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https://en.wikipedia.org/wiki/Oliver_Heaviside

a word about Oliver Heaviside ...

Wikipedia article: “Oliver Heaviside FRS (18 May 1850 — 3
February 1925) was an English mathematician and physicist
who brought complex numbers to circuit analysis, invented a
new technique for solving differential equations
(equivalent to the Laplace transform), independently developed
vector calculus, and rewrote Maxwell’s equations in the
form commonly used today. He significantly shaped the way
Maxwell’s equations are understood and applied in the decades
following Maxwell’s death. His formulation of the
telegrapher’s equations became commercially important
during his own lifetime, after their significance went unremarked
for a long while, as few others were versed at the time in his
novel methodology. Although at odds with the scientific
establishment for most of his life, Heaviside changed the
face of telecommunications, mathematics, and science.”


https://en.wikipedia.org/wiki/Oliver_Heaviside

how did we get here?

v
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a popular science video by Veritasium

a bit of oversimplification ... and fine print ...

I posted an initial complaint, a commenting video ...

but, what actually goes on?

it turned out to be analytically (and numerically) solvable!
. easier than by plain numerical simulation ...

. and providing more insight!

I had a lot of fun in solving the problem ...

this much that I bothered to make this presentation ...

to share that joy with you!

I really admire Oliver Heaviside and Jean le Rond
d’Alembert ... and some others ...

who actually solved the problem ...


https://youtu.be/bHIhgxav9LY
https://youtu.be/rG4KEdQadmQ
https://en.wikipedia.org/wiki/Oliver_Heaviside
https://en.wikipedia.org/wiki/Jean_le_Rond_d%27Alembert
https://en.wikipedia.org/wiki/Jean_le_Rond_d%27Alembert

the problem: setup

D=1m
l=cx s~ 15x108m = 150 Mm = 150000 km



the problem: question

In my perception: How long after closing the switch the light
bulb will turn on? Offered answers:

a) 0.5s

b) 1s

c) 2s

q) »

e) none of the above

Suggested answer: d).

Some truth is there. But, is this representative part of the
process?

Fine print followed: any voltage makes the light bulb shine!
I'd rather opt for e), and I'll explain that here.



a misbelief

v
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0l 1m
— =~ 3.33ns
c

if you believe that after 17“‘ ~ 3.33 ns the light bulb voltage
reaches its final voltage, or even the light bulb starts to
shine, this is not what would happen

however, if this is not, what actually would happen?

we’ll cover that here!

something quite different and more complex would happen!



our setup ... for numerical examples

>

>
>
>

we have D = 1m and [ = 150 Mm . ..
but we do not have d, diameter of the wire . ..
which is really important ...

I have chosen d = 1.382 mm, corresponding to
Acy = 1.5 (mm)?, sufficient for 10 A RMS

I have also chosen Vg =12V ...
and Pr, = 21 W, resulting in Ry, = 6.8571() ... when hot!

such light bulb is common for brake lights and turn
indicators ...

. and Iy =Vg/Rp = 1.75A < 10 A, the wire is thick
enough, with margin! the setup is fair enough!
bad part: Vg, = 900m?, m¢, = 8064 Mg (metric tons),
cost &~ T8 MUSS, R, = 6.720 M2, and R,, is going to be the
biggest problem!

superconducting version first, with R,, later ...


https://en.wikipedia.org/wiki/Superconductivity

a word about incandescent light bulbs ... at 10%




a word about light bulbs .




about light bulbs ... at 100% of the rated voltage




a word about fine print: warning!

vvvyyypy

vy

v

be careful with fine print!
be careful when common notions are redefined!
what is our goal in communication? to convey meaning?

the goal is to understand the system and to learn
something that might be useful in analyzing other systems

words are to convey meaning, not to misguide
the setup turned out to be an excellent example!

so, no hard feelings, let’s enjoy analyzing the system and
learning something out of that!

thanks to all of the people who got involved!
and, please, no hard feelings!

the answer is not one bit of information!



the transient: beginning
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the transient: end
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to get this in 3.33ns you would need Pp = 400 GW source

besides, any effect of closing the switch in 3.33 ns could reach
only 1m



the transient

> clearly, there is a transient that lasts much longer than
1m ~ 3.33ns, in the order of seconds, at least

P there is a light cone

» but, how does the current in the loop change over time and
over the loop, in space?

» is it possible that initial current of the bulb, at t = 0T,
equals the value at the end, at ¢ — oo, and that the
transient occurs somewhere else, away from the bulb?

» it will be shown here that even that is possible, but with

slightly modified setup and at much lower final voltage than
required to light the bulb really


https://en.wikipedia.org/wiki/Light_cone

simplified model ... for the most of the analysis

1. thick lines represent transmission lines ...

2. the light bulb is replaced by a linear resistor



solution, R, =0

Acy = 1.50 (mm)?, d = 1.38mm, P, =21W, R, = 6.86
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solution, R, =0

Acy = 1.50 (mm)?, d = 1.38mm, P, =21W, R, =6.86
10

relative light bulb voltage [%]




solution, R, =0

Aoy = 1.50 (mm)?, d = 1.38mm, P, =21W, R, = 6.86Q
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solution, R, = 0, nonlinear load, light bulb
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—— linear model

nonlinear model
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total disaster, R, # 0, R; = 0.5€) since V; ~ 0
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a much cheaper alternative for the setup

vL

the same answer if you ask the question clearly: “when the first
information (signal) about closing of the switch would reach the
light bulb?”

answer: in At = —
c



the same initial voltage in many cases ...

any length any length

e Y

Ze, C D Ze, C

anything

Rp
w0 =57 w7

1 D D
Ze = — ) arccosh | — | =~ 119.92€) arccosh [ —
s €0 d d

actually, since 2019 the constant is exactly 119.9169832 ()

anything


https://en.wikipedia.org/wiki/Impedance_of_free_space

the same initial voltage ... white wire (6 m)
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the same initial voltage ... blue-white wire (10m)
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equivalent circuit for the initial voltage ...

VB S
Ze Ze
R
- VL +
Ry Ry,
initial = 555 VB~ V)
Phinitial = oz, P 0z, '8
Ry,
Zc ~ 5009, RL ~ 10 Q, TZC ~ 1%

parameter choices favorable for vy, initial



“no transient” case ...

any length

any length
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“no transient” case ... delayed
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“no transient” case ... actually computed

AvE R,

—— V]
Ry, +27, B

~Y

Ry Ry
RL+2ZC QZC

VL, VB ~ 1% VB



motivation: why did I do this?

» because I feel that transmission line theory is not taught
enough on the undergraduate level

» because the problem proposed by Veritasium is great to
illustrate:

v

mathematical modeling

solving systems in electrical engineering

circuit analysis techniques

circuits with distributed parameters

transmission line theory

wave equation

discrete time modeling

analysis of nonlinear circuits

analysis of transmission lines in frequency domain
transforms, impulse response, step response ...

VYVVVVYVYYVYY

» because I had fun in solving the problem (< that’s it)
P> because I'd like to share this joy with you



why Oliver Heaviside?

because Oliver Heaviside invented the most of the techniques
needed to solve this problem:

>
>
>

Heaviside step function turns the switch on
Heaviside response is our problem

although I did not use the full potential of his operational
calculus: the problem is simple enough, used in a part of
the analysis

Maxwell’s equations, although I dd not use his vector
calculus, the model is simplified using his |

telegrapher’s equations reduced the problem to one spatial
dimension; actually to decouple: 3D = 2D + 1D

coaxial cable I used in my examples


https://en.wikipedia.org/wiki/Oliver_Heaviside
https://en.wikipedia.org/wiki/Heaviside_step_function
https://en.wikipedia.org/wiki/Step_response
https://en.wikipedia.org/wiki/Operational_calculus
https://en.wikipedia.org/wiki/Operational_calculus
https://en.wikipedia.org/wiki/Maxwell%27s_equations
https://en.wikipedia.org/wiki/Vector_calculus
https://en.wikipedia.org/wiki/Vector_calculus
https://en.wikipedia.org/wiki/Telegrapher%27s_equations
https://en.wikipedia.org/wiki/Coaxial_cable

with some help across the Channel ...

mathematics part:
» one-dimensional wave equation is going to be our model
» solved by Jean le Rond d’Alembert, ingeniously!

» but our example allows reduction to linear algebraic
equations that model DC circuits

overall:

» our 215 century problem is solved by 19" physics and 18"
century mathematics

» affordable 215¢ century computers provided nice typesetting
and graphs, some simulation, communication,
dissemination, resources, references ... well, this is
important

» and the computers I use are run by free software


https://en.wikipedia.org/wiki/Wave_equation
https://en.wikipedia.org/wiki/Jean_le_Rond_d%27Alembert
https://en.wikipedia.org/wiki/Free_software

a word about scaling, space ...

150 Mm 150 Mm

1m

) X Y

- vL +

» all of the labeled dimensions are length!
» and the figure is geometry, about length

» let’s put it in scale!



a word about scaling, space ...

150 km 150 km

1 mm

» one dimension is really pronounced!
» decoupling?

» possible to reduce the space to one dimension?



a word about scaling, space ...

1 pum




a word about scaling, space ...

150 mm 150 mm

1nm

1 nm is the size of several atoms


https://en.wikipedia.org/wiki/Atomic_radius

another word about scaling, time ...

