
RealSWATT: Remote Software-based Attestation for Embedded
Devices under Realtime Constraints

Sebastian Surminski
University of Duisburg-Essen

Essen, Germany
sebastian.surminski@uni-due.de

Christian Niesler
University of Duisburg-Essen

Essen, Germany
christian.niesler@uni-due.de

Ferdinand Brasser
Technical University Darmstadt

Darmstadt, Germany
ferdinand.brasser@trust.tu-darmstadt.de

Lucas Davi
University of Duisburg-Essen

Essen, Germany
lucas.davi@uni-due.de

Ahmad-Reza Sadeghi
Technical University Darmstadt

Darmstadt, Germany
ahmad.sadeghi@trust.tu-darmstadt.de

ABSTRACT
Smart factories, critical infrastructures, and medical devices largely
rely on embedded systems that need to satisfy realtime constraints
to complete crucial tasks. Recent studies and reports have revealed
that many of these devices suffer from crucial vulnerabilities that
can be exploited with fatal consequences. Despite the security and
safety-critical role of these devices, they often do not feature state-
of-the-art security mechanisms. Moreover, since realtime systems
have strict timing requirements, integrating new security mech-
anisms is not a viable option as they often influence the device’s
runtime behavior. One solution is to offload security enhancements
to a remote instance, the so-called remote attestation.

We present RealSWATT, the first software-based remote attesta-
tion system for realtime embedded devices. Remote attestation is a
powerful security service that allows a party to verify the correct
functionality of an untrusted remote device. In contrast to previous
remote attestation approaches for realtime systems, RealSWATT
does neither require custom hardware extensions nor trusted com-
puting components. It is designed to work within real-world IoT net-
works, connected throughWi-Fi. RealSWATT leverages a dedicated
processor core for remote attestation and provides the required
timing guarantees without hardware extensions.

We implement RealSWATT on the popular ESP32 microcon-
troller, and we evaluate it on a real-world medical device with
realtime constraints. To demonstrate its applicability, we further-
more integrate RealSWATT into a framework for off-the-shelf IoT
devices and apply it to a smart plug, a smoke detector, and a smart
light bulb.

CCS CONCEPTS
• Networks → Cyber-physical networks; • Security and privacy
→ Embedded systems security; • Computer systems organi-
zation → Real-time system architecture.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00
https://doi.org/10.1145/3460120.3484788

KEYWORDS
attestation; firmware security; IoT; embedded systems; realtime;
critical infrastructure

ACM Reference Format:
Sebastian Surminski, Christian Niesler, Ferdinand Brasser, Lucas Davi,
and Ahmad-Reza Sadeghi. 2021. RealSWATT: Remote Software-based Attes-
tation for Embedded Devices under Realtime Constraints. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’21), November 15–19, 2021, Virtual Event, Republic of Korea. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3460120.3484788

1 INTRODUCTION
Commodity realtime embedded systems often suffer from security
vulnerabilities already known from classical computing. However,
due to the resource constraints embedded devices often lack ba-
sic security mechanisms that are common in most other types of
systems [4]. At the same time, realtime applications, which are
essential in many safety-critical domains, place highly conservative
requirements to guarantee the strict realtime operation.

The need to secure embedded devices is further amplified by
the trend of Internet of Things (IoT) to connect previously uncon-
nected and isolated devices to the Internet to enhance features and
services. This leads to large vulnerable ecosystems consisting of
millions of devices.1 In particular, any malfunction in realtime de-
vices can have fatal consequences since they perform highly critical
real-world tasks in many safety-critical domains as cyber-physical
systems, medicine and transportation to name some: A modern
automobile can have up to 150 control units [58] and offers a large
attack surface [35]; or controllers of industrial robots suffer from
a high number of software vulnerabilities [44], as a well-known
incident at a steel mill has shown where the blast furnace could
not be shut down properly resulting from an attack on its control
systems, leading to severe physical damage [65]. These systems
are a large subset of IoT devices with sparse resources and strict
requirements. Since realtime systems serve highly critical tasks in
the field of industry, medicine, and transportation (e.g., as a vehicle
control unit), the introduction of security mechanisms is vital but
challenging.

1The Mirai botnet [5], that compromised and controlled millions of IoT devices, was
used for multiple large-scale distributed denial of service attacks, with up to 1 Tbit s−1
bandwidth, consisting of more than 300,000 devices [32].

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2890

https://doi.org/10.1145/3460120.3484788
https://doi.org/10.1145/3460120.3484788

Legacy realtime embedded devices lack hardware features, e.g.,
secure boot or trusted execution environments (TEEs). Moreover,
they are commonly integrated into machines and run customized
software, and hence, cannot be simply replaced. On the other hand,
incorporating protection mechanisms in software such as control-
flow integrity [1] always impacts execution times of tasks [17, 55].
This is highly critical in the realtime realm, since they must adhere
to strict timing behavior and hence go through an extensive devel-
opment and profiling phase. Any changes in the execution, even
through instrumentation, e.g., to integrate control-flow integrity
(CFI) [17, 55], or abnormality monitoring [48], affect the runtime
behavior of the device.

Hence, adequate security solutions for realtime applications,
must have strictly limited impact on the realtime operations [52].
Currently there exist no practical solutions that can tackle these
challenges. Furthermore, the handling of detected suspicious or
malicious behavior is an important question for critical realtime
systems. Solutions like control-flow integrity may terminate if an
illegal path is executed.

At first glance, a promising solution to tackle these challenges
seems to be remote attestation (RA), as it offloads the verification
of the monitored device to an external trusted party. RA allows a
trusted party, called verifier, to gain assurance about the correctness
of the state of a remote device, called prover. It has been used for
embedded devices [2, 10, 19, 40] and sensor networks [53]. However,
the main challenge for attesting realtime devices is, however, to
utilize the attestation independently from the execution of the
monitored application.

Moreover, another vital aspect of remote attestation is to get a
genuine attestation report from an untrusted device. An attacker
could forge the attestation report, for example by using a different
device or an emulation of the attested system. There have been a
variety of proposals for attestation schemes to address this issue:
(1) hardware-based using trusted computing [2], (2) hybrid using
custom hardware extensions [10, 19, 20, 34, 40], and (3) software-
based [46, 53].

However, none of these solutions is an option for legacy realtime
embedded devices: While hardware-based and hybrid approaches
to attestation require changes to or customization of the underlying
hardware, software-based attestation poses strict timing assump-
tions on the response of the prover and the verifier induces many
requirements upon the implementation of attestation logic and
communication [7, 46]. We will elaborate on these approaches in
detail in the related work in Section 9.

Our goal and contributions. In this work, we present RealSWATT,
the first remote attestation framework that is applicable to realtime
systems without requiring any hardware changes. We leverage
off-the-shelf hardware and do not require any trust anchor on the
attested device. A key aspect of our design is based on the obser-
vation that many modern low-cost embedded systems, such as
the ESP32, are built on a multicore architecture where the cores
are often not fully utilized. Especially in realtime context, multi-
threading is hard because it is of utmost importance to meet all
deadlines under all circumstances. So in practice critical tasks are
often not scheduled in parallel. In specific areas, e.g., avionics, there
are even regulations to limit the usage of additional cores [13]. As

a result, one or more processing cores are idle. We leverage this
circumstance and utilize an idle processor core to develop a new
attestation framework. This allows the attestation and the realtime
tasks to be properly scheduled by the underlying realtime operat-
ing system and makes RealSWATT suitable for legacy embedded
devices in industry, medicine, and cyber-physical systems.

However, the usage of multicore processors involves tackling
several new challenges: while the benign execution only uses one
processor core, an attacker can now use all processor cores in order
to forge an attestation report. We address this issue by selecting
adequate cryptographic functions that cannot be accelerated by par-
allelization. Furthermore, the communication, especially in wireless
networks commonly deployed for IoT devices and cyber-physical
system setups, is prune to variation in transmission times. This
also conflicts with the strict assumptions for software-based attes-
tation [7].

Because of these required strict assumptions and shortcomings
like the vulnerability against compressing attacks [12] software-
based attestation has been assumed insecure and infeasible in prac-
tice, receiving only little to no attention. It requires specific as-
sumptions about the execution speed of the prover logic on the
attested device and precise timing measurements, making the im-
plementation challenging [46]. Software-based attestation however
is a good fit for legacy devices, where other attestation schemes
simply are not available due to the lack of specialized hardware
on the given device. Thus, we have re-evaluated software-based
attestation and solved several challenges, which allow us to deploy
a software-based attestation scheme in a real-world scenario.

We developed continuous attestation where the verifier sends
the next attestation request before it receives the previous response
of the prover so that the prover can start the next attestation-run
directly after the previous one. This procedure omits the trans-
mission and verification time, so that variations in transmission
time do not influence the attestation. Our continuous attestation
approach induces the strict requirement that the attacker cannot
run two attestation protocols in parallel in order to get a time-span
in which no attestation is performed, thus effectively solving the
Time-of-Check Time-of-Use (TOCTOU) problem. The combination
of these techniques (multicore and continuous attestation) ensures
that RealSWATT can reliably attest realtime embedded systems
in real-world wireless networks without impairing the realtime
operation.

In summary, we provide the following contributions:
• We propose RealSWATT, the first software-based remote at-
testation framework for realtime-critical devices that works
on commodity off-the-shelf low-cost embedded devices.

• We present the first attestation framework that exploits a
separate processor core for attestation to ensure the correct
scheduling and timing of realtime operations.

• We propose a new scheme called continuous attestation and
a network architecture for the software-based attestation
of embedded devices which allows us to tackle the strict
timing constraints and hardware requirements of existing
software-based attestation schemes [7, 46].

• Our framework allows to remotely verify code- and data
sections to detect malware infection and malicious changes
of configuration parameters.

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2891

• For our proof-of-concept implementation, we used one of
the most popular IoT platforms ESP32 microcontrollers and
conducted a detailed evaluation on a medical device syringe
pump. We performed a full end-to-end example with an
attack that compromises the syringe pump’s configuration
which is detected by RealSWATT.

• We implemented RealSWATT into ESPEasy, a framework to
use on real-world off-the-shelf IoT devices and used it on
different devices such as a smart plug, a smoke detector, and
a smart light bulb.

2 BACKGROUND
In this section we explain the concepts and basic properties of
realtime applications and remote attestation as foundation of our
attestation framework.

2.1 Realtime Systems
In contrast to the best-effort compute system, realtime systems
require strict response times of the tasks they are running. There
are different classes of realtime systems distinguished by their
strictness, i.e., the consequences of missing deadlines; hard, firm,
or soft realtime requirements [49]. In the hard class, no deadline
may be missed, otherwise there will be severe consequences, akin
to a device failure. Typical examples for such systems with realtime
constraints are control units for vehicles, e.g., braking or engine
control units where missing deadlines have direct influence on the
physical world. Also industrial machines, cyber-physical systems,
and medical devices often have hard realtime constraints [49].

As realtime devices are often safety-critical there are specific
procedures and regulations to be considered during development.
Changes induce a new validation process as well as a re-certification
in case of safety-critical devices, e.g., in avionics [45].

2.2 Remote Attestation
Remote attestation is a security service that allows a trusted en-
tity, called verifier to verify the integrity of the state of a remote,
unstrusted system, called prover [40]. Remote attestation schemes
have been used for different devices including embedded devices [2,
10, 19, 40] and sensor networks [53], as they offload the verification
of the device (prover) to an external party (verifier).

