve the model!
I do you expect me to solve partial differential equations?
I the only thing we care about is the light bulb voltage, vL
I so, let’s focus to the only thing we care about, vT , since
vL = VB − vT when the switch is on!

I we need to get vT , and to get that we need to relate vT and
iT somehow, “constitutive relation” of a lumped parameter
equivalent . . .



let’s do some math . . . at x = 0!

vT (t, 0) = vf (t, 0) + vb (t, 0)

Zc iT (t, 0) = vf (t, 0)− vb (t, 0)

let’s get rid of vf (t, 0)

vT (t, 0)− Zc iT (t, 0) = 2 vb (t, 0)

and

vb (t, 0) = Γl vf (t− 2 ∆t, 0)

so

vT (t, 0)− Zc iT (t, 0) = 2 Γl vf (t− 2 ∆t, 0)

where

vf (t, 0) = Zc iT (t, 0) + Γl vf (t− 2 ∆t, 0)



discrete time model, general

2 ∆t indexing here, the time is sampled in 2 ∆t steps . . .

vT, n , vT
(
(2n∆t)+ , 0

)
vT, n+1 , vT

(
(2 (n+ 1) ∆t)+ , 0

)
∆t , l

c

let us generalize the notation, . . .

variablen , variable
(
(2n∆t)+ , 0

)
variablen+1 , variable

(
(2 (n+ 1) ∆t)+ , 0

)
variable ∈ {iT , vf}

initial condition: vf,−1 = vf
(
(−2 ∆t)+ , 0

)
= vf (0−, 0) = 0

remember, vf, 0 = vf (0+, 0)



and an equivalent circuit . . .

+

−

+

−

vT, n+1

iT, n+1

Zc

2 Γl vf, n

vf, n+1 − Γl vf, n

+

−

after highly sophisticated math, we finally reached a DC circuit!

three special cases:
1. short, Γl = −1 (the one we care about)
2. open, Γl = 1

3. matched Γl = 0



discrete time model, termination shorted, Γl = −1

+

−

+

−

vT, n+1

iT, n+1

Zc

2 vf, n

vf, n+1 + vf, n

+

−

DC steady state? n→∞, vf, n+1 = vf, n = vf∞,
vf, n+1 + vf, n = 2 vf,∞

result: vT,∞ = 0



discrete time model, termination open, Γl = 1

+

−

+

−

vT, n+1

iT, n+1

Zc

2 vf, n

vf, n+1 − vf, n

+

−

DC steady state? n→∞, vf, n+1 = vf, n = vf∞,
vf, n+1 − vf, n = 0

result: iT,∞ = 0



discrete time model, termination Zc, Γl = 0

+

−

+

−

vT, n+1

iT, n+1

Zc

2 × 0 × vf, n = 0

vf, n+1 − 0 × vf, n = vf, n+1

+

−

complete loss of memory

result: vT,∞ = Zc iT,∞



finally: the discrete time model to solve

+−

+

−

RX

vL, n+1

SVB

− +

+

−

vT, n+1

iT, n+1

Zc

2 vf, n

vf, n+1 + vf, n

+

−

I after so many equations and high math we ended up with a
DC circuit to solve!

I vf, 0 = 0, RX = RL/2



already solved, actually!

I actually, already solved in a general case before
I there is a closed form solution, exponential
I regarding importance, we’ll solve it again here . . .
I actual motive is different, to include RX (vL)

I topologically trivial: there is only one loop
I electrically trivial: resistive circuit; well, almost resistive, a

sequence of resistive circuits
I the only problem is vf, n, the past
I and that problem is a mathematical problem, not electrical,

it is treated as an independent voltage source



let’s solve for vf, n . . .