VL
Vo
Vi
| | 0
011 ) t
om ~ 3.33ns 1s
C

» labeled quantities are time
P> presented as length

» but we can also put it in scale!



another word about scaling, time ...

vy,
%)
1
| i 0
011 ) t
M~ 3.33ns ls
€
1 mm 300 km
1nm 30 cm

1 nm is the size of several atoms


https://en.wikipedia.org/wiki/Atomic_radius

another word about scaling, time ...

A vy,

Vo

Vi

> 3.33ns < 1s, in this context 3.33ns ~ 0
» and I'll do that!

~Y



overview of scaling

vVvyVvyvVvyvyVvYVvyYyvyy

v

we do not execute algorithms (any more)
we create algorithms
we should distinguish relevant and negligible
we are here to create mathematical models
and this is a quantitative issue ...

. mapped to our mind somehow
do you have a feeling about the problem?

quantitative information is frequently lost in symbols
an example: a person has A,, money on his/her account
a) Ap = 3.33 US$ ~ 3.33ns
b) A, is one billion US$ ~ 1s

a quantitative issue, but a big difference in the quality of life

» do you feel the problem?



about incandescent light bulbs ...

VVVYVyVvVVYVYyVVYVYVYY

incandescent light bulb ...

a really simple system ...

a wire heated up to shine ...

in a bulb to isolate the wire from oxygen to prevent burning
low pressure gas to prevent explosions ...

dynamic system, thermal inertia, thermal conduction ...
black-body radiation ...

initiated development of quantum mechanics ...

did I say a really simple system?

used as an indicator (a poor one) in our story ...

examples that follow, light bulbs: 12V DC, 21 W, and
230V AC, 60 W


https://en.wikipedia.org/wiki/Incandescent_light_bulb
https://en.wikipedia.org/wiki/Black-body_radiation
https://en.wikipedia.org/wiki/History_of_quantum_mechanics

about incandescent light bulbs ... at 10%




about light bulbs ... at 10%
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about light bulbs ...




about light bulbs ... at 20%




about light bulbs ... at 100% of the rated voltage




about light bulbs ... at 100% of the rated voltage




a word about AC light bulbs ... at 10%




about AC light bulbs .




about AC light bulbs ... at 100% of the rated
voltage




about light bulbs ... DC nonlinearity

0.2 1

0.0

light bulb, rated power 21 W, rated voltage 12V




about light bulbs ... power

22.5

light bulb, rated power 21 W, rated voltage 12V

20.0 1
17.5
15.0 1
g 12.5 4
& 10.0 A
7.5
5.0 1

2.5 1

0.0




3

about light bulbs ... power, P, ~ v}

22.5

light bulb, rated power 21 W, rated voltage 12V

20.0 1
17.5 1
15.0 1
g 12.5 1
& 10.0 A
7.5 1
5.0 1

2.5 1

0.0

—— measured
—— fitted
equivalent resistor

12



light bulbs: square root law?

v
curve fitting, assumed law i;, = I1g ﬁ

linear least squares to fit Iy ...

for the actual light bulb Irg = 0.4953 A
fits amazingly well!

why?

Ry ratea  6.85782
Riato 050
I’ll stop here with the light bulb electrical model ...

in our application: the light bulb is a DC nonlinear element

empirical data: ~ 13.71

we’ll neglect the dynamics . ..
we know DC dependence of vy, and 77, and that’s all we need

. at this point ...



about light bulbs ... curve fitting

light bulb, rated power 21 W, rated voltage 12V

—— measured
1.6 —— fitted




about light bulbs ... Rp(V7), 1:14, R;(0) = 0.5
light bulb, rated power 21 W, rated voltage 12V

—— measured
74 —— fitted




another light bulb, a bigger one, AC




AC light bulb ... AC linear (almost)

light bulb, rated power 60 W, rated voltage 230 V

=
2

0.3 1

0.2 1

0.1 1

0.0 4

—0.

—0.2 1

—0.

—0.4

1_

3_

—400

~300

—200

~100

0
v, [V]

100

200

300

400



AC light bulb ... AC linear (almost)

light bulb, rated power 60 W, rated voltage 230 V

vy, 100 V/div
iz, 0.1 A/div

00 25 50 75 100 125 150 175 200 225 250
t [ms]



AC light bulb ... AC linear

=
2

light bulb, rated power 60 W, rated voltage 230 V

0.3 1

0.2 1

0.1 1

0.0 4

—0.1 1

—0.2 1

—0.3 1

—0.4
—400

100 0 100 200 300

v, [V]

~300  —200

400



AC light bulb ... AC linear

light bulb, rated power 60 W, rated voltage 230 V

vy, 100 V/div
1 iz, 0.1 A/div

00 25 50 75 100 125 150 175 200 225 250
t [ms]



AC light bulb ... DC clearly nonlinear
light bulb, rated power 60 W, rated voltage 230 V

0.3
—— measured
— fitted
0.25 1
0.20 A

I, rus [A]
o
—
ot

0.10 1

0.05 1

0.00 T T T T T T T T T T T
0 20 40 60 8 100 120 140 160 180 200 220 240

Vi, rus [V]



AC light bulb ... power

light bulb, rated power 60 W, rated voltage 230 V

P [W

60 1

50

40 4

30 1

20 1

10 1

—— measured
— fitted
equivalent resistor

2 40 60 80

100 120 140 160 180 200 220 240
Vi, rus [V]



AC light bulb ... Ry (V})

light bulb, rated power 60 W, rated voltage 230 V

—— measured
800 9| —— fitted

0 T T T T T T T T T T T
0 20 40 60 80 100 120 140 160 180 200 220 240

Vi, rus [V]




about AC light bulbs ...

> AC linear element, vy, and iy, linearly dependent

» DC nonlinear element, Vi rys and I, pars not linearly
related

» again, square root law perfectly fits the data:

VL, rMs
1V

IL,RM,S’%ILO ,IL0%0.0176A

> why?

Ry rated - 881.67 2
Rpato  65.90Q
» behavior amazingly similar to 12V DC light bulb!

P empirical data: ~ 13.38, again



overview of light bulbs

>

somewhere between 10% and 20% of the rated
voltage some light appears; in steady state, after the
filament is heated up; this also takes time

light bulb is a nonlinear element, DC nonlinear

on the other hand, light bulb is a linear element, AC
linear ...

significant variation of DC resistance over the applied
voltage (RMS value), typically Rz (0) : Rp(Viateq) = 1 : 14

light bulb is a dynamic element, filters out AC variations
at 50 Hz or 60 Hz, almost perfectly

dynamics dominantly thermal (important for AC linearity,
no power quality problems, current and voltage linearly
dependent over ~ 20 ms, harmonic pollution not generated)

a really interesting system! simple, but complex!

at first, we’ll simplify: light bulb — linear resistor



more words about light bulbs ...

» light bulb is a poor indicator, especially when it comes to
3.3 ns as a time to indicate

significant dependence of luminosity on the voltage applied
significant dynamic response, slow system!

when the light bulb is on? do we need a fine print?

vvyyypy

are all the light bulbs in the universe on, due to the cosmic
microwave background radiation?

except for those in perfect Faraday cages without internal electromagnetic sources

and this started all the of the problems ...

and caused all of the benefits: interest in the topic!

vvyyypy

when the light bulb is on turned out to be a complex
question!

thanks Andres!

v


https://en.wikipedia.org/wiki/Cosmic_microwave_background
https://en.wikipedia.org/wiki/Cosmic_microwave_background
https://en.wikipedia.org/wiki/Faraday_cage

Maxwell’s equations ...

And God said ...

V-D=p
V-B=0
L 0B
E=—-""
V x o
. - - 0D
H=J+ "
V x +8t

. and then there was light.

from a T-shirt



Maxwell’s equations ... from another T-shirt

. or if you like it better in the integral form ...

%VD ds = ///pdV

S
<
l
||

. which looks much easier ...

whatever: formulated by Oliver Heaviside


https://en.wikipedia.org/wiki/Oliver_Heaviside

Maxwell’s equations ...