In a typical attestation protocol, the verifier sends a challenge to
the prover who responds with a message that indicates a measure-
ment of the state of the prover device, usually software state. The
main challenge in attestation schemes is to obtain trustworthy mea-
surements about the prover’s state. There are different approaches
to achieve this: (1) hardware-based solutions use trusted computing
modules [2], (2) hybrid attestation uses custom hardware exten-
sions [10, 19, 40], and (3) software-based attestation (SWATT) [46]
does not need any hardware support. In the following we focus on
software-based attestation, in the related work in Section 9, we also
elaborate on other attestation approaches.

Software-based attestation (SWATT) can be used on commod-
ity hardware and legacy devices. However, SWATT poses strict
timing assumptions on the response of the prover and the verifier.
SWATT builds upon the core assumption that an attacker cannot
replace or alter the attested device. Hence, the verifier relies on the

integrity of the prover’s computing capabilities, i.e., the memory
and processing speed cannot be manipulated. Based on these as-
sumptions the verifier precisely measures the response times for
the attestation requests, this includes the time it takes for the prover
to compute the attestation report as well as the communication
overhead between prover and verifier. If the response times differ
from the expected values, the prover device is assumed to be com-
promised. Furthermore, it is important that all memory, both used
and unused memory, is covered in the attestation. We discuss these
requirements in the Security Considerations in Section 8.

These assumptions are however, very strong and pose many
hard requirements on the implementation of attestation logic and
communication channels [7, 46]. In the real world an attacker can
circumvent the attestation in various ways [12].

3 PROBLEM STATEMENT
Detecting software attacks on devices in a connected system is a
highly challenging task, in particular if the adversary has gained full
control over a subset of devices. Even more so, if the connected de-
vices have high requirements with respect to their timing behavior
due to the execution of realtime tasks.

Existing solutions to detect and report attacks in connected sys-
tems are either heuristic [23] or pose assumptions that are unreal-
istic for many critical realtime tasks [46]. Monitoring solutions at
the network level are heuristic in nature and suffer from high false-
positive rate [63]. Hardware-assisted security mechanisms [34]
rely on extensions and components, such as a TEE architecture
or cryptographic co-processor (TPM), that are not available is the
vast majority of deployed legacy embedded devices. Software-based
attestation approaches target legacy devices that cannot provide a
trust anchor; however, their approach to ensure integrity of the mea-
surement function inherently conflicts with the execution timing
demands of realtime application: Software-based attestation asserts
integrity of the measurement procedure by demanding all system
resources, to prevent the adversary from using free resources, while
precisely measuring its execution time. Beside the inherent conflicts
when applied to realtime systems, software-based attestation is the
only option (to enable heuristic detection of complete software
compromise) for legacy systems.

A secure software-based attestation for realtime embedded sys-
tems poses a number of challenges on the underlying design and
implementation:
Challenge 1: A secure attestation scheme — without any trust an-
chor — running tasks with realtime execution requirements needs
to overcome the inherent conflict between realtime execution guar-
antees and integrity guarantees for the measurement procedure to
capture the prover device’s state.
Challenge 2: Allowing the measurement procedure to respect the
realtime demands of the system’s tasks could be easily misused by
an adversary, e.g., to restore a benign state while the measurement
is performed [11]. Therefore, the measurement procedure must be
able to capture the system state independent of the execution of
realtime tasks.
Challenge 3: Permitting the execution of potential malicious tasks
in parallel to the measurement procedure provides the adversary
with the option to dynamically adapt and move to itself between

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2892

memory areas, always restoring the currently measured section of
memory.
Challenge 4: In remote scenarios software-based attestation faces
the challenge to account for the jitter in network transmission,
which prevents the verifier from precisely measuring of the ex-
ecution time: To avoid false positives the verifier has to tolerate
considerable time gaps, which might be exploited by an adversary
to manipulate the measurement and hide its existence on the prover
device.
Challenge 5: Remote attestation, and in particular software-based
attestation, face the Time-of-Check Time-of-Use problem (TOC-
TOU) [64], i.e., an attestation report only presents a snapshot of
the prover’s state. The verifier learns no information whether the
prover has been compromised (and restored) before the attestation
or will be immediately after.

RealSWATT overcomes these challenges by executing the mea-
surement procedure on a dedicated CPU core, while allowing the
continuous execution of realtime tasks on another CPU core. Our
approach deploys novel techniques to tackle all challenges (C1–C5)
in order to design and implement a secure attestation solution.

4 SYSTEM AND THREAT MODEL
RealSWATT attestation is designed to work with legacy IoT devices
in real-world network environments. The network architecture is
sketched in Figure 1. It targets scenarios with untrusted embedded
systems running critical realtime tasks that should be attested by
the remote verifier.

4.1 System Model
We consider a system of connected low-end embedded devices ex-
ecuting realtime tasks. We assume an untrusted system running
tasks with realtime deadlines, the so-called prover, which is being
attested by the remote verifier. Furthermore, we assume that the
prover is running a realtime operating system (RTOS), which en-
sures correct scheduling and proper realtime operation. The RTOS
is no mandatory requirement, however, it simplifies the integration
of the RealSWATT framework into legacy devices. Without an op-
erating system, the attestation logic has to be manually integrated
and ensured, that the added methods do not influence the other
tasks running on the device.

The system features a multicore processor, of which one core is
not utilized and not required for correct realtime operation. The
attested device is connected to a remote verifier via a wired or
wireless network. There are no strict timing requirements towards
the connection. Bandwidth and timing requirements are elaborated
in Section 7.

All devices of the network are known to the verifier device. They
can communicate to each other and the verifier directly, however,
all communication with other entities is routed through a gateway.

We assume an IoT network structure consisting of multiple IoT
devices that are being attested, a trusted verifier, and an IoT gate-
way for external communication, as sketched in Figure 1. The IoT
gateway monitors external communication to detect abnormalities
to prevent offloading of attestation tasks. Offloading remote attes-
tation tasks to an external party requires frequent communication

IoT devices IoT gateway

Configuration
manager

WAN

Figure 1: Architecture of the Realtime-Attestation Approach.

to a dedicated remote instance which clearly differs from normal
behavior of IoT devices. Monitoring traffic by its origin, goal, packet
size, frequency, or content is a common method to secure internal
or dedicated IoT networks. For example, the National Institute of
Standards and Technology (NIST) suggests to use such gateways
to secure communication of embedded devices [9, 54]. In recom-
mendation ITU-T Y.2060 [33], the International Telecommunication
Union (ITU) also considers such gateways for IoT networks.

The configuration manager, as shown in Figure 1, is a common
component in modern IoT architectures. It keeps track of the de-
vices and their applied configuration. Configuration management
software for IoT devices is commercially available [50]. Recent re-
search also considers the use of such a configuration manager to
set and organize security features on IoT devices on demand [14].
With the help of such a configuration manager, attestation can be
enabled on large scale without the need to setup attestation on each
device individually. A further benefit is that the configuration can
be easily provided to a verifier and included into the attestation
reports.

4.2 Threat Model
The adversary can compromise all embedded devices in the net-
work via software attacks. The adversary knows the benign state
and configuration of every device. It can observe all network com-
munication.

The adversary is able to modify program as well as configuration
data. Furthermore, the adversary can compromise an embedded
device at each point in time as well as restore a devices benign state
at any point in time.

The verifier and the gateway are assumed to be immune, i.e., the
adversary cannot compromise them. All communication, except
between devices and/or the verifier, are routed through the gateway.
The adversary cannot introduce additional devices into the network.
The devices’ hardware cannot be modified or manipulated by the
adversary, e.g., by a more powerful device with more memory or a
faster processor.

5 CONCEPT OF REALSWATT ATTESTATION
Our design introduces two new concepts: (1) Using a separate pro-
cessor core for attestation to separate the normal operation and the
attestation tasks from each other, and (2) Continuous attestation,
i.e., attesting the system continuously during runtime. Multicore
processors have many advantages in processing speed and energy
consumption [31] and are becoming increasingly widespread [18],
even if the development of realtime applications for multicore pro-
cessors is challenging [45, 57]. We leverage a multicore processor

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2893

CPU0 CPU1

SOC

Attestation

Realtime processes

Figure 2: A system with multiple processor cores can use one core
for realtime tasks and one core to run the attestation in parallel.

design, which is nowadays commonly available on popular IoT
platforms, but often not fully utilized.

We observed that in many IoT devices and especially realtime
systems with multicore architecture not all cores are fully utilized.
In some specific application areas, e.g., avionics systems, there are
even regulations that limit the use of additional cores for realtime
operation [13]. In realtime computing, there exist several security
frameworks that use a separate processor core of a multicore system
to implement new security features [47, 61]; for instance, Yoon
et al. [61] utilizes it for intrusion detection and other follow-up
works leverage it to cover memory usage [62] and analyze system
call traces [60].

Software-based attestation (SWATT) relies on precise prediction
of the response times of the attested device. The verifier sends a
challenge and measures the response time of the prover which
includes the execution time of the attestation and the transmission
time. Hence, SWATT also relies on direct and undisturbed commu-
nication between the prover and the verifier. That is, if the response
to an attestation request is delayed, the prover cannot distinguish
between a false alarm caused by a transmission delay and an attack.
For the latter the delay is caused by the attacker covering her traces.

However, the assumption of undisturbed communication is unre-
alistic in practice. Nowadays, IoT devices communicate via wired or
wireless networks that are shared with many other devices. These
devices influence each others transmissions; especially in wireless
network like Wi-Fi. Wireless networks inherently use a shared
medium that is not only shared between the devices within the
network, but also with all other devices using the same frequency
band. Hence, traditional software-based attestation [46] cannot be
applied to these communication networks. We tackle this limitation
by developing continuous attestation that eliminates the transmis-
sion time from the timing measurements of the attestation. We
leverage this by continuously running the attestation, such that
the verifier can safely assume that at all time the prover is running
an attestation. To do so, we use a dedicated processor core for the
attestation.
Separate processor core for attestation. Figure 2 shows the dis-
tribution of the realtime tasks and the attestation on different pro-
cessor cores. The RealSWATT framework requires at least two
processor cores but supports more cores without any changes. A
single processor core is selected to execute the attestation. Both the
attestation runs and realtime jobs are time-critical. Missing timing
deadlines for the normal operation results in device malfunction as
realtime properties are not met, timing problems for the attestation
make the verification fail, as the verifier assumes the device to be
compromised as it does not respond in time.
Continuous attestation. As a dedicated processor core can solely

Block 1 Block 2 ... Block n

IV f f f f finalization <Hash>

Figure 3:Merkle–Damgård construction of hash values. The process
cannot be parallelized for speedup.

be used to perform the attestation, this allows to introduce contin-
uous attestation, where attestation runs constantly in background.
In traditional software-based attestation (SWATT) [46], integrity of
the prover code is based on the response between sending the at-
testation request and receiving the attestation report of the prover,
where the attestation request contains a nonce to ensure freshness
and preventing replay attacks. As a consequence, the transmission
time between verifier and prover needs to be included in the timing
assumptions, which makes SWATT impractical for all communica-
tions with varying transmission times, e.g., wireless networks or
the Internet.