VB + 2 vf, n = (Zc +RX) iT, n+1

vf, n+1 + vf, n = Zc iT, n+1

eliminate iT, n+1, solve for vf, n+1

vf, n+1 =
Zc

Zc +RX
VB +

Zc −RX
Zc +RX

vf, n

vf, n+1 = A+ b vf, n

A =
Zc

Zc +RX
VB, b =

Zc −RX
Zc +RX

A (RX) and b (RX)

all the time vf, 0 = 0



for fixed RX this is a geometric series . . .

vf, 1 = A

vf, 2 = A+ b vf, 1 = A (1 + b)

vf, 3 = A+ b vf, 2 = A
(
1 + b+ b2

)
vf, 4 = A+ b vf, 3 = A

(
1 + b+ b2 + b3

)
· · ·
vf, n = A+ b vf, 3 = A

(
1 + b+ b2 + b3 + . . .+ bn−1

)
vf, n = A

1− bn
1− b

vf, n =
Zc

2RX
VB

(
1−

(
Zc −RX
Zc +RX

)n)



closed form expression for vL

after we have vf, n the rest is to solve a small linear resistive
circuit:

vL, n+1 = VB

(
1− Zc

Zc +RX

(
Zc −RX
Zc +RX

)n)
double check for n = 0:

vL, 1 = VB

(
1− Zc

Zc +RX

)
=

RX
Zc +RX

VB

double check for n→∞:

vL,∞ = VB

yup! okay!



let’s plug the figures in . . .
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ACu = 1.50 (mm)2 , d = 1.38 mm, PL = 21 W, RL = 6.86 Ω



smooth curve?
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ACu = 1.50 (mm)2 , d = 1.38 mm, PL = 21 W, RL = 6.86 Ω



reduction to exponential form . . .

vL, n+1 = VB

(
1− Zc

Zc +RX

(
Zc −RX
Zc +RX

)n)
n = t

2 ∆t

∆t = l
c

bn = eln(bn) = en ln b = e
t

2 ∆t
ln
(
Zc−RX
Zc+RX

)
= e−

t
τ for Zc > RL

τ , − 2 ∆t

ln
(
Zc−RX
Zc+RX

) = − 2 l
c

ln
(

2Zc−RL
2Zc+RL

) for RL < 2Zc

vL (t) ≈ VB
(

1− Zc
Zc +RX

e−
t
τ

)
. . . and that’s it!



smooth curve . . . big picture
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ACu = 1.50 (mm)2 , d = 1.38 mm, PL = 21 W, RL = 6.86 Ω



the process is actually really slow . . . τ (d)
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the process is really slow . . . τ (ACu)
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overview of the solution
I we walked a long way to get here . . .
I a review of methods and models . . .
I method chosen: transmission line theory + circuit theory
I closed form solution!
I the system model is not realistic, there is a wire resistance!
I we’ll fix for that later . . .
I but the analysis was fun!
I scale, care about scale!
I quantity affects quality, plug in figures sometimes!
I at the end, just a DC circuit analysis!
I new methods of teaching . . . only the DC circuit . . .
I initial voltage, at t = 0+ turned out to be minor, negligible
I transient turned out to be really slow!
I quite a different impression than 1 m

c ≈ 3.33 ns?



modeling of nonlinear effects . . .
I vL(iL) is a nonlinear function, analysis gets complicated . . .
I physical process is RL(T ) . . . and we need to get T (t)

somehow, we need a thermal model . . .
I I do not have a model of that process . . . though it is

possible to get it, but it would be too much . . .
I everything is clocked at 1 s, the light bulb is small,

transient should be fast enough . . .
I besides, how general the thermal model would be? worth to

invest time?
I an approach: treat the light bulb as a nonlinear resistor; no

thermal inertia, just the DC model, resistive, responds
instantly

I vL ≈ 4 V
A2 i

2
L, actual number is 4.076544679336893

I algebraic and (sort of) simple! let’s program it!
I in real life it won’t be like that, but neither much different!



nonlinear equivalent circuit

+−

+

−
+

−

VB S

+− vL, n+1

iL, n+1

ZcZc

+

−−

+

2 vf, n2 vf, n

vf, n+1 + vf, nvf, n+1 + vf, n

I careful with bisection when the load is nonlinear!
I iL = ki

√
vL

I or better, vL = kv i
2
L, kv = 1/k2

i



reduced nonlinear equivalent circuit

+−

+

−

VB S

+− vL, n+1

iL, n+1

2 Zc

+

−

4 vf, n

2 (vf, n+1 + vf, n)

I VB + 4 vf, n = 2Zc iL, n+1 + kv i
2
L, n+1

I simple, quadratic equation . . .