VV VY Y VVVVYVYVYYVYY

why did I mention God in Maxwell’s equations?

because you frequently need God to solve them!

in some cases even humans can solve them

in some cases we apply numerical methods and computers

in some cases we simplify them neglecting some effects . ..
. that should be negligible ...

and this is a quantitative issue ...

essentially: a great achievement of 19" century physics

unification theory

birth of theoretical physics, 2 8t D out of equations .

c= light is an electromagnetic phenomenon7

\/W
basis for special relativity ...

present formulation by Oliver Heaviside


https://en.wikipedia.org/wiki/Maxwell%27s_equations
https://en.wikipedia.org/wiki/Oliver_Heaviside

Gustav Kirchhoff and circuit theory

>

| 2

| 2

Kirchhoft’s circuit laws are formulated by Gustav Kirchhoff
in 1845, while he was a student, before Maxwell’s equations

in essence, simplification and reduction of Maxwell’s
equations in cases where applicable

many applicable cases: all lumped parameter electric
circuits!

in this analysis there is no space, three variables are gone,
the circuit is a “material point”

well, not really a point, there are nodes and branches that
form loops, as well as circuit components inside that “point”
partial differential equations reduced to ordinary
differential equations over time variable

definitely applicable to DC circuits, in that case even time
variable is gone, just algebraic equations remain

ubiquitous in electrical engineering, used wherever possible,
really frequently, really useful!


https://en.wikipedia.org/wiki/Kirchhoff%27s_circuit_laws
https://en.wikipedia.org/wiki/Gustav_Kirchhoff
https://en.wikipedia.org/wiki/Lumped-element_model

Kirchhoff’s current law

dp

P> continuity equation, charge conservation V- J = ——

ot
> integral form, J-dS = /// Gp av
ov

» define currents as i, = / J-dS
Sk

> assume /// g dV =~ 0 for “nodes”

» for any closed surface OV = |J Sy we get
k

» KCL: sz =0

P> simple equation: linear, algebraic, homogeneous


https://en.wikipedia.org/wiki/Continuity_equation

Kirchhoff’s voltage law

- B
» Faraday’s law of induction, VxE= —%—t

» integral form, E dl = // = .dS

» define voltages vy, = E di

P> assume // == .dS ~ 0 over “loops”

» for any closed loop 0S5 = | I we get
k

> KVL: | ) v =0
k

P> simple equation: linear, algebraic, homogeneous


https://en.wikipedia.org/wiki/Faraday%27s_law_of_induction

constitutive relations

>

v

v

vvyyypy

Kirchhoff’s laws do not mutually relate voltages and
currents, neither care about circuit components, they model
effects caused by element interconnections

elements are described by constitutive relations (CRs): they
may cause some trouble, but not as Maxwell’s equations

resistor, “YW—: v = Ri; linear, algebraic, homogeneous

capacitor, _“_, 1=C %, linear, differential, homogeneous

inductor, T~ v =1 %, linear, differential, homogeneous

voltage source, C , U = eg4 (t); linear, nonhomogeneous

current source, C , 1 =14 (t); linear, nonhomogeneous
R, L, C: linear homogeneous CRs, some have %7 “dynamic”
voltage and current source: linear, but not homogeneous

there are also nonlinear elements, like diodes, light bulbs ...



circuit theory

v

circuit theory is based on Kirchhoff’s laws

to solve a circuit one half of the equations originate from
Kirchhoft’s laws, the other half from constitutive relations

about equations and solving circuits

essentially, applied mathematics

behavior of classes of circuits (linear, nonlinear, resistive,
dynamic, 1%* order, 2°¢ order, ...)
circuit synthesis, like filters ...

Jumped parameter circuits: there is no space for space in
the model (electrical material point)

everything is close together enough
detailed modeling avoided (imagine home wiring model)

solving Maxwell’s equations avoided


https://en.wikipedia.org/wiki/Electrical_network

EM field theory versus electric circuit theory

P> electromagnetic field theory:

>
>

| 4
| 4
>

deals with fields: electric E and D and magnetic H and B
bundles electric and magnetic field with partial differential
equations (in vector form by Oliver Heaviside)

there is space in the model

hard to describe the system analytically (like home wiring)
hard to solve the equations

» electric circuit theory:

>
>

v

vVVyyvyy

deals with voltages and currents, v and 4

spatial dimensions are neglected, encapsulated in the circuit
graph, in the interconnections

Kirchhoff’s laws: linear homogeneous algebraic equations,
simple

much easier to solve the model

frequently used, I make my living using it

field carries energy ...

encapsulated in voltages and currents here


https://en.wikipedia.org/wiki/Oliver_Heaviside

transmission line theory: circuits with distributed
parameters (something in between)

let the space be one dimensional ... transmission lines ...
Az
i(t, ) i(t,x + Ax)
+ -
L' Az R Az
u(t, x) % -1 u(t,z + Ax)
G' Az [ C'Ax

again, by Oliver Heaviside!


https://en.wikipedia.org/wiki/Transmission_line
https://en.wikipedia.org/wiki/Oliver_Heaviside

telegrapher’s equations

telegrapher’s equations:

ov(t, x) di(t, ) ,
o A Rt
Oz ot it =)
di(t, x) ou(t, x)
0 o A ot
ox ot vlt, @)
» partial differential equations over v(t, x) and (¢, x)
» by Oliver Heaviside, 1876
» linear, homogeneous
» symmetry over v(t, z) and i(t, x)
> voltages and currents are mutually related
» when you solve for v(¢, z) you also get i(¢, x) and vice versa


https://en.wikipedia.org/wiki/Telegrapher%27s_equations
https://en.wikipedia.org/wiki/Oliver_Heaviside

telegrapher’s equations

solved over v(t, z) and i(t, ):

0%v(t, )
0x?
0%i(t, )
ox?

vVvvyVvVvTyy

ou(t, x)
ot
di(t, x)
ot

e ) (e tan) +G' R o(t, x)

82
2
—UOQL—L4HO+GD) + G Rt x)

v(t, x
ot?
i(t, x
ot?
hyperbolic partial differential equations

complete symmetry over v(¢, x) and i(¢, x)

but v(¢, x) and i(t, x) are still related!

if you know (¢, x), you would know v(¢, x), and vice versa
techniques to solve? transformations?

well, at this point we would keep in time domain, without
any transformations ... later on phasors would enter the
stage ...


https://en.wikipedia.org/wiki/Hyperbolic_partial_differential_equation

overview of the methods

v

analysis of macroscopic electromagnetic systems . . .

three methods covered:
1. Maxwell’s equations, field equations
2. electric circuit theory
3. transmission line theory

make it as simple as possible, but not simpler than that ...

after the geometry of the problem had been analyzed ...

transmission line theory + circuit theory are chosen to
address the problem ...

S0, let’s solve the problem!



lossless case ... will be our case in time domain

neglect losses, substitute R =0, G' =0

ov(t, x) Y di(t, x)

ox ot
oi(t, x) o ou(t, x)
oxr ot

and we get famous wave equation

0?v(t, x) 9?v(t, x)
RS EVANEN SO S S M A
0z ¢ ot? 0
0%i(t, x) e 0%i(t, x) _o

0x2 ot2?


https://en.wikipedia.org/wiki/Wave_equation

some new variables: Z. and ¢

1

NiiTel

Lc
L/
z.2.\/L

0?v(t, x) 1 0?v(t, x)

CcC =

T o2 2 a2 0
0%i(t, x) 1 d%i(t, x) 0
02 2 o

du(t, z)  Z 0Oi(t, x)

ox c ot
di(t,z) 1 Owv(t, )

ox cZ. Ot



wave equation and its solutions ...

wave equation, one dimension in space, over a general variable y

%y(x,t) 1 0% (z, 1)

=0
0x2 c2 ot?

solution, ingenious (I'd never guess it):

y(@, t) =y (z —ct) +ye (v +ct)

please note: y_, (o) and y. () are functions of one variable!
z — ct and x + ct bundle the space and time together
physical dimension of that variable is length here

I’ll repack the solution for my convenience ... we record
waveforms with time as an independent variable, so let the time
be the base variable! I tend to think in the terms I see!


https://en.wikipedia.org/wiki/Wave_equation#Wave_equation_in_one_space_dimension
https://en.wikipedia.org/wiki/Dimensional_analysis

solutions!

v(t, x) = v, (t—%)+v<_ (t—i—%)

. 1 T 1 x
ite)=go(t-7) —goe (44+7)
C

C

please note: v_, (t_,) and v (t.) are single variable functions,
its physical dimension is time here

and these variables are in turn functions of two variables:
T T
c c

and there is a trade-off between space and time:

x =1t + ct, x goes forward, and x =t — ct, x goes backward

time and space bundled together


https://en.wikipedia.org/wiki/Dimensional_analysis

‘“4nitial conditions”

=Y



initial conditions of a line at ¢t = ¢,

the initial conditions are v (tg,z) and i (¢g,z) for 0 <z <1
x x
v (tg, ©) = v (to — E> + v (to + E)

. 1 €T 1 T
it 2)= 5o (0= ) = 5o (0+7)
C C

after some elementary linear algebra:

T
v (0= 7) =

€T

(v (to, :B) + Zci (t07 x))

(U (to, -'E) — et (t07 :E))

N = N

att=tgfor 0 <z <



integration constants (DC components)?

let’s get back to the relations between the voltage and the
current across the line . ..

du(t,z) _ Z 0i(t, z)

ox c ot
di(t,xz) 1 9v(t, x)
or  ¢Z. Ot

that result in:

v(t, x) =v (t—%)—f-w_ (t-i—%)

) 1 T 1 x
i(t, x)zivﬁ (t—z) — = Ve <t+z>
(&

integration constants?



integration constants are included!

;
\%4 o(t, )=V Ze, C I
1% 1
=V v vy =3 (V+2Z.0)
v v =
= — _ % 1
Z.  Ze ve =5 (V= 2Z1)



a hypothetical example

parameter values made up to get numbers easy to compute
with, very far from realistic values:

Z. =10
c=1%
[=6m

and that’s all we need for the transmission line electrical model



solution: initial conditions at ¢t = 0

3_
2_
1_

0
—1-
—2
—3-

v (0,2) [V]




is this feasible?

yes, it is!

Va1 <t> v(t, ) Zey € CD VG2

| |
0' !

