Dataset Restricted Access

EndoAbS Dataset

Veronica Penza


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.60593</identifier>
  <creators>
    <creator>
      <creatorName>Veronica Penza</creatorName>
      <affiliation>Politecnico di Milano</affiliation>
    </creator>
  </creators>
  <titles>
    <title>EndoAbS Dataset</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2016</publicationYear>
  <subjects>
    <subject>endoscopic stereo image dataset</subject>
    <subject>3D reconstruction algorithm evaluation</subject>
    <subject>ground truth</subject>
    <subject>abdominal phantom model</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2016-08-22</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/60593</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.640084</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="info:eu-repo/semantics/restrictedAccess">Restricted Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The &lt;strong&gt;EndoAbS Dataset&lt;/strong&gt; (Endoscopic Abdominal Stereo Images Dataset) aims to provide to the computer assisted surgery community a dataset for the validation of 3D reconstruction algorithms.&lt;br&gt;
It is composed of:&lt;br&gt;
- 120 pair of endoscopic stereo images of abdominal organs (liver, kidneys, spleen);&lt;br&gt;
- corresponding ground truth in left-camera reference frame, generated using a laser scanner;&lt;br&gt;
- camera calibration parameters;&lt;/p&gt;

&lt;p&gt;The images were captured under different conditions:&lt;br&gt;
- different light levels;&lt;br&gt;
- presence of smoke; &amp;nbsp;&lt;br&gt;
- two phantom-endoscope distances (~5cm or ~10cm);&lt;br&gt;
&amp;nbsp;&lt;br&gt;
If you use this dataset, please cite:&lt;br&gt;
&amp;nbsp;&lt;br&gt;
&amp;nbsp;Penza, V., Ciullo, A. S., Moccia, S., Mattos, L. S., &amp;amp; De Momi, E. (2018). EndoAbS dataset: Endoscopic abdominal stereo image dataset for benchmarking 3D stereo reconstruction algorithms. &lt;em&gt;The International Journal of Medical Robotics and Computer Assisted Surgery&lt;/em&gt;, e1926.&lt;/p&gt;

&lt;p&gt;For further information, please contact veronica.penza@iit.it&lt;/p&gt;</description>
    <description descriptionType="Other">{"references": ["A.S. Ciullo, V. Penza, L. Mattos, E. De Momi (2016)", "\"Development of a surgical stereo endoscopic image dataset for", "validating 3D stereo reconstruction algorithms.\" 6th Joint Workshop on", "New Technologies for Computer/Robot Assisted Surgery.", "Penza, V., Ortiz, J., Mattos, L. S., Forgione, A., &amp; De Momi, E. (2016).", "\"Dense soft tissue 3D reconstruction refined with super-pixel segmentation for", "robotic abdominal surgery.\"  International journal of computer assisted radiology", "and surgery, 11(2), 197-206."]}</description>
  </descriptions>
</resource>
1,570
114
views
downloads
All versions This version
Views 1,5701,589
Downloads 114114
Data volume 20.5 GB20.5 GB
Unique views 1,1771,185
Unique downloads 9393

Share

Cite as