I iL, n+1 =
−Zc +

√
Z2
c + VB kv + 4 kv vf, n

kv



solving the nonlinear equivalent circuit

I equations:
1. vL, n+1 = VB + 4 vf, n − 2Zc iL, n+1

2. vL, n+1 = kv i
2
L, n+1

I remember, kv fited, kv = 4.076544679336893 V
A2

I let’s solve the equations for vL, n+1 and iL, n+1

I vL, n+1 we care for . . .

I iL, n+1 =
−Zc +

√
Z2
c + kv (VB + 4 vf, n)

kv
I vL, n+1 = . . . choose either 1. or 2. ↑

I vL, n+1 = VB + 4 vf, n − 2Zc
−Zc +

√
Z2
c + kv (VB + 4 vf, n)

kv
I other option: read the measured curve (and iterate)
I some tricks to simplify ↑



nonlinear effects, comparison, measured iL(vL)
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nonlinear effects, comparison, fitted iL(vL)
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nonlinear effects, comparison, fitted iL(vL)
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nonlinear effects, comparison, fitted iL(vL)
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heating the light bulb, RL (t), measured iL(vL)
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heating the light bulb, RL (t), fitted iL(vL)
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overview of the nonlinear model results

I linear resistor as the light bulb model essentially captured
the phenomena . . .

I at the beginning, the rise of the light bulb voltage is much
slower in comparison to the linear resistor

I this would make us wait for the light even more . . .
I however, the current speeds up, and somewhere around 3

4 of
the final voltage the nonlinear model becomes the faster one

I fitted model of the light bulb iL(vL) works pretty well,
“smoothly”

I analysis much more complicated than for the linear model



and what if we include losses in the model?

I if I started with this, there would not be any analysis, any
slides . . .

I since the light bulb would not produce any light!
I I just wanted to tell you the story about transmission lines
I in the meantime, incandescent light bulbs got involved, and

I found them interesting, also
I I find the problem interesting and enlightening . . .

regardless it is unlikely to get any light from the bulb . . .
I since only (almost) lossless line would produce any light at

the light bulb in our setup



final result

I let us assume a copper wire . . .
I ρCu = 1.68µΩm
I R′ = 22.4 mΩ

m (a problem: “milli” and meter ambiguity,
same m for different “objects”, for 10−3 and for meter)

I total of RT = 6.7154MΩ, IL = 1.79µA, VL = 0.89µV, no
light according to common sense, but you should double
check the fine print for legal interpretation

I assume sinusoidal input for VB, and perform phasor
transform (yes, I know that VB is assumed DC . . . )

I compute the input impedance of the transmission line . . .
I reduce to an equivalent circuit, and you’ll get the

impedance that would never let the bulb shine
I if I started with this, there would never be an opportunity

to tell you a nice story about lossless lines . . .

https://zenodo.org/record/2604333
https://zenodo.org/record/2604333


transmission line model, phasor transformed

L′ ∆x

C′ ∆x

R′ ∆x

G′ ∆x

∆x

+

−

V (x) V (x + ∆x)

I(x) I(x + ∆x)

+

−

I phasor transform introduced, differentiation over time
removed, became ×jω, in time variable the problem gets
reduced from differential to algebraic equations

I in this way, partial differential equations are reduced to
ordinary differential equations . . .

I which are much easier to solve . . .
I frequency response encodes much of the circuit behavior . . .

https://zenodo.org/record/2604333


some more tribute to Oliver Heaviside

I steady state response of linear circuits with sine wave
generators . . .