Our continuous attestation relaxes these timing assumptions
as the attestation is constantly running so that even though the
response is delayed, the verifier can safely assume that the prover
has been running the attestation task. In RealSWATT, the verifier
sends a new nonce while the prover is not yet finished calculating
the attestation report for the verifier (Section 5.2). So, the prover can
continue with the next attestation request directly after the last one
was finished. We call this attestation method continuous attestation
as it removes the gap between attestation runs. In contrast to the
communication delay, the time required for the attestation can
be determined precisely. In Section 7, we measure the runtime of
attestation processes.

In the following, we describe the challenges that emerge when
implementing a continuous attestation scheme.

5.1 Design Considerations
While the usage of a separate processor core for remote attesta-
tion seems like a straightforward solution, it requires careful de-
sign decisions to ensure coverage of a variety of security aspects.
Software-based attestation has many strict requirements that have
to be fulfilled to reliably verify the prover besides the accurate
timing of the responses. It is of utmost importance that an attacker
cannot accelerate the attestation run itself. There are multiple ways
how an attacker could speedup the attestation. Each of them has to
be addressed accordingly.
Parallelization.An attacker can potentially use all processor cores
for attestation and ignore realtime-critical jobs, while the genuine
attestation can only use a single processor core. If the attacker is
able to speed up the execution of the attestation function, the at-
tacker can circumvent the timing checks that are based on hardware
limitations and potentially evade the remote attestation.

Therefore, the attestation scheme must be designed such that
an attacker cannot benefit from multiple cores. Further, attesta-
tion relies on a hashing function. The hashing method must be
designed such that it cannot be accelerated by parallelization, i.e.,
using multiple processor cores. We tackle this challenge by using a
Merkle–Damgård construction [36] as this popular hashing method

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2894

fulfills this requirement. The functionality is shown in Figure 3: The
process starts with an initialization vector. The hash is calculated
by adding block by block, where in each step the next block is
added. In order to add the next block, the previous result is taken
as input. This is a strictly sequential process. Hence, the process
cannot benefit from parallelization or multiple processor cores [3].
Popular hashing methods using the Merkle–Damgård construction
are, for instance SHA-1 and SHA-2 [37].
Optimality of Hash Function Implementation. As security of
software-based attestation relies on the computational capability
and timing threshold, i.e., the execution speed of the attestation
function, it must be ensured that the implementation of the attes-
tation function is optimal and cannot be significantly accelerated.
Otherwise, if the attacker is able to generate a valid hash, the saved
time can be exploited for malicious activity. RealSWATT addresses
this challenge by leveraging built-in hardware modules if available
(as is the case for our target architectures) or well-studied hash al-
gorithms. RealSWATT is not limited to a certain hash function: any
secure hashing method that fulfills the Merkle-Damgård scheme
is suitable for our attestation approach. For example, the popular
SHA-2 hash function fulfills this requirement, which we also use
in our implementation in Section 6 and case study in Section 7.
For platforms without hardware support, we study their security
regarding attacks against the hash function in detail in Section 8.3.
Empty memory. As memory that is not covered by the attesta-
tion process could be used by an attacker, all executable memory
has to be covered by the attestation process. Furthermore, an at-
tacker could compress the data stored on the device in order to
free up memory which then can be used to store malicious code.
RealSWATT prevents this as its continuous attestation constantly
monitors all executable memory. As shown in Section 7, continuous
attestation induces strict timing requirements. Deviations, e.g., due
to the need for decompression, make the attestation fail.
Offloading. An attacker could also offload attestation work to
another device. In our attacker model in Section 4, we describe a
remote attacker and excluded the scenario in which a local attacker
is able to introduce more computing power into the attested de-
vice. However, the attacker could offload the attestation task to
another powerful device thereby breaking the attestation scheme.
Due to the longer and varying transmission time this would not be
detected by the verifier. To tackle this issue, we introduce an IoT
gateway that monitors all traffic from and to the network with the
attested devices. Such security gateways are a common measure
in commercial and industrial networks. But such filters can also
be added to routers for small business and home networks. We
elaborate on this network architecture in Section 5.3.

In the following, we will explain the attestation scheme and the
network architecture in detail.

5.2 Attestation Scheme
As mentioned in Section 5.1, we needed to consider and evaluate
several aspects in our design to create a practical software-based
attestation approach for realtime embedded devices. Common and
more advanced attestation methods like control-flow attestation [2]
are not applicable as they either interfere with the runtime (instru-
mentation), which conflicts with realtime constraints, or require

Prover Verifier

Nonce #1

Response #1

Nonce #2

Response #2

Nonce #3 Verification

...

Repeated
Hashing

tm2=0, tm1<ts?Repeated
Hashing

Repeated
Hashing

New IV

New IV

New IV

Verification

tm1=0

tm3=0, tm2<ts?

Figure 4: Protocol of the attestation process.

additional hardware like TrustZone. Thus, with RealSWATT, we
attest code and data regions of those legacy devices. A device can
have multiple partitions containing the executable code and data,
including device configuration. We hash those dedicated memory
areas based on the protocol shown in Figure 4: The verifier sends
a nonce to prevent replay-attacks to the prover. The prover uses
this nonce as an initialization vector for the hashing algorithm.
Hence, the attacker cannot start the attestation before the nonce is
known. Next, the prover calculates the hash of the memory region
that has to be attested, e.g., code or data sections. This concept is a
common and reliable method for remote attestation [10, 20, 40, 46].
We read all data from the attested partitions and feed it either to
the available hardware hashing module or into to the optimized
hashing algorithm. Usually all code and data sections are combined
and hashed, thus one single hash value represents the code and
data integrity of the device. It is also possible to limit the hashing
only to certain memory sections. This option, however, should be
used with care as it limits the appropriate state representation of
the embedded device.

The hash is then repeatedly computed and returned to the ver-
ifier. The hash calculation is chained and previous hash results
are feed into the next repetition. The verifier measures the time
tm between sending the nonce and receiving the response. If the
measured time is below the expected threshold time ts , i.e, tm < ts ,
the device is assumed genuine, otherwise it has potentially been
compromised. This process is continuously repeated to ensure that
any compromise or malicious modification of the device is being
detected. Therefore, it is important that the hashing function has a
predictable runtime. If the runtime varies, this allows the attacker
to shift tasks to get computation time. This remains undetected, as
the verifier has to assume the worst-case runtime. The determina-
tion of an appropriate threshold is a key feature for software-based
attestation. In Section 7, we measure the execution time for the
attestation of a real-world device and describe how the threshold
time ts can be determined.

In a simple attestation protocol there exists a gap between send-
ing the resulting hash and receiving of the next nonce, which con-
sists of the network transmission time and the time of the verifier
to send the next nonce after verification. In order to close this time
gap between two successive attestation requests, in our solution
the verifier sends a second nonce while the prover is processing the

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2895

previous attestation request (i.e., computing the hash). The second
nonce is received and temporarily stored in a queue. This allows the
prover to continuously process attestation requests and removes
the impact of network delays.

To do so, the verifier has to send the nonces such, that even under
worst-case network latency, the next attestation request arrives
before the previous attestation run is finished. Sending two nonces
without delay allows an adversary to simultaneously compute the
hash on other cores. Therefore, it is important to the send the
hash just-in-time. Given a time tatt to complete the attestation
and a network latency tr t t , the verifier has to send the next nonce
tatt −max(tr t t) to ensure that the next nonce arrives on time. Note,
that it is required tatt ≫ tr t t to guarantee correct attestation.

The nonce sent by the verifier serves both as a new initialization
vector and as a synchronization point. In a scenario with a long-
running attestation task with an one-time initialization only, side
effects like clock skews between devices would come into play.
By continuously sending nonces as new initialization vectors we
reliably synchronize verifier and prover.

The verifier checks the interval in which the results are returned
from the prover. If results are delayed or missing, a compromise can
be assumed and the verifier can react accordingly, e.g., by raising
an alarm or rebooting the prover to return to a trustworthy state.

This process, where the prover saves the next nonce in advance,
makes our attestation scheme independent from the transmission
time between prover and verifier. Even variances in the transmis-
sion time do not pose any problems, as long as the transmission
time is significantly shorter than the time required for the attes-
tation tatt ≫ tr t t . It is possible to configure the runtime of the
attestation by repeatedly executing the hashing function: the result
of the hashing is used as the initialization for the next hashing.
So, a long non-parallelizable row of executions is generated. This
makes it possible to adapt the duration of the attestation to the
actual requirements in transmission time and consider the process-
ing speed of the device. Because a potential attacker cannot offload
the computation to an external device and we carefully choose the
time intervals for attestation requests (sending the nonces) inter-
cepting the next nonce does not provide any benefit to an attacker.
In Section 7, we elaborate on how the attestation time can be con-
figured using a real-world example. If the worst-case transmission
time is significantly shorter than the execution time of the attes-
tation, the next nonce can safely arrive at the prover before the
previous attestation process finishes. Thus, there are no time gaps
between successive attestation requests. We call this approach con-
tinuous attestation, which is also a key aspect in enabling practical
software-based attestation.

Furthermore, our attestation method has several benefits with
regard to existing legacy embedded devices. Our attestation proto-
col is lightweight with a nonce of 4 B and an attestation report of
32 B. Thus, it causes only a slightly increased network load and is
suitable for low-speed IoT networks as discussed in Section 7.3.

Another aspect of RealSWATT is its realtime capability and ease
of integration, which we evaluated on real-world devices in Sec-
tion 7.5. As already shown in Figure 2 we exploit the availability of
a second core to handle the attestation process in parallel to real-
time operation. While the use of a second core allows to maintain
realtime capability it comes with its own set of challenges such as

the parallelization of the hash computation by two cores, which we
discussed to in Section 5.1 and in Section 8.

5.3 IoT Network Architecture
The usage of a dedicated network architecture allows reliable and
secure software-based attestation with varying transmission time
as described in Section 4. It consists of several parts: the attested
IoT devices, the central configuration and attestation server, and
the IoT gateway. This common network architecture allows to pre-
vent offloading attacks, i.e., moving the attestation task to external
devices.

Like many IoT devices nowadays, the attested devices communi-
cate over wireless communication (Wi-Fi, IEEE 802.15.4/ZigBee2,
Z-Wave3) with the configuration and device management server.
There are no strict requirements towards the connection speed,
transmission times, or jitter. In the RealSWATT attestation scheme,
the verifier is implemented in a central device and configuration
management server. This configuration and device management
server keeps the current configuration of the IoT devices and per-
forms the verification of the IoT devices. Hence, it is possible to
include each device configuration into the attestation and also de-
tect modifications in these configurations, even though the program
memory itself is not affected. The IoT gateway monitors external
communications and prevents a corrupted device to communicate
with external entities to offload the attestation routine and hence
break the attestation. Both the central device and configuration
management as well as IoT gateways are commonly deployed in
real-world networks as previously discussed in Section 4.1.

6 IMPLEMENTATION OF REALSWATT
We implemented RealSWATT on commercial off-the-shelf hardware
to show its general applicability. The prover was integrated into
FreeRTOS, which is a popular realtime operating system [30]. The
verifier was implemented on a Raspberry PI running Linux. The
verifier can also be implemented on other devices such as X86, the
only requirement is a connection to the IoT network and enough
computing resources to handle andmeasure the attestation requests.
We are using rawUDP packets for communication in order to reduce
side effects of the network and minimize communication overhead.