>
T

in theory this is easy; in practice, there would be some problems
to synchronize the generators, but solvable ...

a mathematical note: if you care about differentiability,
smooth up the functions a little bit, generalized functions ...


https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Generalized_function

voltages of the generators

ven (1) [V]

vea (1) [V]




back to the solution: initial conditions at ¢t = 0

3_
2_
1
0
—1-
—2
—3-

v (0,2) [V]




initial

= (t) [V]

ve (tz) [V]

conditions, wave functions at ¢t = (

3_
2_
1_

0
—1-
—2
—3-

—6

=5

—4

-3

-2

-1

3_
2
1_
0_
—1 1
—2
—3 1

—6

=5

—4

-3

—2

-1

t, [s]




initial conditions, wave functions at ¢t = 0

v

please remember, initial conditions encode what already is
on the line

t; is a dummy variable
for v_, let us follow ¢, = —1s

for v, the argument is t, =t — %

vvyyy

the v_, pulse would move along the line according to
r=12 (1s+1t)

for v, let us follow t, =55

vy

for v, the argument is t, =t + £

» the v, pulse would move along the line according to
r=12 (55—1t)



initial conditions, wave functions at ¢t = 0

> v_, encodes past at x = 0, what has been sent to the line

> v, encodes future at x = 0, what is already on the line and
will be received

» both functions cover At = % in time:
v_, in the past,
v, in the future

> classical length based assumed solutions are more intuitive
for specifying initial conditions, since the initial conditions
are length based

> measurements are time based, you fix the position and
measure what is going on in time

» in this presentation, I favored measurements ...

P> since measurements judge everything ...



another way to look at initial conditions

vVvyvyyvyy

v

(to, x) £ 5 (v (to, x) + Zc i (to, ))
(t,z) is the wave that travels forward

(to,2) = 5 (v (to, x) — Zei(to, )

v (t, x) is the wave that travels backward

vf
vf
Up

actual meanings of “forward” and “backward” are
determined by the reference direction for the current

finally, connection with v_, (t;) and v (t;):

v, (to — %) = vy (to, )

Ve (to + %) = vy (to, )

for vy (to, =) just rescale = to time, shift to tg and flip over
to to get v, (tz)

for vy, (tg, =) just rescale x to time, shift to ¢y, no flipping to
get v (tz)



wave functions and physical reality, finally

> you can exchange space for time and vice versa:
> v, (t—f) =y (t, o)
c
x
> v, (t—f—f) =y (t, x)
c
> measurable quantities:
> ’U(t, .%') = vy (ta m) + Up (ta 33‘)
1
> i<t’ :U) = (vf (tv x) ) (t, I))
Ze

» forward and backward:

> vs(t,z) == (v(t, x) + Zei(t, )

N~ o)~

>y (t, ) == (v(t, z) — Zi(t, x))
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again and again, initial conditions at ¢t =0

3_
2_
1_

0
—1-
—2
—3-

v (0,2) [V]




solution: evolution, t = 1s

3_

2_

1_
0
14
_9

[A] (zsT)0



solution: evolution, t = 2s

3_

2_

1_
0
14
_9

[A] (z'sg)a

—3 1

3_

2_

1
0

[v] (zs

1_
—2
—3 1

[\

)1



28

decomposition at ¢

3 -
2 -
1
0
1

72 -

_3 -



solution: evolution, t = 3s

3_

2_

1_
0
14
_9

[A] (z'sg)a

—3 1

3_

2_

1
0

[v] (zs

1_
—2
—3 1

o —

)1



solution: evolution, t =4s

3_

2_

1_
0
14
_9

[A] (z's7)a



solution: pulses received, t = 5s, full duplex

3_
2_
1_

0
14
—92
—3

v(5s,z) [V]

0 1 2 3 1 5

3_
2_
1_

0
—1
—924
—3-

i(5s,7) [A]

0 1 2 3 4 5



solution: pulses died out, t =6s

3_

2_

1_
0
14
_9

[A] (z's9)a

—3 1

3_

2_

1
0

[v] (zs

1_
—2
—3 1

o

)1



it takes some time to gain intuition ...

» not intuitive?

v

to gain feeling, just do more examples ...

v

and if you are not sure that you are right, do some
experiments, the experiment would judge!

verify along the way
“practice makes perfect”

that’s what we are going to do now

vvyyypy

and a nice video from the superposition principle


https://en.wikipedia.org/wiki/Superposition_principle#/media/File:Standing_waves1.gif
https://en.wikipedia.org/wiki/Superposition_principle

step response setup




step response setup, current-based version




boundary conditions at x =0

vVvVvvyVvvVvyVvyYVvyy

voltage based: v (t, 0) + Ryi(t, 0) =V

we should also cover for i (¢, 0) = I,

general form: agv (t, 0) + boi (¢, 0) = co
Thevenin’s source: ag = 1, by = Ry, co = Vj,
ideal voltage source: ag = 1, by = 0, ¢g = Vj,
Norton’s source: ag = Gy, by =1, cg = I,
ideal current source: ag =0, by = 1, ¢y = I,

everything linear is covered, for 0 < Ry, < +00


https://en.wikipedia.org/wiki/L%C3%A9on_Charles_Th%C3%A9venin
https://en.wikipedia.org/wiki/Th%C3%A9venin%27s_theorem
https://en.wikipedia.org/wiki/Edward_Lawry_Norton
https://en.wikipedia.org/wiki/Norton%27s_theorem

boundary conditions at r = [

passive, in contrast to the conditions at x = 0
reference for the current changed, gets inside . ..
voltage based: v (¢, 1) — Rji(t,1) =0

we should also cover for i (¢, 0) =0

general form: q;v (¢, 1) +bi(t, 1) =0

passive, ¢; = 0

Thevenin’s equivalent: a; = 1, by = —R;

end shorted: ag =1, bg =0

Norton’s equivalent: ag = Gy, bg = 1

end opened: ag =0, by =1

VVYvVYyVvVVVyVYVYyVYVYY

everything linear is covered, for 0 < R; < 400



three special cases at x = [: open, short, and Z.

> equations:

1 ’U(t l) vf(t,l)+vb( )
i(t, ):Z%(Uf(tl up (8, 1))
3 ajv(t, 1)+ bi(t, 1)=0
> goals:

1. eliminate v (¢, ) and i (¢, 1)

2. express v (t, 1) in terms of vy (¢, )
P> in cases:

1. short: v (¢, 1) =

2. open: i(t, 1) = O

3. matched: v (t, 1) = Z.i(t, 1)
> results:

1. short: vy (¢, 1) = —vy (¢, 1)

2. open: v, (¢, 1) = vs (¢, 1)

3. matched: v, (t, 1) =0



reflection at x = [, general R; value

> equations:

Lot ) =vp(t, ) +op(t, 1)

2. Zei(t, ) =wvp (t, 1) +up (8, 1)

3. v(t, )= Ryi(t,1)=0
> goals:

1. eliminate v (¢, 1) and 7 (¢, 1)

2. express v (t, 1) in terms of vy (¢, )
Ry - Z.
——vr (¢, 1
A
A ’Ub(t, l) _ Rl—ZC

Uf (t, l) Rl + Zc

> special cases:

1. short Ry =0: I'; = -1

2. open: Rj —woo: I =1
3. matched: Ry =Z.: I, =0

» solution: |vp (¢, 1) =

> I



reflection at x = 0, general R, value

> equations:
1. v(t, 0) = vy (t, 0) + vy (L, 0)
2. Zci(t, 0) =wvy(t, 0)+uvp (¢ 0)
3. v(t,0)+Ryi(t,0) =V,
> goals:
1. eliminate v (¢, 0) and i (¢, 0)
2. express vy (¢, 0) in terms of v, (¢, 0)

Ze Ry — Z.

» solution: |vy (¢, 0) = S V, +
g c

Ryt 2.

Vp (t, O)

> T évf(t’o):Rg_Zc
97 up(t,0) Ry + Ze

1
> fOI‘Rg:Zc: Fg:()’vf(tﬂ 0)25%




matched transmission line

vg(t) v(t, 0) u(t, ) Ze, ¢ v(t, 1) Z.




half matched transmission line

R, i(t,0) it, z) it

b l)
+ + +
vg(t) v(t, 0) v(t, ) Z., ¢ v(t, 1) Z,

Z, l
v (t, l):Z _:R Vg <t—c>
cT Iig

l
works for Ry = 0: v (¢, 1) = vy (t - )
c

arel
C

who cares about the mirror when there is no light?



step response: cause and effect (lattice diagram)

t/AE | vp(t,0) [ vp (8, 0) [ op (8, D) | op(t, 1) |

0 0 0 0 0

(0 Vi 0 0 0

1= Vi 0 0 0

1+ Vf, 1 0 Vf7 1 V},, 1
2” Vf’ 1 0 va7 1 V;L 1
2" Vi Vi1 Vi Vb, 1
3~ Vi Vi1 Vi Vb1
3t Vi Vo, 1 Vi Vi, 2
4~ Vi Vo, 1 Vi Vi, 2
4t Vi3 Vp, 2 Vio Vi, 2

other notations possible ... and will be used later on ...



bouncing rules ...

L Vii=a4Vg
2. V(Lk:FlVﬁk,k‘E{l,Q...}
3. Vf,kH:ang—FFg%’k:agVQ—%FgFlVf,k,k€{1,2...}

overall, the iteration is

L Vi1 =A+bVy
2. Aéang
3. 02T, T

expand it, geometric series?


https://en.wikipedia.org/wiki/Geometric_series

closed form solution

Vii=A
Via=A+bVy1=A(1+D)

Via=A+bViz=...=A(1+b+0"+1°)
k—1 .