I phasors, Charles Proteus Steinmetz, another hero!
I easy to extend to steady state response of linear circuits

with periodic waveform generators, Fourier analysis and
superposition

I easy to extend to (some) aperiodic signals, Fourier
transform

I easy to extend to transient response (!), Laplace transform
I . . . actually, such analysis of transients started by

operational calculus proposed by Oliver Heaviside!
I complex analytic functions encode a lot about themselves

. . . like continuous functions, but much more!
I you are encouraged to learn complex analysis . . .

https://en.wikipedia.org/wiki/Phasor
https://en.wikipedia.org/wiki/Charles_Proteus_Steinmetz
https://en.wikipedia.org/wiki/Fourier_analysis
https://en.wikipedia.org/wiki/Superposition_principle
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Laplace_transform
https://en.wikipedia.org/wiki/Operational_calculus
https://en.wikipedia.org/wiki/Oliver_Heaviside
https://en.wikipedia.org/wiki/Analytic_function
https://en.wikipedia.org/wiki/Complex_analysis


ordinary differential equations, now

V (x+ ∆x) = V (x)− (jω L′∆x+R′∆x) I(x)

I(x+ ∆x) = I(x)− (jω C ′∆x+G′∆x) V (x+ ∆x)

V (x+ ∆x)− V (x)

∆x
= − (jω L′ +R′) I(x)

I(x+ ∆x)− I(x)

∆x
= − (jω C ′ +G′) V (x+ ∆x)

dV (x)

dx
= − (jω L′ +R′) I(x)

dI(x)

dx
= − (jω C ′ +G′) V (x)



reduction to one equation, “separation”

d2V (x)

dx2
= (jω L′ +R′) (jω C ′ +G′) V (x)

d2I(x)

dx2
= (jω L′ +R′) (jω C ′ +G′) I(x)

γ ,
√

(jω L′ +R′) (jω C ′ +G′)

d2V (x)

dx2
− γ2 V (x) = 0

d2I(x)

dx2
− γ2 I(x) = 0

linear homogeneous ordinary differential equations!



solution

V (x) = Vf e
−γ x + Vb e

γ x

dV (x)

dx
= −γ Vf e−γ x + γ Vb e

γ x = − (jω L′ +R′) I(x)

I(x) =
γ

jω L′ +R′
(Vf e

−γ x − Vb eγ x)

Zc ,

√
jω L′ +R′

jω C ′ +G′

I(x) =
Vf
Zc

e−γ x − Vb
Zc

eγ x

familiar?



two port network

V (0) = Vf + Vb

I(0) =
Vf
Zc
− Vb
Zc

V (l) = Vf e
−γ l + Vb e

γ l

I(l) =
Vf
Zc

e−γ l − Vb
Zc

eγ l

eliminate Vb and Vf :

V (0) = V (l) cosh (γ l) + I(l)Zc sinh (γ l)

I(0) = V (l)
sinh (γ l)

Zc
+ I(l) cosh (γ l)

really useful equations, looks nicer into a matrix form . . .



two port network, matrix form

I could not resist . . .

[
V (0)
I(0)

]
=

[
cosh (γ l) Zc sinh (γ l)

1
Zc

sinh (γ l) cosh (γ l)

] [
V (l)
I(l)

]
∣∣∣∣ cosh (γ l) Zc sinh (γ l)

1
Zc

sinh (γ l) cosh (γ l)

∣∣∣∣ = 1 ← clearly invertible!

transfer functions are not rational functions of jω as in linear
lumped parameter circuits; the system is more complicated to
analyze, transforms are harder to get . . .



short at l

plug in V (l) = 0:

V (0) = I(l)Zc sinh (γ l)

I(0) = I(l) cosh (γ l)

input impedance:

Zsc =
V (0)

I(0)
= Zc tanh (γ l)

linear circuit, but not lumped parameter one; impedance is not
a rational function of s, s = jω