We implemented different use-cases for the prover (IoT device)
to show its broad applicability: a syringe pump, smart plug, a smoke
detector, and a smart light bulb. For the plug, smoke detector and
light bulb we have used a framework called ESPeasy4, which allows
to generate alternative firmware images for off-the-shelf IoT de-
vices powered by the ESP32 and includes code for peripherals such
as the smoke sensor. Event without this framework, integration
into existing off-the-shelf devices is generic and straightforward as
described in Section 6.3.

To evaluate the functionality, we integrated all components into
a real-world testbed consisting of the typical components of an
IoT network. We tested the RealSWATT attestation using a full
end-to-end example, consisting of a device being monitored by the

2https://zigbeealliance.org/
3https://z-wavealliance.org/
4https://espeasy.readthedocs.io/en/latest/

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2896

https://zigbeealliance.org/
https://z-wavealliance.org/
https://espeasy.readthedocs.io/en/latest/

verifier. The attested device is then being compromised, which the
verifier instantaneously detects.

In the following, we describe the main components of the imple-
mentation: (1) Prover and Verifier, (2) Testbed, and (3) Real-world
Implementations. Please note that this section only gives a general
overview. Implementation details like timing thresholds need to be
fine-tuned for typical embedded devices and their networks. We
evaluate and provide this details for our testbed in Section 7.

6.1 Prover and Verifier
We use the Espressif ESP32 system-on-chip (SoC) which is a popular
component of typical IoT devices, e.g., smart light bulbs and power
plugs [24] as it also integrates Bluetooth and Wi-Fi modules.

We have implemented the RealSWATT remote attestationmethod
using the popular FreeRTOS realtime operating system. FreeRTOS
can manage multiple processor cores and allows to attach processes
to a dedicated core. The scheduler then does not move the attached
processes across cores. We dedicate one core to the attestation
process. We have implemented the RealSWATT remote attestation
method using the popular FreeRTOS realtime operating system on
the ESP32. The ESP32 has two Tensilica Xtensa processor cores [25].
Since the attestation is scheduled on a dedicated core, the attestation
does not interfere with the realtime operation. Realtime operation
as well as attestation are handled by different cores and in parallel.

RealSWATT performs static attestation covering code and data
memory of the prover. This is achieved by including the program
and configuration data partition into the attestation requests. The
hashing is performed using the mbedtls5 library, which also sup-
ports hardware-supported hashing on the ESP32. In order to prevent
replay attacks or the usage of pre-computed results, each attestation
run is initialized using the nonce provided by the verifier. Continu-
ous attestation is realized using a queue. When the prover receives
a UDP packet containing a nonce from the verifier, the nonce is
written to a queue of limited size until it is handled by the prover.
This way, attestation runs are executed seamlessly after each other.
The result of the attestation is returned as a UDP-Packet to the
verifier.

The verifier implements the RealSWATT attestation protocol as
described in Section 5.2, sending nonces to the prover and handling
incoming attestation reports. We provide further implementation
details on the prover and verifier in Appendix A.1.

6.2 Testbed
To evaluate RealSWATT, we built a testbed of an IoT network as
sketched in Figure 1 consisting of IoT devices, a Wi-Fi access point
and a verifier. The IoT devices were implemented on NodeMCU
ESP32 developer boards6, a TP-Link TL-WDR4300 Wi-Fi router7
running OpenWRT 19.07.7 was used as an IoT gateway and a Rasp-
berry Pi 3+8 with Linux running the C++ implemented the verifier.
The setup was located in an office environment during workdays
with frequent Wi-Fi usage. The Wi-Fi access point provided a sep-
arate IoT network in a 2.4GHz range as the ESP32 is only able

5https://tls.mbed.org/
6https://joy-it.net/en/products/SBC-NodeMCU-ESP32
7https://www.tp-link.com/ch/home-networking/wifi-router/tl-wdr4300/
8https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

0 1 2 5 10 20 30 50 100 150 200 300
repetitions

0

500

1000

1500

2000

2500

3000

At
te

st
at

io
n

ru
nt

im
e

in
 m

s

Figure 5: Runtime of the attestation process on the prover with dif-
ferent number of repetitions.

to work within this frequency range. The testbed reflects typical
usage in practice, e.g., in hospitals or factories with different inter-
fering Wi-Fi traffic and other wireless devices that influence the
communication between the prover and the verifier. The influence
of other wireless devices and Wi-Fi traffic and its implications for
the attestation is further analyzed in Section 7.

6.3 Integrating RealSWATT
The integration of RealSWATT is straightforward. IoT devices often
rely on a realtime operating system (RTOS) [8], which allow to
manage and appropriately schedule multiple concurrent tasks on
multiple cores. The usage of a RTOS gives standard interfaces and
methods to add the attestation service. In order to integrate Real-
SWATT we have created additional tasks. We added a UDP service
for the communication and an attestation task on the dedicated
core. It is also possible to integrate RealSWATT into devices with
no operating system, so-called bare metal systems. However, the
integration will need to be performed much more carefully as one
cannot rely on the abstraction and features provided by a realtime
operating system.

In the next section we evaluate RealSWATT and show its gen-
eral applicability. To do so, we perform a case study and integrate
RealSWATT into a medical device and an IoT framework.

7 EVALUATION
In this section, we show that RealSWATT attestation is well-suited
for real-world IoT setups and can be applied in practice. As de-
scribed in Section 6, the RealSWATT attestation was deployed on
different embedded devices. To show the general applicability of
the RealSWATT attestation concept, we investigate its runtime and
timing constraints. As elaborated in Section 5, timing is a crucial
security factor in software-based attestation. We measure the re-
sponse times in our exemplary syringe pump example and explain
how timing thresholds for the verification of the attestation can be

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2897

https://tls.mbed.org/
https://joy-it.net/en/products/SBC-NodeMCU-ESP32
https://www.tp-link.com/ch/home-networking/wifi-router/tl-wdr4300/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

0 1 2 5 10 20 30 50 100 150 200 300
repetitions

0

500

1000

1500

2000

2500

3000

At
te

st
at

io
n

ru
nt

im
e

in
 m

s

Figure 6: Response time of the proverwith different number of repe-
titions, this includes both the attestation runtime and the overhead
due to the Wi-Fi communication.

Table 1: Measurement of the runtime of the attestation with and
without the delay due to the Wi-Fi communication. All measure-
ments are taken in ms.

Rounds Type Min/Max Mean Std. Dev.

0 Direct 7.979/8.14 7.988 0.032
Network 36.066/226.36 72.207 11.43

1 Direct 9.752/10.265 10.004 0.038
Network 49.502/279.684 225.76 20.84

2 Direct 19.748/20.276 20.006 0.057
Network 69.367/274.108 225.96 18.81

5 Direct 50.005/50.005 50.005 0.0
Network 59.662/276.617 224.61 23.26

10 Direct 100.004/100.004 100.004 0.0
Network 125.149/329.905 228.32 9.952

20 Direct 200.004/200.004 200.004 0.0
Network 217.307/439.912 241.46 46.96

30 Direct 300.004/300.004 300.004 0.0
Network 320.665/469.364 431.11 16.91

50 Direct 500.004/500.004 500.004 0.0
Network 518.593/726.847 637.27 13.01

100 Direct 1000.004/1000.004 1000.004 0.0
Network 1019.64/1218.943 1048.91 13.15

150 Direct 1500.005/1500.005 1500.005 0.0
Network 1517.224/1679.623 1661.35 11.12

200 Direct 2000.004/2000.004 2000.004 0.0
Network 2009.749/2179.673 2072.29 9.24

300 Direct 3000.004/3000.004 3000.004 0.0
Network 3009.71/3190.993 3095.92 8.67

determined.We further analyze the overhead induced by the attesta-
tion. This covers both additional power consumption caused by the
usage of the second processor core as well as the communication
overhead for attestation requests and responses.

In a full end-to-end example, we show the functionality of the
RealSWATT attestation by performing an attack on a vulnerable
device which is detected by the attestation.

7.1 Timing
Timing is a crucial component of the security in software-based
attestation. While in traditional software-based attestation the re-
sponse time to the verifier is the relevant part of the security, in
continuous attestation the runtime of the attestation itself is impor-
tant while the transmission time can be neglected.

We performed a measurement study in our IoT testbed to deter-
mine the response times of the prover to the challenge depending on
the number of repetitions of the hashing function and the variance
of the transmission in the Wi-Fi network. In order to perform a reli-
able attestation, the number of repetitions of the hashing function
has to be chosen such that its runtime dominates the variance of the
transmission. The continuous attestation fails if the verifier does
not receive the response of the prover before the prover finishes
the next attestation request. A too long attestation run increases
the time span between two attestation reports of the prover. Hence,
the delay between compromise and its detection becomes larger.

Table 1 shows the measured runtime of the attestation function
including and without the overhead due to the wireless network
using different numbers of repetitions. In Figure 5, the runtime
of the attestation process with respect to the number of hashing
repetitions is plotted. Since the hashing needs to dominate the
variance of the transmission we also plotted the response time with
their respective variances in Figure 6 for direct comparison.

We conducted all measurements on the described testbed using
the syringe pump implementation and repeated them to cover for
any variations. We repeated the Wi-Fi measurements 600 times,
the measurements without Wi-Fi were repeated 100 times due to
their lower variability. The time including the Wi-Fi transmission
was measured on the Raspberry Pi. The runtime without the Wi-Fi
overhead was measured on the ESP32 with its internal clock.

As expected, the variance of runtime of the attestation without
any communication is minimal. The highest standard deviation in
the experiments was 56.83 µs in case of only two repetitions. In
all cases with more repetitions, i.e., more than 5, we measured no
deviation. This makes the implementation well-suited for software-
based attestation, as strict timing limits can be selected.

In comparison, the measurements which include transmission
via Wi-Fi have much larger deviations, as Figure 6 shows. For
example, in case of ten repetitions, the time until the verifier gets a
response from the prover varies between 110ms and 303ms. These
results clearly show, that such a Wi-Fi setup is inadequate to be
directly used for software-based attestation.

The values in Table 1 can be used to find optimal parameters
for the attestation. To select suitable parameters, the minimum
and maximum values of the attestation can be compared to find
the optimal compromise between the delay until a compromise is
detected, the required amount of communication, and the required
difference between delay due to network communication and the
time a single attestation run takes. These parameters are also used
to configure the timeout-thresholds for the verifier to detect delays
in the attestation.

All attestation runs have about the same execution time and the
variance between the executions is negligible. In contrast, the time
until the verifier actually receives the attestation response varies

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2898

widely. A software-based attestation without the RealSWATT con-
tinuous attestation approach is not feasible under these circum-
stances. Based on these results, it is possible to determine the ade-
quate number of repetitions for the given use-case. In case of the
syringe pump, we opted for 100 repetitions, yielding in attestation
reports in about 1 s intervals. These measurements are also required
to configure the verifier to detect malicious behavior resulting in
timeouts as the response time varies. The measurements show
that RealSWATT is capable to work on IoT devices with wireless
communication in practice.