Vf,k:Aij
j=1
1—0bF

Vip=A

Fk 1—b

A
final value? ——7
nal value? -—



final value?

Ri—Z. p—1 AR
R+ Z. pl+1 Zc

I £ ,0< p < 400, -1 <T; < +1

Ry—Z. ps—1 A R

r, £ £°9 0<p, < -1<T, < +1
Ret Zo por 1 P9” z U PesTo0 ity s

—1<Ty I <+1

—1<b<+1

avoiding extremes where both of R; and R, are either 0 or +oo
(four combinations), —1 < b < +1, and then:

A 1 R+Z
> 1-b 2R +R,

Vi

thanks, Maxima! you can get it here


https://en.wikipedia.org/wiki/Maxima_(software)
https://maxima.sourceforge.io/

just to gain some intuition: T'(p) = (p+1)/(p — 1)

1.00

0.75 1

0.50 1

0.25 1

= 0.00

—0.25 1

—0.50 1

—0.75 1

7100 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10



final value!

v _lRl—{—ZC
I TSR+ Ry Y
1 R — Z.
Vooo = = 25
b T 9 R +R, !

Ry

= Ve =Vicot+ Voo =—=————1YV,
U(OO7 x) fs + b, Rl+Rg g9
(00, @) = — (Voo = Vo) = -V,
1 OO,:L‘ — Zc f,OO b,OO - Rl+Rg g

well, expected, really!

please note: two constants as a superposition of two waves!



cables: 10m, 6 m, respectively, for both Z. ~ 1102




blue-white: v (¢, 0), [ = 10m, ¢ = 192.31 M,
V,=10V, R, =50}, R; varies from 0 to oo

124 — short
— 500
— 1109
10 1
—— open
8-
=
< 67
)
4-
2-
0-

0 50 100 150 200 250 300 350 400 450 500
t [ns]



white: v (¢, 0), | =6m, ¢ = 181.82Mm 1/ =10V,
R, = 50§, R; varies from 0 to oo

124 — short
— 500
— 1109
10 1
—— open
8-
=
< 67
)
4-
2-
0-

0 50 100 150 200 250 300 350 400 450 500
t [ns]



in theory: v (t, 0), At =1/c,
V,=10V, R, =50}, R; varies from 0 to oo

12 A

10 1

Ur [V]

= short

— 50Q

— 1100
m —

—— open
-1 0 1 5 6 7 8 9 10



Vy=10V, R, =50Q, Z. =110Q), R} — o0

.
I N s O s s S O
.
.
0 T T T T T T T T T
-1 0 2 3 4 5 6 7 8 9 10
;.
}
.
.
0 T T T T T T T T T
-1 0 2 3 4 5 6 7 8 9 10

t/At



V, =10V, Ry =500, Z. = 1109, R, = 00

I e

t/At



Vy=10V, R, =50Q, Z. =110Q), R} — o0

v (0, t)

i (0, 1)

10.0 1
7.5 1
5.0 1
2.5 1
0.0

e i mu S S

0.06 1
0.04 1
0.02 1

0.00

—0.02 1

t/At



V,=10V, R, = 50Q, Z. = 1109, R} — oo

.
I s s s S
.
.
0 T T T T T T T T T
-1 0 2 3 4 5 6 7 8 9 10
.
| ]
.
.
0 T T T T T T T T T
-1 0 2 3 4 5 6 7 8 9 10

t/At



Vy=10V, Ry =509, Z. = 110Q, R — 0o

10 4

v(l, t)

e i B S e

t/At



V,=10V, R, =50Q, Z. =110Q, ;=0

10.0 1
7.5
5.0 1

v (tz)

2.5 1

T e T

0.0

0.0
—2.51

—5.0

v (tg)

—7.54
—10.0 1

t/At



V,=10V, R, =509, Z. = 110Q, R, = 0

Uf (O7 t)

Up (07 t)

10.0 1
7.5
5.0 1
2.5 1

0.0

T e T

0.0

—2.51
—5.0
—754

—10.0 1

t/At



V,=10V, R, =50Q, Z. =110Q, ;=0

t/At



V,=10V, R, =50Q, Z. =110Q, ;=0

vf (17 t)

Up (l, t)

10.0 1
7.5 1
5.0 1

2.5 1

S e T S S —

0.0

-1

0.0

—2.51
—5.0
—754

—10.0 1

t/At



V,=10V, R, =50Q, Z. =110Q, ;=0

0.050 1

0.025 1

0.000

v(l,t)

—0.025 1

—0.050 1

-1 0 1 2 3 4 5 6 7

0.20 1 —,—'—_‘

0.15 1

Z0.10

~

0.05 1

0.00

-1 0 1 2 3 4 5 6 7
t/At



V,=10V, R, =50Q, Z.=110Q, R; = 1109

t/At



V,=10V, R, =50Q, Z.=110Q, R; = 1109

t)

Uy (O

t/At

10



V,=10V, R, =50Q, Z.=110Q, R; = 1109

t/At

10



V,=10V, R, =50Q, Z.=110Q, R; = 1109

Uy (l t)
e
(el
S
[e=]

t/At

10



V,=10V, R, =50Q, Z.=110Q, R; = 1109

t/At

10



some more experiments: setup

50Q  i(t, 0) it, ) it

9 .l l)
+ + +
vy (1) v(t, 0) o(t,z)  Ze=50Q, c~ 2002yt 1) > R

everything that can happen happens in two steps, 2 At = 2 %

coaxial cable (by Oliver Heaviside, 1880, British patent No.
1,407) in three segments, to measure spatial (over x) effects

first, some time-domain reflectometry


https://en.wikipedia.org/wiki/Coaxial_cable
https://en.wikipedia.org/wiki/Time-domain_reflectometer

some more experiments: setup

- f f
50 Q
+ + + +
vg(t) o(t, L) o(t, 2 o(t, 1) R,

» four channels, four points:
1. beginning, at x = 0,
2. after &

5, Cyan
3. after %l, magenta

4. at the end, at [, green
P> three coaxial cable segments, % ~ 7.5m each
> Z. =509, c~ 2002



some more experiments: setup, pulse response




some more experiments: pulse, open

Telk I Tria'd t Pos 200,0ns

+*
¥ "ﬂ’\- ocC

g AN
Coarse]
. FAN .
0ff
CHZ 500% M 50.0ns Eut /7 1.56Y

CH3 00  CHE 5004 2r-Jan-22 1203 100.001kHz



some more experiments: pulse, open

Tek g i Tria'd t Pos 200,0ns
oc
p Off
SR ,.'.“....‘M ﬂ g - F s S S
Off
CH2 200y M 50,005 Ext .~ 1.56Y

CH3 200 CHe 2004 2r-Jan-22 1534 100.001kHz



some more experiments: pulse, open

8
U1
6 1 — U9
—_— U
4 - 3
—_ Uy

0 50 100 150 200 250 300 350 400 450 500
t [ns]



some more experiments: pulse, short

Telk I Tria'd t Pos 200,0ns
-
4+ e Oc
0ff
3’—/\_\/
Coarse]
2 A
T
Off
CH2 S0y M 50,005 Ext .~ 1.56Y

CH3 00  CHE 5004 2r-Jan-22 11:23 100.001kHz



some more experiments: pulse, short

Telk g Tria'd t Pos 200,0ns
-

Off

CH2 2004 R 50.0ns Eut 7 1.56Y
CH3 200 CHe 2004 2r-Jan-22 1536 100.001kHz



some more experiments: pulse, short

8
U1
6 7 — U9
—_—
4 3

0 50 100 150 200 250 300 350 400 450 500
t [ns]



some more experiments: pulse, matched, R; = 50

Telk I Tria'd t Pos 200,0ns
-
¥ A OC
0ff
24 A
Coarse]
5 AN
Off
CH2 S0y M 50,005 Ext .~ 1.56Y

CH3 00  CHE 5004 2r-Jan-22 11:36 100.001kHz



some more experiments: pulse, matched, R; = 50

Telk g Tria'd t Pos 200,0ns
-

Off

CH2 2004 R 50.0ns Eut 7 1.56Y
CH3 200 CHe 2004 2r-Jan-22 1533 100.001kHz



some more experiments: pulse, matched, R; = 50

8
U1
6 1 — U9
—_— U
44 3

0 50 100 150 200 250 300 350 400 450 500
t [ns]



some more experiments: pulse, R; = 1102

Telk I Tria'd t Pos 200,0ns
-
a4 - Oc
0ff
3’—{W\"_"_“_
Coarse]
. At .
Off
CH2 S0y M 50,005 Ext .~ 1.56Y