Zsc =

√
sL′ +R′

sC ′ +G′
tanh

(
l
√

(sC ′ +G′) (sL′ +R′)
)



another equivalent circuit

+−

VB S

+− vL

RL

Zc tanh (γ l)Zc tanh (γ l)

VL =
RL

RL + 2Zc tanh (γ l)

L′ = 2.91 µH
m , R′ = 22.4 mΩ

m , C ′ = 3.82 pF
m , G′ = 0 → γ(f), Zc(f)

RL = 0.5 Ω, VB = 12V (amplitude)



frequency response of Zc
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frequency response of γ
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frequency response of Zsc

10−9 10−7 10−5 10−3 10−1 101 103 105 107 109
102

103

104

105

106

107
|Z

T
(j
ω

)|
[Ω

]

10−9 10−7 10−5 10−3 10−1 101 103 105 107 109

f [Hz]

−60

−45

−30

−15

0

15

ar
g

(Z
T

(j
ω

))
[◦

]



frequency response of VL
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the start and the stop

a trick to get to the Laplace transform: substitute ω with
s

j

Laplace transform, final value theorem, applied for step response

VL(0) = 8.93µV → vL(∞) = 8.93µV

Laplace transform, initial value theorem, applied for step
response

VL(∞) = 3.44mV → vL(0+) = 3.44mV

from 3.44mV to 8.93µV, not enough voltage to make the light
bulb shine! so, when the light bulb would start to shine? well,
actually never! not 0.5 s, not 1 s, not 2 s, not 1 m

c . . . never!

fine print: unless you have excellent deep infrared visual abilities

https://en.wikipedia.org/wiki/Laplace_transform
https://en.wikipedia.org/wiki/Final_value_theorem
https://en.wikipedia.org/wiki/Initial_value_theorem


step response from the frequency response . . .

I frequency response is the Fourier transform of the system
impulse response

I get the impulse response from the frequency response by
inverting the Fourier transform

I even analytical approach might work . . .
I integrals not worth bothering with . . . from almost zero to

almost zero . . .
I numerical approach, using FFT (DFT) applied here,

frequency response sampled . . .
I tried and verified on simple examples, to gain confidence in

the method and the program that implements it . . .
I turned out to be computationally demanding . . .
I but it worked!



the diagram which sinks all of our hopes . . .

0.00 0.02 0.04 0.06 0.08 0.10

t [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
v L

[m
V

]



the diagram which sinks all of our hopes . . .
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. . . overview of the case with losses

I to handle equations, we had to apply phasor transform to
get frequency response . . .

I frequency response? but the source is DC?
I frequency response would tell us enough to compute the

transient
I applying the FFT, the step response is obtained . . .
I not an impressive one: the light bulb would never shine
I the losses would consume all of the source voltage . . .
I actually, the transient of the light bulb voltage is very fast,

in the order of 100ms it would change from very small to
very very small . . .



conclusions

I this was a long story . . .
I we covered two seemingly simple systems, which turned out

to have not so simple behavior:
1. incandescent light bulb
2. transmission lines

I the analysis is initiated by a system proposed in a popular
science video

I a perfect opportunity to make a tutorial about transmission
lines, I already needed to make

I . . . since the question how the transient evolves really is
interesting



conclusions: scale
I at first, we put the problem in scale . . .
I when creating mathematical models it is important to

select relevant phenomena from negligible effects
I this is a quantitative issue we frequently perceive as

qualitative, not expressed in numerical terms
I to gain feeling about the problem, quantitative, numerical

data, are important, and they are frequently hidden behind
symbols

I so, we have to plug in figures from time to time . . .
I our problem turned out to be “dimension asymmetric”

(actually, symmetry is not the best word here): one spatial
dimension is really pronounced in comparison to the other
two dimensions; we have planar and a linear effects
(almost) decoupled

I which makes the transmission line a suitable model to
study the problem!