7.2 Power Consumption
The second important aspect for a real-world deployment of Re-
alSWATT is power consumption. Continuous attestation causes
constant additional computational tasks for the attestation core,
which results in increased power consumption. Often, IoT devices
are battery powered. A good example is the smoke detection sensor
placed in the corner of the ceiling. Therefore, the power consump-
tion is also a concern of such IoT devices.

Consequently, we have conducted a case study and measured
the power consumption of the syringe pump with and without
the attestation running. Without attestation, we have measured
an average consumption of 46.2mA and with attestation a slightly
increased power consumption of 46.8mA. So, attestation accounts
for an increase in power consumption of 0.6mA in this case, about
1.3%. A more detailed analysis of the power consumption of our
ESP32 evaluation board can be found in Appendix B.2.

7.3 Communication Overhead
Another important aspect is the amount of communication required
for the attestation. First, IoT devices often use wireless communica-
tion, which is a shared resource with a limited frequency spectrum.
With multiple devices communicating via the same channel the
network latency as well as package drops increase.Wireless commu-
nication is similar to traditional bus communication in that regard.
Packets sent simultaneously collide and need to be retransmitted.
Each wireless transmission takes a portion of the available band-
width. For the RealSWATT remote attestation protocol, we only
require the transmission of the hash value with 32 B for the attesta-
tion reports and 4 B nonce as attestation request. The frequency of
transmission can be configured as discussed above, between several
attestation requests per second to one every few seconds. These low
demands make RealSWATT attestation also suitable to work with
low-bandwidth transmission protocols. For example, the popular
IoT wireless protocols Zigbee and Z-Wave have transfer speeds
ranging from 20 kbit s−1 up to 250 kbit s−1 [51]. Even the lowest
transfer speed is sufficient to successfully run RealSWATT attesta-
tion with reasonable attestation frequencies.

7.4 Race Conditions
Attestation and realtime operation run in parallel on two dedicated
cores. However, the attestation process requires access to the appli-
cation memory to check for malicious activity. Thus, even when
both operations are executed on a separate core, resources still need
to be shared, which could lead to a potential race condition. In prac-
tice, race conditions between realtime operation and attestation will

occur very rarely. Most embedded applications focus on GPIO (Gen-
eral Purpose Input/Output) and thus have little memory interaction.
Access to memory can be prioritized depending on the attestation
goals and type of realtime application. Most embedded devices in
the domain of soft realtime systems will tolerate infrequent dead-
line misses. Thus, the attestation can potentially be prioritized in
these cases. Hard realtime systems are usually strongly tight to
the outside world and very GPIO intensive. Memory accesses on
hard realtime systems are very short. The acceptable delay for the
attestation can be set to a value that will detect malicious activity,
but allow short delays caused by the realtime application. This
value tr tdelay is distinct for each embedded device and applica-
tion context and should satisfy: tattack ≥ thash + tr tdelay . The
delay tr tdelay is determined by the longest operation the realtime
application would perform on the flash memory: These are often
quick reads of configuration data (e.g., the amount of medicine for
injection on the syringe pump).

We have implemented RealSWATT into systems with hard real-
time requirements likemedical devices (syringe pump) and common
IoT devices like smart plugs, see Section 7.5. We evaluated the im-
pact of race conditions in these settings and found that they are
highly unlikely and do neither influence the realtime requirements
nor the attestation.

7.5 Implementation on Real-World Devices
To show the applicability of our approach to real-world applications
and deployments, we applied RealSWATT to a medical device with
strict realtime requirements and integrated RealSWATT attestation
into an open-source firmware for IoT devices.

The first use-case is a syringe pump [56], a medical device that
injects medication into a patient at a defined time interval. Hence, a
syringe pump provides critical functionality and has strict realtime
requirements. This open-source implementation of a syringe pump
has been already used in previous works [2, 39] to show feasibility
of control-flow attestation and hotpatching of realtime devices.

In addition, we implemented RealSWATT on top of ESPEasy.
ESPEasy is an alternative popular open-source firmware that al-
lows to replace the firmware of existing IoT devices like smart plugs
or temperature sensors. ESPEasy supports a wide range of different
devices and even extends their functionality. By implementing Re-
alSWATT on ESPEasy we proved that a wide range of legacy IoT
devices can be easily secured through our attestation method. We
explain real-world details of the attestation based on the syringe
pump use-case implemented on the ESP32 in Appendix B.1.

7.6 End-to-End Case Study
To show the full capabilities of RealSWATT, we developed a full
end-to-end example: a vulnerable realtime device that is being
monitored. The vulnerability is used to compromise the device, this
is then detected by the verifier.

To do so, we have integrated a common vulnerability into the sy-
ringe pump: an insecure configuration interface. The most common
attack vectors of IoT devices are weak, guessable, or hard-coded
passwords, and insecure network interfaces and services [43]. In
case of ESPEasy, the web interface is only reachable via plain HTTP,
hence a passive man-in-the-middle (MitM) attack can easily be used

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2899

to obtain passwords or authentication tokens [15]. Especially the
usage of wireless interfaces further eases MitM attacks. Further-
more, per default the login process of the web interface does not
have any rate limiting, allowing efficient brute-force or dictionary
attacks, e.g., using hydra9.

For our proof-of-concept (PoC) we hijack the command inter-
face of our medical device and send a malicious configuration to
the unit. This could trigger a buffer overflow and launch a more
sophisticated attack, or just manipulate the configuration. In case of
the syringe pump, even a configuration change could lead to lethal
consequences for the patient as through our attack it is possible
to arbitrarily modify the amount of injected medicine. As soon as
these changes are applied, the configuration on the nvs partition is
updated. At latest in the next attestation run the hash value of the
nvs partition changes, which is sent in the attestation report to the
verifier. The verifier determines that the configuration differs from
the intended configuration and raises an alarm. For more details
on the partitions and the implementation of the attestation see
Appendix B.1.

7.7 Conclusion of Evaluation
In our practical evaluation of RealSWATT, we have shown that the
attestation runtime can be adjusted by hash repetitions to dominate
the variances in network response times of heavily used wireless
networks. As a consequence, our proposed attestation method for
legacy devices is feasible for wireless IoT networks. In addition, we
have measured only a slightly increased power consumption from
46.2mA to 46.8mA per hour for attestation. The increase is so small
due to the use of the commonly available hardware hashing unit,
which reduces the workload of the second core. Furthermore, as
most IoT devices already use the wireless communication module
at regular basis, the additional power consumption for wireless
communication is also minimal. Concluding, RealSWATT is suitable
for the application in real-world IoT devices.

8 SECURITY CONSIDERATIONS
The RealSWATT attestation framework uses several new techniques
to perform reliable software-based attestation of realtime-critical
embedded devices. The security of software-based attestation is
based on multiple premises which all have to be fulfilled in order
to guarantee the integrity of the attested device. In the following,
we discuss the formal criteria for the attacker to stay undetected as
well as possible attack scenarios, including mitigations.
Attack Model. To prevail malicious activity, the attacker must
perform her attack and hide all traces before the attestation can
detect those changes by means of hashing the memory. We define
the following variables to analyze diverse attack scenarios: (1) ts =̂
threshold time, (2) tm =̂ message response time, (3) tr t t =̂ round trip
time, (4) tatt =̂ attestation run time (all runs), (5) thash =̂ hashing
run time (1 run), (6) tattack =̂ minimal run-time for attack, and (7)
twrite =̂ time of the flash to write to the sector.

A successful attack must satisfy tattack < thash , which trans-
lates to a scenario, where an attacker completes the attack before
a check can be performed (single hash iteration with time thash).

9https://github.com/vanhauser-thc/thc-hydra

twrite

thashthashthashthashthash

new nonce response

......

tattack

thash

Figure 7: The device is attested in background. Theminimumattack
duration is longer than the attestation runtime.

Further, an attack is only successful if the attacker is able to ei-
ther manipulate the program code or configuration data stored in
the flash memory (given the threat model defined in Section 4.2).
As a result, the attacker needs to rewrite at least one flash page,
which takes twrite time. The attack scenario is depicted in Fig-
ure 7. thash denotes the runtime of the hashing of the complete
memory. Every n repetitions, the result is sent to the verifier in the
attestation report. One hash iteration covers all n flash memory
blocks b, i.e., b0 − bn , starting at a random location r . To prevent
replay attacks, we integrate a nonce nonce provided by the veri-
fier: hash = {nonce,br ...bn,b0...br−1}. Multiple hash iterations are
concatenated, so that instead of the nonce, the hash result of the pre-
vious iteration is used as the starting point: hashi = {hashi−1...}.
Attack Requirement.Within the Attack Model, we have recapit-
ulated the attestation procedure from the security viewpoint and
introduced variables to formally describe the attacker’s success
conditions. The attacker’s goal is to stay undetected. Obviously,
the only suitable strategy for the attacker is to perform the attack
before it can be detected by the attestation. As described above, this
requires tattack < thash . The time of an attack (tattack) depends
on the concrete attack scenario and cannot be exactly determined.
However, a lower bound of tattack can be given due to hardware
limitations such as the flash write time (twrite). We will elaborate
on this in the following.

8.1 Hardware Restrictions
Embedded devices have hardware restrictions such as fixed times
to write and read memory that cannot be changed by the adversary
(see Section 4.2). Since the attacker is not able to replace physical
hardware, the attacker is bound by the hardware; especially, slow
write operations to flash memory. This allows to derive a lower
bound for attacks (tattack).

In case the device features a hardware hashing module, the at-
tacker has to deal with fast hashing, i.e., short intervals in which
the memory is attested. In addition, embedded devices provide
flash memory as their main memory and embedded devices such
as the ESP32 typically rely on external flash. Flash memory has
to be written sector-wise and flash typically uses a sector size of
4 kB. To erase one sector of a commonly used and quick flash chip
takes about 50ms. A similar fast flash chip is also deployed on our
ESP32 boards [22]. Other flash chips require even 100ms to erase
a sector [21]. Since a successful attack requires at least one write,
the minimal duration of any attack is twrite , so tattack ≥ twrite .
The availability of hashing modules and flash speeds differ. Hence,
hardware restrictions, i.e. twrite , need to be considered for every

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2900

https://github.com/vanhauser-thc/thc-hydra

device. In the specific case of our ESP32 board a sector write to the
flash requires 50ms [22] but a single hash iteration only takes 10ms
(c.f., Table 1). As such, memory manipulation attacks are detected
by RealSWATT for all modern embedded devices shipped with a
hashing module.

8.2 Common Attack Scenarios
Compressing data on the device. A compression attack is a typ-
ical technique to undermine software-based attestation [46]. The
idea is to use compression mechanisms on the attested device to
free up memory that is not covered by the attestation and can be
used to store software that remains undetected from the attesta-
tion. In the worst-case, the attacker decompresses malicious data
on-the-fly at attestation time. Since RealSWATT targets multicore
processor architectures, the attacker has the capability to perform
the attestation and decompression in parallel. However, a com-
pression attack requires rewriting parts of the memory. However,
these write accesses take more time than the interval thash , i.e.,
twrite > thash still holds. Hence, we conclude that it is not possible
to rewrite parts of the memory by means of a compressed version
without detection.