CH3 00  CHE 5004 2r-Jan-22 1210 100.001kHz



some more experiments: pulse, R; = 1102

Telk g Tria'd t Pos 200,0ns
-

M-mr- ST ﬁ‘ﬂ'-m Epipalt~feprifolinciiriiin m

Off

CH2 2004 R 50.0ns Eut 7 1.56Y
CH3 200 CHe 2004 2r-Jan—22 1540 100.001kHz



some more experiments: pulse, &, = 1102

8
U1
6 1 — U9
4 4 - »
—_ Uy

0 50 100 150 200 250 300 350 400 450 500
t [ns]



some more experiments: pulse, R, = 102

Telk I Tria'd t Pos 200,0ns
-

4+ e oc

Off

CH2 5004 R 50.0ns Eut 7 1.56Y
CH3 00  CHE 5004 2r-Jan-22 1242 100.001kHz



some more experiments: pulse, R, = 102

Telk g Tria'd t Pos 200,0ns
-

[\ r\[\ :
R .-m-h L T L G n T m

Off

CH2 2004 R 50.0ns Eut 7 1.56Y
CH3 200 CHe 2004 2r-Jan-22 1543 100.001kHz



some more experiments: pulse, R, = 10

8
U1
6 1 — U9
4 4 - »
—_ Uy

0 50 100 150 200 250 300 350 400 450 500
t [ns]



some more experiments: setup, step response




some more experiments: step, open

Telk I Tria'd t Pos 200,0ns

- /—‘
4+ oc

Off

CH2 5004 R 50.0ns Eut 7 1.56Y
CH3 00  CHE 5004 2r-Jan-22 1207 100.001kHz



some more experiments: step, open

e ]

Telk g Tria'd M Fu:ns 200,0ns
- }

Off

CH2 2004 R 50.0ns Eut 7 1.56Y
CH3 200 CHe 2004 2r-Jan-22 1303 100.001kHz



some more experiments: step, open

0 50 100 150 200 250 300 350 400 450 500
t [ns]



some more experiments: step, short

Telk I Tria'd t Pos 200,0ns
-
¥ OC
0ff
.
Coarse]
T
Off
CH2 S0y M 50,005 Ext .~ 1.56Y

CH3 00  CHE 5004 2r-Jan-22 11:32 100.001kHz



some more experiments: step, short

Telk g Tria'd t Pos 200,0ns
-

Off

CH2 2004 R 50.0ns Eut 7 1.56Y
CH3 200 CHe 2004 2r-Jan-22 1312 100.001kHz



some more experiments: step, short

U1

0 50 100 150 200 250 300 350 400 450 500
t [ns]



some more experiments: step, matched, R; = 50 {2

Telk I Tria'd t Pos 200,0ns
-
¥ 4 OC
0ff
M
Coarse]
2 7
Off
CH2 S0y M 50,005 Ext .~ 1.56Y

CH3 00  CHE 5004 2r-Jan-22 1200 100.001kHz



some more experiments: step, matched, R; = 50 {2

Telk g Tria'd t Pos 200,0ns
-

Off

CH2 2004 R 50.0ns Eut 7 1.56Y
CH3 200 CHe 2004 2r-Jan-22 1311 100.001kHz



some more experiments: step, matched, R; = 50¢)
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some more experiments: step, R, = 1102

Telk I Tria'd t Pos 200,0ns
-

¥ - OC
0ff

3*—/__’
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2

Off
CH2 S0y M 50,005 Ext .~ 1.56Y

CH3 00  CHE 5004 2r-Jan-22 1213 100.001kHz



some more experiments: step, R, = 1102

Telk g Tria'd t Pos 200,0ns
-
. ) oc
o R T L
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some more experiments: step, R; = 1102
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some more experiments: step, R; = 10}

Telk I Tria'd t Pos 200,0ns
-
4+ - Oc
0ff
3&—/‘_._‘\_
Coarse]
g — -t —
Off

CH2 5004 R 50.0ns Eut 7 1.56Y
CH3 00  CHE 5004 27-Jan-22 1256 100.001kHz



some more experiments: step, R; = 10}

Telk g Tria'd t Pos 200,0ns
-

il hcgiintacte

Off

CH2 2004 R 50.0ns Eut 7 1.56Y
CH3 200 CHe 2004 2r-Jan-22 1315 100.001kHz



some more experiments: step, R; = 102
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overview of lossless transmission lines

lossless case of telegrapher’s equations
wave equation ...
solution in the form of two waves ...

that travel the opposite directions ...

vVvYvyyvyy

the waves determined by the interplay of the voltage and
the current on the line

initial conditions ...
and boundary conditions ...
and reflections . ..

lots of experiments ...

vVvYyyvy

to gain intuition ...



back to the problem that initiated this ...

» okay, we refreshed some circuit theory and some
transmission line theory ...

» it is clear that “the light bulb is on” is not really a firm
scientific criterion

» but this is not a big deal: how the transient would like?
» we should be able to compute that!

» the setup model suffers from the wire superconductivity:
otherwise it is okay, assumptions are reasonable, sort of

P> let us assume that we have some super copper to conduct
our current, other parameters do not need makeup

» and let us compute the transient, finally!


https://en.wikipedia.org/wiki/Superconductivity

the model: transmission line

- vrL +

D=1m, [ =150Mm
clearly [ > D, transmission line is a suitable model
propagation time over 1 m neglected, circuit theory

overall: circuit theory + transmission line theory



the model: linear load




the model: bisection

1 wp s I T
I+ T
+
vx =0 D
R./2 Ry /2
A% W%
— vy /2 + - vy /2 +



the model: reduction to a half

Vi /2 S r—j

I+ o)(c

RL/2

_ vg,/2 +



the model: the use of linearity; be careful!

I+O)r0

A

RL/2

and the solution would be the same! does not apply if the
circuit is not linear, and only one nonlinear element is sufficient
to make the circuit nonlinear! be careful!

electrical parameters of the transmission line, Z. and c?

for ¢, it is clear; for Z., the wire data are missing, d; this affects
the transient!



the model: transmission line parameters

d d
D
0 D

L =2 arccosh [ 2 1 Juo D

T d Z.= —,/— arccosh | —

™ €0 d
TEQ
=Dy :
C =
arccosh | — 5
< d > VEO Mo

fine print: skin effect, complete here, “hollow conductor” ... about % of L' might be

questioned, only inductance affected, up to 100 nH/m



Z.(d), D=1m
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Zc (Acu), D =1m
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Ay [mm]



our example ...

vvyyy

v

Vg =12V
hght bulb, ‘/rated =12 V, Prated =21W
Irated = 175 Ag Rrated - 686 Q, Rinitial ~ OE)Q

d? T have chosen Ag, = 1.5 (mm)?, it can stand 10 A,
d = 1.382 mm, fair enough

Z. = 872.68 Q2

just to note: 2letlal = 0.0286%, not 1%, more than 30

times less than th;t!
Vinitial = 3.44mV!

but this would make the light bulb shine, according to the
meaning redefined by fine print!

scale: 3mV <« 12V, 4000 times!




initial voltage versus Ag,

6

‘/;nitial [mv]

0 50 100 150 200 250 300
Acy [(mm)’]



initial voltage versus d

6

Vinitial [mV]

0 T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

d [mm]



the model: final

vvyyypy

v

T
Vo

|+ -
+
v chc
Rx B
— W
vL

and now we have to solve the model!
do you expect me to solve partial differential equations?
the only thing we care about is the light bulb voltage, vy,

S0, let’s focus to the only thing we care about, v, since
v, = VB — v when the switch is on!

we need to get vy, and to get that we need to relate vy and
i7 somehow, “constitutive relation” of a lumped parameter
equivalent ...



let’s do some math ... at z = 0!

vr (¢, 0) = vy (¢, 0) + vy (2, 0)
Zeir (t,0) = vy (t, 0) — vy (¢, 0)
let’s get rid of vy (¢, 0)

vr (¢, 0) — Zeir (t, 0) = 2w (¢, 0)
and

vp (t, 0) =Tyvp (t —2At, 0)

SO

UT(t, 0) —ZCiT(t, 0) :2Flvf (t—?At, 0)

where

vy (t, 0) = Zeir (t, 0) + Tyvg (t — 2At, 0)




discrete time model, general

2 At indexing here, the time is sampled in 2 At steps ...

vrn 2 vr (2nAH)T, 0)
vt =or (2 (n+1) AT, 0)
At2 L

C
let us generalize the notation, ...
variable,, £ variable ((2n At)T, 0)
variable,, 1 £ variable ((2 (n+1) At)™, 0)
variable € {ir, vy}

initial condition: vy, _1 = vy ((=2A¢)7, 0) = v (07,0) =0

remember, vy o = vy (07, 0)



and an equivalent circuit ...

IT, nt1

Vi nt1 — Livf 5

2 Fl Vi, n

after highly sophisticated math, we finally reached a DC circuit!

three special cases:
1. short, I'; = —1 (the one we care about)
2. open, I =1
3. matched I'; =0



discrete time model, termination shorted, I'; = —1

7;T, n+1

Vf, n+1 +Uf,n

'UT, n+1

205 p

DC steady state? n — 00, Vf py1 = Vfn = Vfoos
Vf 1 +Ufn = 20f 00

result: v7 o =0



discrete time model, termination open, I'; =1

7;T, n+1

Uf,n+1 = Vf,n

'UT, n+1

205 p

DC steady state? n — 00, Vf py1 = Vfn = Vfoos
Vf,nt1 = Vfn =0

result: i o =0



discrete time model, termination Z., I'; =0

+
Vf 1 — 0 X Vf 0 = Vf, 1

VT, n+1

2x0xwvp =0

complete loss of memory

result: v7 oo = Z¢ 17, 0



finally: the discrete time model to solve

Vs S U7, nt1
Gt

+ +
Ze Vf nt+1 T Vf n
VT, n+1 -
2’Uf.n
Rx -~
VA
VL, n+1

» after so many equations and high math we ended up with a
DC circuit to solve!

