Dataset Restricted Access

EndoAbS Dataset

Veronica Penza


Citation Style Language JSON Export

{
  "publisher": "Zenodo", 
  "DOI": "10.5281/zenodo.60593", 
  "title": "EndoAbS Dataset", 
  "issued": {
    "date-parts": [
      [
        2016, 
        8, 
        22
      ]
    ]
  }, 
  "abstract": "<p>The <strong>EndoAbS Dataset</strong> (Endoscopic Abdominal Stereo Images Dataset) aims to provide to the computer assisted surgery community a dataset for the validation of 3D reconstruction algorithms.<br>\nIt is composed of:<br>\n- 120 pair of endoscopic stereo images of abdominal organs (liver, kidneys, spleen);<br>\n- corresponding ground truth in left-camera reference frame, generated using a laser scanner;<br>\n- camera calibration parameters;</p>\n\n<p>The images were captured under different conditions:<br>\n- different light levels;<br>\n- presence of smoke; &nbsp;<br>\n- two phantom-endoscope distances (~5cm or ~10cm);<br>\n&nbsp;<br>\nIf you use this dataset, please cite:<br>\n&nbsp;<br>\n&nbsp;Penza, V., Ciullo, A. S., Moccia, S., Mattos, L. S., &amp; De Momi, E. (2018). EndoAbS dataset: Endoscopic abdominal stereo image dataset for benchmarking 3D stereo reconstruction algorithms. <em>The International Journal of Medical Robotics and Computer Assisted Surgery</em>, e1926.</p>\n\n<p>For further information, please contact veronica.penza@iit.it</p>", 
  "author": [
    {
      "family": "Veronica Penza"
    }
  ], 
  "type": "dataset", 
  "id": "60593"
}
1,573
114
views
downloads
All versions This version
Views 1,5731,592
Downloads 114114
Data volume 20.5 GB20.5 GB
Unique views 1,1791,187
Unique downloads 9393

Share

Cite as