In addition, RealSWATT deploys further techniques to prevent
compression attacks. Since it is challenging to compress random
data [46, 59], we fill free memory with random data provided and
controlled by the verifier. The attestation reports include the ran-
dom data thereby allowing the verifier to easily detect modifications.
Furthermore, due to continuous attestation, the device is attested
frequently (every 10ms as shown in Table 1). Thus, the attacker can
only guess whether a data segment is currently being attested.
TOCTOU. It is well-known that existing (remote) attestation sche-
mes are susceptible to Time-of-Check Time-of-Use (TOCTOU) at-
tack [53]. An adversary capable of restoring the memory in a given
time frame, before the next attestation, will remain undetected.
However, in contrast to known attestation schemes RealSWATT sig-
nificantly reduces the adversary’s success by leveraging the follow-
ing:

(1) The attestation continuously runs in the background, check-
ing the complete memory in regular intervals while the device is
operating normally. (2) The attestation starts from an arbitrary
memory position (derived from the nonce). The attacker can nei-
ther predict nor influence this starting point. Halting the attestation
core or process will be detected by timing thresholds.

Existing software-based attestation techniques like SWATT [46]
interrupt normal operation for attestation. This is not an option
for realtime systems, as these interruptions conflict with realtime
requirements. As RealSWATT attestation runs in the background,
the TOCTOU problem is limited to the interval in which each mem-
ory area is attested. This time span thash is very short due to the
optimized implementation (c.f., Section 8.1), so that manipulations
of the flash memory can be detected. This also implies that no pseu-
dorandom memory traversal is required, as used in SWATT [46].
Memory Manipulation. Another strategy to avoid detection is
to use, create, or find unmonitored memory, e.g., the RAM memory.
The attacker could also try to change the memory layout by ma-
nipulating the partition table. In general, moving malicious code
to RAM is not feasible. Code usually resides in flash memory and

RAM is therefore typically marked as non-executable [27]. Further-
more, manipulating the partition table is also a highly challenging
task [29]. In the case of the ESP32 several preconditions must be
met: first, SPI Dangerous Write must be enabled. Second, an entire
flash page would need to be rewritten. Third, partition changes
and rewrites are typically implemented by OTA (Over-the-Air Up-
date) [28], which inevitably causes a reboot. Thus, manipulating
the partition table is unfeasible for an attacker. Note that runtime
reconfiguration of memory permissions is also not possible because
the MMU (memory management unit) is privileged and set during
boot.

8.3 Attacks on Attestation Protocol
There are two attack strategies to undermine the underlying se-
curity assumptions of the protocol used by RealSWATT: (1) using
multiple cores, and (2) optimizing the implementation of the attes-
tation loop. We discuss how RealSWATT mitigates both of them.
Usingmultiple cores to break attestation. The attacker can use
the full computing power of the device, while RealSWATT has to
obey strict limitations due to realtime-critical jobs. The attacker
could ignore realtime jobs and try to use more than a single core
for hash calculations. In case hash calculation can be accelerated
through parallelization, the attacker gains an attack window. How-
ever, the attestation process still cannot be accelerated using multi-
ple processor cores since we use a Merkle–Damgård construction
for hashing (e.g., SHA-1, SHA-2). This method sequentially hashes
each block and requires the previous block as input. Thus, an at-
tacker cannot usemultiple processor cores to parallelize this process.
The Merkle–Damgård hash construction is strictly sequential.
Optimizing implementation of attestation loop. Software-based
attestation (SWATT) [46] is based on the assumption that the im-
plementation of the attestation algorithm cannot be accelerated
by an attacker. Thus, an optimal implementation of the attestation
function and its main component, the hash function, is required.
Algorithms are complex and there are alternative ways to imple-
ment the same functionality. Castelluccia et al. demonstrated that
SWATT [46] can be undermined using a faster implementation of
the attestation function [12]. As described in Section 3, this gives
an attacker a time slot, where the attestation does not run although
the verifier assumes the prover is currently running the attesta-
tion function. RealSWATT addresses this issue using standard hash
functions like SHA-256, for which optimized implementations or
even hardware acceleration exist, as elaborated in Section 5.1. As
these hash functions are widely and have been well-studied in the
past [38], it is unlikely that there exist implementations that sig-
nificantly improve the execution speed; especially compared to
hardware-assisted hash functions as we use in RealSWATT. Since
we use global and standardized hashing algorithms (SHA-2) [38],
highly optimized software implementations are available in case
the target platform features no hardware hashing module.

8.4 Network-based Attacks
Connected devices are inherently prune to network-based attacks.
Common practical issues in remote attestation, such as offloading
the attestation process, have been considered in the design as dis-
cussed in Section 5. In the following, we explain network-based

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2901

attacks remote attestation faces and how these issues have been
addressed.
Shifting the attestation to another device. The IoT gateway
prevents external communication. Hence, it is neither possible
to leak attestation data (e.g., the nonce) to a remote party nor to
receive attestation reports from outside the network. All IoT devices
in the network are covered by the attestation, so there are no free
resources to perform an attestation on behalf of another device.
Delaying communication. The attacker can delay the communi-
cation between the prover and the verifier. As some variation in
the transmission time is normal, this would remain undetected to
the verifier. While this would be a critical problem in traditional
software-based attestation, RealSWATT attestation is designed to
work with delays as imposed by communication for example using
standard Wi-Fi networks. The concept of continuous attestation en-
sures that even if communication is delayed, the attestation process
remains unaffected. Continuous attestation sends a second nonce
before the previous attestation process has finished. The verifier
times the second nonce such that it should arrive even under the
worst expected network latency (see Section 5.1). All attestation
runs on the prover are continuously running and have constant
attestation time tatt . If communication is intentionally delayed by
the attacker, the verifier will detect the shift in communication
delay and the attestation time will exceed the threshold ts .

9 RELATEDWORK
There exist different approaches to implement remote attestation
as we review in the following:
Hardware-based. Trusted hardware that can provide trusted exe-
cution environments (TEE) allows to securely execute computations
and store information on an unstrusted or potentially compromised
system. Examples for platforms with TEEs are Intel SGX [16] and
Arm TrustZone ARM Limited. Trusted computing technology is
integrated into many sophisticated off-the-shelf processors as they
are used in servers, personal computers, and smartphones. In con-
trast, less powerful processors as they are used in embedded and
IoT devices do not feature such TEEs due to cost reasons. TEEs can
be used to reliably monitor the data and execution in the normal
world from within the secure world. Hence, the monitoring cannot
be influenced. For example Abera et al. proposed C-FLAT, a frame-
work to remotely verify the control flow of applications running
in the normal world using the TrustZone of an Arm processor [2].
However, these trusted computing modules are often not available
on legacy embedded devices due to cost reasons.
Software-based. Software-based attestation (SWATT) works un-
der the assumption that the attacker cannot change the target
device and its computing capabilities. The attacker is not able to
introduce further computing resources, hence the execution time of
specific operations is bound. This circumstance allows to measure
the response time of the prover: if it takes longer than expected,
the system is likely compromised. The attacker cannot forge these
results as this would require further operations, so that the response
cannot be sent in time [46]. However, software-based remote at-
testation works upon strict timing assumptions on the response of
the prover and the verifier. This induces many requirements upon
the implementation of attestation logic and communication [7, 46].

As software-based remote attestation requires no customized hard-
ware, it is commonly used in sensor networks [53].
Hybrid.Hybrid attestation schemes describe a hardware-/software
co-design, that performs remote attestation in software supported
by custom hardware extensions. These hardware extensions al-
low to securely store keys or track the execution of commands
on the processor. This gives a root of trust, so that the attested
device cannot be emulated or replaced by the adversary. There exist
various proposals for attestation to use customized hardware to
provide remote attestation functionality [10, 20, 34, 40]. SMART
is the first attestation scheme that builds upon simple customized
hardware [20]. While the attestation is performed in software, the
key is protected using custom hardware functionality so that it is
not leaked during attestation.

While SMART uses a small extension to protect the keys used
for remote attestation, it lacks more sophisticated features like the
ability to update the attestation code. Furthermore, SMART requires
the attestation to run atomically, which is a major drawback in
many application scenarios where the attested device may not
be interrupted by the attestation process, e.g., realtime systems.
TrustLite does not have these limitations, as it allows to isolate
different software modules with hardware modifications of the
Memory Protection Unit (MPU) and the exception engine of the
processor [34]. TyTan builds upon TrustLite and extends it such
that it is able to run applications with realtime requirements [10].

VRASED is a formally verified hardware/software co-design for
remote attestation [40] and allows to verify the state of device
memory. It has been extended to also verify reset, erasure and
update of devices [41] and also attest that code has actually been
executed [42].

While these hybrid attestation schemes have many advantages,
the required custom hardware extensions are not available on al-
ready manufactured legacy devices. The creation of customized
hardware is complex and adds significant costs to the manufac-
turing. Embedded systems often use off-the-shelf microprocessors
with generic hardware modules. For the implementation of a hy-
brid attestation scheme the device itself needs to be replaced. Thus,
hybrid attestation is no viable option for legacy devices.

10 CONCLUSION AND SUMMARY
In this paper, we presented RealSWATT, a purely software-based
remote attestation framework that allows to attest even systems
with realtime constraints. RealSWATT is designed towork on legacy
devices in real-world IoT scenarios. We achieve this by introducing
continuous attestation, which constantly performs attestation in
the background without interfering with normal operation of the
system by using a dedicated processor core. In the evaluation, we
show that RealSWATT attestation actually has predictable and
constant runtime, a mandatory requirement for software-based
attestation. We implemented RealSWATT into a syringe pump, a
critical medical device with realtime requirements. In an end-to-
end experiment, we detected a compromise of the syringe pump
via an insecure configuration interface. To show practicability we
integrated RealSWATT into ESPEasy, an open-source framework
to use on commercial off-the-shelf IoT devices.

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2902

APPENDIX
In the appendix, we give implementation details on the prover,
verifier and test bed. We provide additional information on the
integration of RealSWATT into the syringe pump. Furthermore, we
explain the measurements of the power consumption of the syringe
pump with and without the attestation to quantify the increase of
the power consumption due to the attestation.

A IMPLEMENTATION DETAILS
A.1 Prover and Verifier
The attestation is implemented as two separate tasks, one receiving
the attestation requests from the verifier, and one task to perform
the actual attestation. Both tasks are pinned to the dedicated and
previously unused processor core to ensure no side effects between
the attestation and the realtime operation of the attested device. We
verify that the attestation runs continuously without distractions
from the realtime operation. RealSWATT attestation has the possi-
bility to configure the runtime of the attestation. The runtime needs
to balance between delay (compromise detection of the attested
device) and communication overhead. This is done by configuring
the number of repetitions of the hashing function. More repetitions
invoke a longer run time. At the end of each attestation run, the
result is sent to the verifier which then checks its validity.

When integrating RealSWATT attestation into a new device, the
runtime of the attestation function has to be determined and the
number of repetitions has to be configured. In Section 7 we perform
a detailed measurement of runtime and communication overhead
on the implementation of RealSWATT.

As mentioned the verifier receives the attestation reports and
checks its validity. The verifier implements the RealSWATT attes-
tation protocol and sends two nonces to the prover. Each nonce
triggers an attestation run. It is the verifier’s responsibility to time
the transmission of these nonces. The design of the protocol is ex-
plained in Section 5.2. In Section 7, we elaborate on how to correctly
time these message intervals and determine the thresholds for the
attestation.