> Vf,0 = 0, RX = RL/2



already solved, actually!

actually, already solved in a general case before
there is a closed form solution, exponential
regarding importance, we’ll solve it again here ...
actual motive is different, to include Rx (vr)

topologically trivial: there is only one loop

vVvyvyVvVvyypy

electrically trivial: resistive circuit; well, almost resistive, a
sequence of resistive circuits

v

the only problem is vy ,, the past

v

and that problem is a mathematical problem, not electrical,
it is treated as an independent voltage source



let’s solve for vy, ...

Ve +2vsn = (Ze + Rx) i1, nt1
Uf7n+1 + Uf,n = ZciT7n+1
eliminate i, 41, solve for vy 11

Ze Vo Z.— Rx
= ————— _— v
Vit Ze+Rx 2 Z,+Rx T
Vfne1 = A+buypp

Zc ZC_RX
A=_2¢ yp p=20""X
Z.+ Ry © Z.+ Rx

A (Rx) and b (Rx)

all the time vy o =0



for fixed Ry this is a geometric series ...

vp1=A
vpo=A+bus1=A(1+D)
vpa=A+buga=A(1+b+b?)
vpa=A+bvsg=A(1+b+b*+b?)

Uf,n:A—Fbvf,g:A(1—|—b—|—b2+b3+.“+bn—1)

1-u"
1-0

Ze Z.— Rx\"
= - 1— e ———
Vfim 2Rx Va ( <Zc+Rx) )

v = A




closed form expression for vy,

after we have vy ,, the rest is to solve a small linear resistive
circuit:

o =i (1 (55 )
L,n+1l — VB ZC+RX ZC+RX
double check for n = 0:

v =V 1— Ze = Rx
Li1="B Z.+Rx)  Z.+ Ry

VB

double check for n — oco:

VLo = VB

yup! okay!



let’s plug the figures in ...

Acy = 1.50 (mm)?, d = 1.38mm, P, =21W, R, = 6.86

100

P (=) [0}
(== (== [==]
L I I

relative light bulb voltage [%]

[\
(=}
1

0 T T T T T T T T T
0 60 120 180 240 300 360 420 480 540 600

time [s]



smooth curve?

Acy = 1.50 (mm)?, d = 1.38mm, P, =21W, R, =6.86
10

relative light bulb voltage [%]




reduction to exponential form ...
Z. Z.— Rx\"
1 =Ve |1—
Ol B( 7 + Rx (ZC+RX> )

n=9A;

At=1L

_t Ze—Rx t
b = (") = enInb — 247 ln(Zc+RX> =e r forZ.>Rp

2 At 2!
o R =— QZCR for R, < 2 Z,
In <Z§+R§) In (2Z§+R§>

Z,
vy, (t) =~ Vi <1 - ﬁ ei> ... and that’s it!
(&




smooth curve ... big picture

Aoy = 1.50 (mm)?, d = 1.38mm, P, =21W, R, = 6.86Q

100

= D [0's}
o [e=] [e=]
L L L

relative light bulb voltage [%]

3]
(==}
L

0 T T T T T T
0 1 2 3 4 5 6 7 8 9 10

time [minutes|



7(d)

the process is actually really slow .

180

150 4

120 4

7 [s]

60

30 1

0 T T T T T T T

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
d [mm]




the process is really slow ... 7 (Aw)

180

150 1

120 +

2

— 90 1

60

30 1

0 50 100 150 200 250 300
Acy [(mm)’]



overview of the solution

v

VV VYV VvV VYV VVVYVYVY

we walked a long way to get here ...

a review of methods and models ...

method chosen: transmission line theory + circuit theory
closed form solution!

the system model is not realistic, there is a wire resistance!
we’'ll fix for that later ...

but the analysis was fun!

scale, care about scale!

quantity affects quality, plug in figures sometimes!

at the end, just a DC circuit analysis!

new methods of teaching ... only the DC circuit ...

initial voltage, at ¢ = 0T turned out to be minor, negligible
transient turned out to be really slow!

quite a different impression than 17‘“ ~ 3.33ns?



modeling of nonlinear effects ...

>
>

v

vr,(iz) is a nonlinear function, analysis gets complicated ...

physical process is Rr,(T') ... and we need to get T'(¢)
somehow, we need a thermal model ...

I do not have a model of that process ...though it is
possible to get it, but it would be too much ...

everything is clocked at 1s, the light bulb is small,
transient should be fast enough ...

besides, how general the thermal model would be? worth to
invest time?

an approach: treat the light bulb as a nonlinear resistor; no
thermal inertia, just the DC model, resistive, responds
instantly

v ~ 4 % i% , actual number is 4.076544679336893
algebraic and (sort of) simple! let’s program it!

in real life it won’t be like that, but neither much different!



nonlinear equivalent circuit

- UL, n41 +

» careful with bisection when the load is nonlinear!

> i =k;\JuL

> or better, v, = kyi2, ky = 1/k?



reduced nonlinear equivalent circuit

2 (Uf, n+1 1 Uf, n)

4'Uf1n

- VL, n+1 +

> Vg + 4Uf,n = 2Z(:Z.L,n—i-l + ky i%,n—i—l

» simple, quadratic equation ...

~Ze+ 22+ Vpky+4ky vy p
Ky

> i1 =



solving the nonlinear equivalent circuit

P> equations:
1. VL, n+1 = VB +4Uf,n - 2ZciL,n+1

> remember, k, fited, k, = 4.076544679336893 15

let’s solve the equations for vy, ,41 and if, p41

v

» VL n+1 We care for ...
~Ze+ 22+ ky (Ve +4vy5)

> iL,n+1 —

ky
» VU1 nt1 = ... choose either 1. or 2. 1
—Ze+\/Z2+k, (Vg +4
> UL7n+1:VB+4'Uf’n—QZC c \/ ¢ ]{ZU( B+ Uf,n)
()

» other option: read the measured curve (and iterate)

» some tricks to simplify 1



nonlinear effects, comparison, measured iy (vy)

10

12
10
8 -
=
~ 6 ]
=
4 m
2 -
—— linear model
nonlinear model
0 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9
t [min]



nonlinear effects, comparison, fitted i;(vy)
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nonlinear effects, comparison, fitted i;(vy)

—— linear model
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nonlinear model
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nonlinear effects, comparison, fitted i;(vy)

1.0

0.9 1

—— linear model

nonlinear model




heating the light bulb, R} (t), measured iy (vy)

8




heating the light bulb, R (t), fitted iy (vy)

8

10



overview of the nonlinear model results

P linear resistor as the light bulb model essentially captured
the phenomena ...

P> at the beginning, the rise of the light bulb voltage is much
slower in comparison to the linear resistor

» this would make us wait for the light even more ...

» however, the current speeds up, and somewhere around % of
the final voltage the nonlinear model becomes the faster one

» fitted model of the light bulb iy (vy) works pretty well,
“smoothly”

» analysis much more complicated than for the linear model



and what if we include losses in the model?

» if I started with this, there would not be any analysis, any
slides . ..

» since the light bulb would not produce any light!
» [ just wanted to tell you the story about transmission lines

» in the meantime, incandescent light bulbs got involved, and
I found them interesting, also

» I find the problem interesting and enlightening ...
regardless it is unlikely to get any light from the bulb ...

» since only (almost) lossless line would produce any light at
the light bulb in our setup



final result

v

let us assume a copper wire . . .

pow = 1.68 uQm

R =224 %Q (a problem: “milli” and meter ambiguity,
same m for different “objects”, for 1073 and for meter)
total of Rp = 6.7154 M€, I, = 1.79 uA, Vi, = 0.89 uV, no
light according to common sense, but you should double
check the fine print for legal interpretation

assume sinusoidal input for Vg, and perform phasor
transform (yes, I know that Vg is assumed DC ... )
compute the input impedance of the transmission line . ..

reduce to an equivalent circuit, and you’ll get the
impedance that would never let the bulb shine

if I started with this, there would never be an opportunity
to tell you a nice story about lossless lines ...


https://zenodo.org/record/2604333
https://zenodo.org/record/2604333

transmission line model, phasor transformed

Az
I(x) I(x + Ax)
+ +
L' Ax R Ax
V() % =  V(z+Az)
G' Az [ C'Azx

» phasor transform introduced, differentiation over time
removed, became Xjw, in time variable the problem gets
reduced from differential to algebraic equations

> in this way, partial differential equations are reduced to
ordinary differential equations ...

» which are much easier to solve ...

» frequency response encodes much of the circuit behavior ...


https://zenodo.org/record/2604333

some more tribute to Oliver Heaviside

> steady state response of linear circuits with sine wave
generators ...

» phasors, Charles Proteus Steinmetz, another hero!

> easy to extend to steady state response of linear circuits
with periodic waveform generators, Fourier analysis and
superposition

> easy to extend to (some) aperiodic signals, Fourier
transform

> casy to extend to transient response (!), Laplace transform

» ... actually, such analysis of transients started by
operational calculus proposed by Oliver Heaviside!

> complex analytic functions encode a lot about themselves
. like continuous functions, but much more!