conclusions: light bulbs
I incandescent light bulbs study followed . . .
I used as an indicator, an unfortunate choice . . .
I which caused all of the problems, as well as all of the

benefits: interest in the topic
I when a light bulb starts to shine turned out to be a

complex question by itself!
I an incandescent light bulb requires from 10% to 20% of its

rated voltage to produce any visible light . . .
I . . . after the filament is heated up, which takes time
I light bulbs are DC nonlinear, while AC linear, which is

caused by thermal effects . . .
I it turned out that at DC current of the light bulb is

proportional to the square root of its voltage . . .
I as shown to be a good model in two analyzed examples . . .
I and useful to provide numerical simulation results



conclusions: methods

I to solve an electromagnetic system, Maxwell’s equations are
the tool . . .

I which is hard to use, since the models are overly complex,
and solving the equations is even more complex

I we reviewed Kirchhoff’s circuit laws that reduce the
electrical system to a sort of “material point”, with
negligible spatial dimensions

I also, we reviewed transmission line theory, which lays in
between Maxwell’s equations and the circuit theory

I both the circuit theory and the transmission line theory use
voltages and currents; Maxwell’s equations use fields

I for our application, a combination of the circuit theory and
the transmission line theory should work!



conclusions: lossless transmission lines

I wave equation . . .
I and two waves that make the solution . . .
I at any given position on the line, the voltage and the

current determine which is the wave that travels forward,
and which is the wave that travels backward

I step response of a transmission line terminated by a resistor
I reflections and a closed form solution . . .
I and the initial step that does not depend on the line

termination . . .
I numerous examples and experiments to gain intuition . . .
I experimental results could be obtained using relatively

inexpensive equipment and setup!



conclusions: solving the problem, lossless case

I yes, finally we solved the problem!
I elementary math . . .
I . . . after you successfully traveled through not so

elementary math and concepts
I everything reduced to successive solving of DC circuits
I there is a closed form solution . . .
I there is some voltage at the beginning, at t = 0 in our

model . . .
I but this is minor; the transient is a long one . . .
I related to the wire thickness . . .
I and it takes minutes!
I completely different picture than a really fast transient!



conclusions: nonlinear effects

I light bulb is a DC nonlinear element . . .
I and that nonlinearity is relevant in our transient
I simplified model, light bulb treated as a nonlinear resistor,

thermal inertia neglected, dynamics of the bulb transients
assumed fast enough . . .

I reasonable, there is 1 s to settle down . . .
I numerical simulation . . .
I linear resistor essentially captured the phenomena
I but the transient looks different with the nonlinear model
I startup of the bulb slowed down
I but it eventually speeds up and becomes faster than the

transient computed using linear resistor model
I for our application, lower starting voltage and about the

same long lasting transient are the conclusions



conclusions: losses in the line

I telegrapher’s equations for a line with losses . . .
I phasors applied to transform the problem from partial

differential equations to ordinary differential equations
I scope reduced to sinusoidal signals, but that would be quite

enough . . .
I frequency response of the system obtained . . .
I step response computed from the frequency response using

the FFT technique
I initial voltage dies out pretty fast, in order of 100ms
I no hope to get any light at the light bulb if you include

losses in the model . . .

overall about transmission lines: such a simple system, two
wires placed in parallel, and such a complex analysis!



conclusions, about the answer

so, what is correct (if it matters at all)?
a) 0.5 s
b) 1 s
c) 2 s
d) 1 m

c

e) none of the above

I would opt for e); the system response is too complex to be
reduced to any single number

however, the important thing is that people discussed
electromagnetic theory; the goal is reached

the problem is great!



disclaimer

I while preparing these slides, I did not follow the topic
online . . .

I so many video materials became available . . .
I I had no time to review them all, neither I would have . . .
I for some reason this problem attracted attention, which is

good
I and for some reason it initiated hard feelings, which I do

not find good, neither suitable
I overall impression is that something good happened, we

talked about electromagnetism
I so, no hard feelings, please!



thank you!
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