There are two available implementations for the verifier. First, we
used Python, later we opted for C++. Since Python is an interpreter-
based programming language the Python implementation of the
verifier can be used without adjustment across a wide range of
devices. The only requirement is that a Python interpreter for the
device is available. However we assumed a worse network response
time than with a native C or C++ implementation. In order to check
the influence of the programming language we also implemented
the verifier as a native C++ application. Contrary to our expecta-
tions, the programming language had little to no impact on the
measured network response times.

B REAL-WORLD DEVICES
B.1 Syringe Pump
In the following, we explain real-world details of the attestation
based on the syringe pump use-case implemented on the ESP32.
The ESP32 allows for the custom creation of partitions. A developer
can define memory sections on the chip in a data structure called

partition table [29]. The partition structure depends on the imple-
mented application and the required functionalities. For example
if an update mechanism such as over-the-air (OTA) update [28]
is used, additional partitions are required. A simple application
with no OTA update functionality consists of the following three
partitions:

Listing 1: Default ESP32 Partition without OTA [29]

1 # ESP-IDF Partition Table
2 # Name, Type, SubType, Offset, Size,Flags
3 nvs, data, nvs, 0x9000, 0x6000,
4 phy_init, data, phy, 0xf000, 0x1000,
5 factory, app, factory, 0x10000, 1M,

The partitions are by default (1) factory, (2) phy_init and (3)
nvs. Partition (1) factory contains the application code, i.e., the exe-
cutable. The second partition (2) phy_init contains data required for
the physical initialization process of the device. The third partition
(3) nvs stores the configuration of the actual application.

The syringe pump is implemented with this default partition
mapping. The code is saved on the factory partition and the con-
figuration data is included in the nvs partition. The syringe pump
comes with multiple internal and external configuration options.
Internal configurations cover physical characteristics of the syringe
pump such as the length of the syringe barrel:

Listing 2: Internal configuration of the syringe pump

1 typedef struct {
2 uint16_t syringe_volume_ml;
3 uint16_t syringe_barrel_length_mm;
4 float threaded_rod_pitch;
5
6 } internal_settings;

The internal configuration is required to transpose configured
information such as the amount of medicine into the precise amount
of rotation steps of the stepper motor driving the threaded rod of
the pump. The syringe pump has also its usual medical settings
available to the medical personal such as injection intervals and
amount of medicine:

Listing 3: Medical configuration of the syringe pump

1 typedef struct {
2 uint32_t injections_ms;
3 uint16_t dosage_ml;
4 uint8_t bolus_step_index;
5 } medical_settings;

In order to attest the syringe pump the data from all three par-
titions factory, phy_init, and nvs is read and concatenated. Then,
we append the nonce and feed this data into the hardware hashing
module of the ESP32. The resulting hash value is then repeatedly re-
hashed and sent to the verifier. Since the verifier knows the original
syringe pump code as well as the physical initialization parameters
and the configured options, it can verify the correct state of the
syringe pump. The verifier can either integrate a device configu-
ration manager or be notified by an external one about legitimate
configuration changes. In our use-case we have integrated this
functionality into the verifier.

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2903

The next nonce is sent by the verifier such that it arrives at the
prover just before the end of the expected attestation time, even
with worst-case network latency. As explained in Section 5.2, we
have chosen 100 repetitions, such that tatt = 1000ms ≫ tr t t as
Table 1 shows. The verifier is configured to send the second nonce
750ms after the previous nonce.

B.2 Power Consumption
In order to evaluate the measured power consumption, we have
checked the corresponding data sheet [26] of our ESP32 evaluation
board. The data sheet provides the expected power consumption in
respect to operating mode of the chip for both the processor and
wireless module.

The power consumption is dominated by the wireless communi-
cation module. Its power consumption varies between transmission
mode. It ranges from 95mA and 130mA to receive and transmit
via Bluetooth; up to 100mA to receive and 240mA to transmit via
Wi-Fi IEEE 802.11b/g/n. However, this power consumption is only
present during the regular send and receive intervals and thus needs
to be treated as a peak power consumption.

The power consumption of the CPU is depending on its op-
erating frequency and overall usage of the CPU. For the testing,
we have configured the syringe pump to operate at the full CPU
clock of 240MHz. This CPU frequency has the highest difference
between no CPU usage (30mA) and full CPU usage (68mA). The
naive assumption would be at least a 50 percent usage of the CPU
(full utilization of the second core) for attestation, resulting in a
significantly higher power consumption. However, our implemen-
tation used the integrated hardware hashing unit, which is more
power-efficient compared to a software-based calculation of the
hashes.

We furthermore observed that the additional network traffic for
the attestation is negligible for devices which already communicate
on a regular basis. The syringe pump in our case study provides
a remote command interface. Thus, the wireless communication
module of this device is already in use. So sending and receiving
attestation messages only slightly increases the overall power con-
sumption.

ACKNOWLEDGMENTS
This work has been partially funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation)—SFB 1119—
236615297 within project S2. This work was supported by the DFG
Priority Program SPP 2253 Nano Security (Project RAINCOAT—
Number: 440059533). Part of this workwas conductedwithinHuawei
Open Lab for Sustainable Security and Safety (OpenS3Lab) at Tech-
nical University Darmstadt. We thank the anonymous reviewers
for their valuable feedback.

REFERENCES
[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2009. Control-flow

integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC) 13, 1 (2009).
https://doi.org/10.1145/1609956.1609960

[2] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew
Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. C-FLAT: Control-Flow
Attestation for Embedded Systems Software. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. ACM.
https://doi.org/10.1145/2976749.2978358

[3] Samer Al-Kiswany, Abdullah Gharaibeh, Elizeu Santos-Neto, George Yuan, and
Matei Ripeanu. 2008. StoreGPU: exploiting graphics processing units to
accelerate distributed storage systems. In Proceedings of the 17th International
Symposium on High-Performance Distributed Computing (HPDC-17 2008). ACM.
https://doi.org/10.1145/1383422.1383443

[4] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK:
Security Evaluation of Home-Based IoT Deployments. In IEEE Symposium on
Security and Privacy (SP). IEEE. https://doi.org/10.1109/SP.2019.00013

[5] Anna-senpai. 2017. GitHub - Mirai Source Code. Retrieved 2021-04-09 from
https://github.com/jgamblin/Mirai-Source-Code

[6] ARM Limited. 2009. Security technology building a secure system using
trustzone technology (white paper).

[7] Frederik Armknecht, Ahmad-Reza Sadeghi, Steffen Schulz, and Christian
Wachsmann. 2013. A security framework for the analysis and design of software
attestation. In 2013 ACM SIGSAC Conference on Computer and Communications
Security, CCS’13. ACM. https://doi.org/10.1145/2508859.2516650

[8] AspenCore. 2019. 2019 Embedded Markets Study. Retrieved 2021-05-07 from
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_
Embedded_2019_Embedded_Markets_Study.pdf

[9] Kaitlin Boeckl, Michael Fagan, William Fisher, Naomi Lefkovitz, Katerina Megas,
Ellen Nadeau, Benjamin Piccarreta, Danna O’Rourke, and Karen Scarfone. 2019.
Considerations for Managing Internet of Things (IoT) Cybersecurity and Privacy
Risks. https://doi.org/10.6028/NIST.IR.8228

[10] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian
Wachsmann, and Patrick Koeberl. 2015. TyTAN: tiny trust anchor for tiny
devices. In Proceedings of the 52nd Annual Design Automation Conference. ACM.
https://doi.org/10.1145/2744769.2744922

[11] Ferdinand Brasser, Kasper Bonne Rasmussen, Ahmad-Reza Sadeghi, and Gene
Tsudik. 2016. Remote attestation for low-end embedded devices: the prover’s
perspective. In Proceedings of the 53rd Annual Design Automation Conference,
DAC 2016. ACM. https://doi.org/10.1145/2897937.2898083

[12] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Soriente.
2009. On the difficulty of software-based attestation of embedded devices. In
Proceedings of the 2009 ACM Conference on Computer and Communications
Security, CCS 2009. ACM. https://doi.org/10.1145/1653662.1653711

[13] Chien-Ying Chen, Monowar Hasan, and Sibin Mohan. 2018. Securing Real-Time
Internet-of-Things. Sensors 18, 12 (2018). https://doi.org/10.3390/s18124356

[14] Boheung Chung, Jeongyeo Kim, and Youngsung Jeon. 2016. On-demand security
configuration for IoT devices. In 2016 International Conference on Information
and Communication Technology Convergence (ICTC). IEEE.

[15] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. 2016. A Survey of Man In The
Middle Attacks. IEEE Communications Surveys & Tutorials 18, 3 (2016).
https://doi.org/10.1109/COMST.2016.2548426

[16] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.
ePrint Arch. (2016). http://eprint.iacr.org/2016/086

[17] Sanjeev Das, Wei Zhang, and Yang Liu. 2016. A fine-grained control flow
integrity approach against runtime memory attacks for embedded systems. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 24, 11 (2016).
https://doi.org/10.1109/TVLSI.2016.2548561

[18] Robert I. Davis and Alan Burns. 2011. A survey of hard real-time scheduling for
multiprocessor systems. Comput. Surveys 43, 4 (2011).
https://doi.org/10.1145/1978802.1978814

[19] Ghada Dessouky, Tigist Abera, Ahmad Ibrahim, and Ahmad-Reza Sadeghi. 2018.
LiteHAX: lightweight hardware-assisted attestation of program execution. In
Proceedings of the International Conference on Computer-Aided Design, ICCAD
2018. ACM. https://doi.org/10.1145/3240765.3240821

[20] Karim Eldefrawy, Gene Tsudik, Aurélien Francillon, and Daniele Perito. 2012.
SMART: Secure and Minimal Architecture for (Establishing Dynamic) Root of
Trust. In 19th Annual Network and Distributed System Security Symposium, NDSS
2012. The Internet Society. https://www.ndss-symposium.org/ndss2012/smart-
secure-and-minimal-architecture-establishing-dynamic-root-trust

[21] elm-tech. 2021. GD25Q32 Datasheet. Retrieved 2021-07-26 from
https://chipmaster.pro/wp-content/uploads/2019/04/GD25Q32.pdf

[22] elm-tech. 2021. GD25Q32C Datasheet. Retrieved 2021-07-26 from http:
//www.elm-tech.com/en/products/spi-flash-memory/gd25q32/gd25q32.pdf

[23] Mohammed Faisal Elrawy, Ali Ismail Awad, and Hesham F. A. Hamed. 2018.
Intrusion detection systems for IoT-based smart environments: a survey. Journal
of Cloud Computing 7 (2018). https://doi.org/10.1186/s13677-018-0123-6

[24] Espressif Systems. 2018. Espressif Achieves the 100-Million Target for IoT Chip
Shipments. online. Retrieved 2021-05-07 from
https://www.espressif.com/en/news/Espressif_Achieves_the_Hundredmillion_
Target_for_IoT_Chip_Shipments

[25] Espressif Systems. 2020. ESP32 Technical Reference Manual. online. Retrieved
2021-05-07 from https://www.espressif.com/sites/default/files/documentation/
esp32_technical_reference_manual_en.pdf

[26] Espressif Systems. 2021. ESP32 Series Datasheet. online. Retrieved 2021-05-03
from https://www.espressif.com/sites/default/files/documentation/esp32_
datasheet_en.pdf