P> vou are encouraged to learn complex analysis . ..


https://en.wikipedia.org/wiki/Phasor
https://en.wikipedia.org/wiki/Charles_Proteus_Steinmetz
https://en.wikipedia.org/wiki/Fourier_analysis
https://en.wikipedia.org/wiki/Superposition_principle
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Laplace_transform
https://en.wikipedia.org/wiki/Operational_calculus
https://en.wikipedia.org/wiki/Oliver_Heaviside
https://en.wikipedia.org/wiki/Analytic_function
https://en.wikipedia.org/wiki/Complex_analysis

ordinary differential equations, now

V(z+ Az) =V(x) — (jw L' Az + R Az) I(x)
I(x+ Az) = I(z) — (jwC" Az + G' Az) V(z + Ax)

V(z+ Az) — V(x)

— —(jw L+ R) I(a)

Az
I(z+ AAxi —I(x) (jwC' + G V(z + Az)
dtsz) = —(jwl'+R) I(x)
dI(x)




reduction to one equation, “separation”

d*V (x)
dz?
d*I(x)
dx?

=(jwl'+R) (jwC"+G) V(x)

=(jwLl'+R) (jwC" +G&) I(x)

v 2 G+ R) O + &)

dQV(x) 2
d*I(x) 9
_ I —

linear homogeneous ordinary differential equations!



solution

V(z)=Vie 7"+ Ve

dV (z)
dx

=y Ve "+ Ve = — (jw Ll + R') I(x)

v _
I(z) = ———— = Vper®
@)= Ve Vpel?)

A [jwLl + R
Zc — N .~
jwC + G
/N
Z. Ze

I(x)

familiar?



two port network

V(0) = Vs + Vi
Vi W
I(O)_ZC_ZC

V() =Vie 7+ Vel

V
I(l) = %6*71 - ?e”l

eliminate Vj, and V;:

V(0) = V() cosh (yl) + I(l) Z. sinh (1)
sinh (y1)

Z. + I(1) cosh (v1)

1(0) = V(1)

really useful equations, looks nicer into a matrix form ...



two port network, matrix form

I could not resist ...

[V(O)} _ { Zliff(?l) Zéossiﬁ?%l)} [%)]

cosh (yl)  Z. sinh (y1)
Z% sinh (y1)  cosh (v1)

‘ =1 <« clearly invertible!

transfer functions are not rational functions of jw as in linear
lumped parameter circuits; the system is more complicated to
analyze, transforms are harder to get ...



short at [

plug in V(1) =

V(0) = I(l) Z. sinh (y1)
I1(0) = I(I) cosh (y1)

input impedance:

V(0)

%= T0)

= Z. tanh (v1)

linear circuit, but not lumped parameter one; impedance is not
a rational function of s, s = jw

J— SL/+R/ / / / /
Ze =\| g g b (l\/(sC' TG (sL +R))



another equivalent circuit

Z. tanh (v1) Z.. tanh (y1)
Ry,

~ Rp +2Z, tanh (y1)

VL

L'=2918 R —204m0 " = 38228 G/ — 0 — y(f), Zc(f)

Rr, =0.59Q, Vg =12V (amplitude)



frequency response of Z.
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frequency response of v
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frequency response of 7.
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frequency response of V7,
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the start and the stop

S
a trick to get to the Laplace transform: substitute w with -
J

Laplace transform, final value theorem, applied for step response
VL(0) =8.93uV — vp(00) = 8.93 uV

Laplace transform, initial value theorem, applied for step
response

Vi(00) = 3.44mV — v (07) = 3.44mV

from 3.44mV to 8.93 uV, not enough voltage to make the light
bulb shine! so, when the light bulb would start to shine? well,
actually never! not 0.5s, not 1s, not 2, not 1?“1 ... never!

fine print: unless you have excellent deep infrared visual abilities


https://en.wikipedia.org/wiki/Laplace_transform
https://en.wikipedia.org/wiki/Final_value_theorem
https://en.wikipedia.org/wiki/Initial_value_theorem

step response from the frequency response ...

» frequency response is the Fourier transform of the system
impulse response

P> get the impulse response from the frequency response by
inverting the Fourier transform

» even analytical approach might work ...

» integrals not worth bothering with ... from almost zero to
almost zero ...

» numerical approach, using FFT (DFT) applied here,
frequency response sampled . ..

» tried and verified on simple examples, to gain confidence in
the method and the program that implements it ...

» turned out to be computationally demanding ...
» but it worked!



the diagram which sinks all of our hopes ...
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the diagram which sinks all of our hopes ...
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...overview of the case with losses

» to handle equations, we had to apply phasor transform to
get frequency response . ..

v

frequency response? but the source is DC?

v

frequency response would tell us enough to compute the
transient

applying the FF'T, the step response is obtained ...
not an impressive one: the light bulb would never shine

the losses would consume all of the source voltage ...

vvyyypy

actually, the transient of the light bulb voltage is very fast,
in the order of 100 ms it would change from very small to
very very small ...



conclusions

P this was a long story ...
P> we covered two seemingly simple systems, which turned out
to have not so simple behavior:
1. incandescent light bulb
2. transmission lines
» the analysis is initiated by a system proposed in a popular
science video

» a perfect opportunity to make a tutorial about transmission
lines, I already needed to make

> ... since the question how the transient evolves really is
interesting



conclusions: scale

| 2
>

at first, we put the problem in scale ...

when creating mathematical models it is important to
select relevant phenomena from negligible effects

this is a quantitative issue we frequently perceive as
qualitative, not expressed in numerical terms

to gain feeling about the problem, quantitative, numerical
data, are important, and they are frequently hidden behind
symbols

so, we have to plug in figures from time to time ...

our problem turned out to be “dimension asymmetric”
(actually, symmetry is not the best word here): one spatial
dimension is really pronounced in comparison to the other
two dimensions; we have planar and a linear effects
(almost) decoupled

which makes the transmission line a suitable model to
study the problem!



conclusions: light bulbs

» incandescent light bulbs study followed ...
> used as an indicator, an unfortunate choice ...

» which caused all of the problems, as well as all of the
benefits: interest in the topic

» when a light bulb starts to shine turned out to be a
complex question by itself!

» an incandescent light bulb requires from 10% to 20% of its
rated voltage to produce any visible light ...

> ... after the filament is heated up, which takes time

» light bulbs are DC nonlinear, while AC linear, which is
caused by thermal effects ...

> it turned out that at DC current of the light bulb is
proportional to the square root of its voltage ...

P as shown to be a good model in two analyzed examples . ..

» and useful to provide numerical simulation results



conclusions: methods

P> to solve an electromagnetic system, Maxwell’s equations are
the tool ...

» which is hard to use, since the models are overly complex,
and solving the equations is even more complex

» we reviewed Kirchhoff’s circuit laws that reduce the
electrical system to a sort of “material point”, with
negligible spatial dimensions

P also, we reviewed transmission line theory, which lays in
between Maxwell’s equations and the circuit theory

» both the circuit theory and the transmission line theory use
voltages and currents; Maxwell’s equations use fields

» for our application, a combination of the circuit theory and
the transmission line theory should work!



conclusions: lossless transmission lines

v

v

wave equation ...
and two waves that make the solution ...

at any given position on the line, the voltage and the
current determine which is the wave that travels forward,
and which is the wave that travels backward

step response of a transmission line terminated by a resistor
reflections and a closed form solution ...

and the initial step that does not depend on the line
termination ...

numerous examples and experiments to gain intuition ...

experimental results could be obtained using relatively
inexpensive equipment and setup!



conclusions: solving the problem, lossless case

v
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yes, finally we solved the problem!
elementary math ...

. after you successfully traveled through not so
elementary math and concepts

everything reduced to successive solving of DC circuits
there is a closed form solution ...

there is some voltage at the beginning, at ¢ = 0 in our
model ...

but this is minor; the transient is a long one ...
related to the wire thickness . ..
and it takes minutes!

completely different picture than a really fast transient!



conclusions: nonlinear effects

vy
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v

light bulb is a DC nonlinear element ...
and that nonlinearity is relevant in our transient

simplified model, light bulb treated as a nonlinear resistor,
thermal inertia neglected, dynamics of the bulb transients
assumed fast enough ...

reasonable, there is 1s to settle down ...

numerical simulation ...

linear resistor essentially captured the phenomena

but the transient looks different with the nonlinear model
startup of the bulb slowed down

but it eventually speeds up and becomes faster than the
transient computed using linear resistor model

for our application, lower starting voltage and about the
same long lasting transient are the conclusions



conclusions: losses in the line

> telegrapher’s equations for a line with losses ...

» phasors applied to transform the problem from partial
differential equations to ordinary differential equations

» scope reduced to sinusoidal signals, but that would be quite
enough ...

» frequency response of the system obtained ...

> step response computed from the frequency response using
the FF'T technique

> initial voltage dies out pretty fast, in order of 100 ms

» no hope to get any light at the light bulb if you include
losses in the model ...

overall about transmission lines: such a simple system, two
wires placed in parallel, and such a complex analysis!



conclusions, about the answer

so, what is correct (if it matters at all)?
0.5s

S

a

=3
— N =

S
L1m

c

none of the above

[o VNS
S N e N N

[§]

I would opt for e); the system response is too complex to be
reduced to any single number

however, the important thing is that people discussed
electromagnetic theory; the goal is reached

the problem is great!



disclaimer

» while preparing these slides, I did not follow the topic
online ...

P> so many video materials became available ...
» I had no time to review them all, neither I would have ...

» for some reason this problem attracted attention, which is
good

» and for some reason it initiated hard feelings, which I do
not find good, neither suitable

» overall impression is that something good happened, we
talked about electromagnetism

» so, no hard feelings, please!



thank you!
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