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2904

https://doi.org/10.1145/1609956.1609960
https://doi.org/10.1145/2976749.2978358
https://doi.org/10.1145/1383422.1383443
https://doi.org/10.1109/SP.2019.00013
https://github.com/jgamblin/Mirai-Source-Code
https://doi.org/10.1145/2508859.2516650
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://doi.org/10.6028/NIST.IR.8228
https://doi.org/10.1145/2744769.2744922
https://doi.org/10.1145/2897937.2898083
https://doi.org/10.1145/1653662.1653711
https://doi.org/10.3390/s18124356
https://doi.org/10.1109/COMST.2016.2548426
http://eprint.iacr.org/2016/086
https://doi.org/10.1109/TVLSI.2016.2548561
https://doi.org/10.1145/1978802.1978814
https://doi.org/10.1145/3240765.3240821
https://www.ndss-symposium.org/ndss2012/smart-secure-and-minimal-architecture-establishing-dynamic-root-trust
https://www.ndss-symposium.org/ndss2012/smart-secure-and-minimal-architecture-establishing-dynamic-root-trust
https://chipmaster.pro/wp-content/uploads/2019/04/GD25Q32.pdf
http://www.elm-tech.com/en/products/spi-flash-memory/gd25q32/gd25q32.pdf
http://www.elm-tech.com/en/products/spi-flash-memory/gd25q32/gd25q32.pdf
https://doi.org/10.1186/s13677-018-0123-6
https://www.espressif.com/en/news/Espressif_Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments
https://www.espressif.com/en/news/Espressif_Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_technical_reference_manual_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

[27] Espressif Systems. 2021. Memory Capabilities. Retrieved 2021-07-06 from
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-
reference/system/mem_alloc.html

[28] Espressif Systems. 2021. Over The Air Updates (OTA). online. Retrieved
2021-05-06 from https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-
reference/system/ota.html

[29] Espressif Systems. 2021. Partition Tables. online. Retrieved 2021-05-06 from
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-
guides/partition-tables.html

[30] FreeRTOS. 2021. GitHub - FreeRTOS. Retrieved 2021-05-07 from
https://github.com/FreeRTOS/FreeRTOS/tree/master

[31] David Geer. 2005. Industry Trends: Chip Makers Turn to Multicore Processors.
Computer 38, 5 (2005). https://doi.org/10.1109/MC.2005.160

[32] Dan Goodin. 2016. Brace yourselves—source code powering potent IoT DDoSes
just went public. Retrieved 2021-04-09 from
http://arstechnica.com/security/2016/10/brace-yourselves-source-code-
powering-potent-iot-ddoses-just-went-public/

[33] ITU-T. 2012. Overview of the Internet of things. Recommendation Y.2060.
International Telecommunication Union.

[34] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan.
2014. TrustLite: a security architecture for tiny embedded devices. In Ninth
Eurosys Conference 2014, EuroSys 2014. ACM.
https://doi.org/10.1145/2592798.2592824

[35] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak N. Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, and Stefan Savage. 2010. Experimental Security Analysis of a
Modern Automobile. In IEEE Symposium on Security and Privacy (SP). IEEE.
https://doi.org/10.1109/SP.2010.34

[36] Ralph Charles Merkle. 1979. Secrecy, authentication, and public key systems.
Stanford University.

[37] National Institute of Standards and Technology. 2008. Secure Hash Standard
(FIPS 180-3). Retrieved 2021-09-14 from
https://csrc.nist.gov/publications/detail/fips/180/3/archive/2008-10-31

[38] National Institute of Standards and Technology. 2015. Secure Hash Standard
(SHS). Retrieved 2021-09-12 from
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

[39] Christian Niesler, Sebastian Surminski, and Lucas Davi. 2021. HERA:
Hotpatching of Embedded Real-time Applications. In 28th Annual Network and
Distributed System Security Symposium, NDSS 2021. The Internet Society.
https://www.ndss-symposium.org/ndss-paper/hera-hotpatching-of-
embedded-real-time-applications/

[40] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Michael
Steiner, and Gene Tsudik. 2019. VRASED: A Verified Hardware/Software
Co-Design for Remote Attestation. In 28th USENIX Security Symposium, USENIX
Security 2019. USENIX Association.

[41] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, and Gene
Tsudik. 2019. PURE: Using Verified Remote Attestation to Obtain Proofs of
Update, Reset and Erasure in low-End Embedded Systems. In Proceedings of the
International Conference on Computer-Aided Design, ICCAD 2019. ACM.
https://doi.org/10.1109/ICCAD45719.2019.8942118

[42] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, and Gene
Tsudik. 2020. APEX: A Verified Architecture for Proofs of Execution on Remote
Devices under Full Software Compromise. In 29th USENIX Security Symposium,
USENIX Security 2020. USENIX Association.
https://www.usenix.org/conference/usenixsecurity20/presentation/nunes

[43] OWASP. 2018. Internet of Things (IoT) Top 10 2018. Retrieved 2021-05-06 from
https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf

[44] Davide Quarta, Marcello Pogliani, Mario Polino, Federico Maggi, Andrea Maria
Zanchettin, and Stefano Zanero. 2017. An Experimental Security Analysis of an
Industrial Robot Controller. In IEEE Symposium on Security and Privacy (SP).
IEEE. https://doi.org/10.1109/SP.2017.20

[45] Selma Saidi, Rolf Ernst, Sascha Uhrig, Henrik Theiling, and Benoît Dupont de
Dinechin. 2015. The shift to multicores in real-time and safety-critical systems.
In 2015 International Conference on Hardware/Software Codesign and System
Synthesis, CODES+ISSS 2015. IEEE.
https://doi.org/10.1109/CODESISSS.2015.7331385

[46] Arvind Seshadri, Adrian Perrig, Leendert van Doorn, and Pradeep K. Khosla.

2004. SWATT: SoftWare-based ATTestation for Embedded Devices. In 2004 IEEE
Symposium on Security and Privacy (S&P 2004). IEEE Computer Society.
https://doi.org/10.1109/SECPRI.2004.1301329

[47] Weidong Shi, Hsien-Hsin S. Lee, Laura Falk, and Mrinmoy Ghosh. 2006. An
Integrated Framework for Dependable and Revivable Architectures Using
Multicore Processors. (2006). https://doi.org/10.1109/ISCA.2006.8

[48] Devu Manikantan Shila, Penghe Geng, and Teems Lovett. 2016. I can detect you:
Using intrusion checkers to resist malicious firmware attacks. In 2016 IEEE
Symposium on Technologies for Homeland Security (HST). IEEE.

[49] Kang G. Shin and Parameswaran Ramanathan. 1994. Real-Time Computing: A
New Discipline of Computer Science and Engineering. In Proceedings of IEEE,
Special Issue on Real-Time Systems. IEEE.

[50] Spectra Industrie-PC und Automation. 2021. Embedded Configuration Manager
(ECM). Retrieved 2021-07-13 from
https://www.spectra.de/cms/splash/embedded-configuration-manager/

[51] Embedded Staff. 2006. Catching the Z-Wave. Retrieved 2021-04-28 from
https://www.embedded.com/catching-the-z-wave/

[52] John A. Stankovic and Raj Rajkumar. 2004. Real-Time Operating Systems. Real
Time Systems 28, 2-3 (2004). https://doi.org/10.1023/B:TIME.0000045319.20260.73

[53] Rodrigo Vieira Steiner and Emil Lupu. 2016. Attestation in Wireless Sensor
Networks: A Survey. ACM Computing Surveys (CSUR) 49, 3 (2016).
https://doi.org/10.1145/2988546

[54] Keith Stouffer, Victoria Pillitteri, Suzanne Lightman, Marshall Abrams, and
Adam Hahn. 2015. Guide to Industrial Control Systems (ICS) Security.
https://doi.org/10.6028/NIST.SP.800-82r2

[55] Victor van der Veen, Dennis Andriesse, Enes Göktas, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical
Context-Sensitive CFI. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM.
https://doi.org/10.1145/2810103.2813673

[56] Bas Wijnen, Emily J Hunt, Gerald C Anzalone, and Joshua M Pearce. 2014.
Open-source syringe pump library. PloS one 9, 9 (2014).

[57] Reinhard Wilhelm and Jan Reineke. 2012. Embedded systems: Many cores -
Many problems. In 7th IEEE International Symposium on Industrial Embedded
Systems, SIES 2012. IEEE. https://doi.org/10.1109/SIES.2012.6356583

[58] Ally Winning. 2019. Number of automotive ECUs continues to rise. online.
Retrieved 2021-05-03 from https://www.eenewsautomotive.com/news/number-
automotive-ecus-continues-rise

[59] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. 2007. Distributed
Software-based Attestation for Node Compromise Detection in Sensor
Networks. In 26th IEEE Symposium on Reliable Distributed Systems (SRDS 2007).
IEEE Computer Society. https://doi.org/10.1109/SRDS.2007.31

[60] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Mihai Christodorescu, and Lui Sha.
2017. Learning Execution Contexts from System Call Distribution for Anomaly
Detection in Smart Embedded System. In Proceedings of the Second International
Conference on Internet-of-Things Design and Implementation (IoTDI). ACM.
https://doi.org/10.1145/3054977.3054999

[61] Man-Ki Yoon, Sibin Mohan, Jaesik Choi, Jung-Eun Kim, and Lui Sha. 2013.
SecureCore: A multicore-based intrusion detection architecture for real-time
embedded systems. In 19th IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS 2013. IEEE Computer Society.
https://doi.org/10.1109/RTAS.2013.6531076

[62] Man-Ki Yoon, Lui Sha, Sibin Mohan, and Jaesik Choi. 2015. Memory heat map:
anomaly detection in real-time embedded systems using memory behavior. In
Proceedings of the 52nd Annual Design Automation Conference. ACM.
https://doi.org/10.1145/2744769.2744869

[63] Bruno Bogaz Zarpelão, Rodrigo Sanches Miani, Cláudio Toshio Kawakani, and
Sean Carlisto de Alvarenga. 2017. A survey of intrusion detection in Internet of
Things. Journal of Network and Computer Applications 84 (2017).
https://doi.org/10.1016/j.jnca.2017.02.009

[64] Shaza Zeitouni, Ghada Dessouky, Orlando Arias, Dean Sullivan, Ahmad Ibrahim,
Yier Jin, and Ahmad-Reza Sadeghi. 2017. ATRIUM: Runtime attestation resilient
under memory attacks. In 2017 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD 2017. IEEE.
https://doi.org/10.1109/ICCAD.2017.8203803

[65] Kim Zetter. 2015. A Cyberattack Has Caused Confirmed Physical Damage for
the Second Time Ever. Retrieved 2021-04-09 from
https://www.wired.com/2015/01/german-steel-mill-hack-destruction/

Session 11A: Attestation and Firmware Security CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2905

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/mem_alloc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/mem_alloc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/partition-tables.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/partition-tables.html
https://github.com/FreeRTOS/FreeRTOS/tree/master
https://doi.org/10.1109/MC.2005.160
http://arstechnica.com/security/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
http://arstechnica.com/security/2016/10/brace-yourselves-source-code-powering-potent-iot-ddoses-just-went-public/
https://doi.org/10.1145/2592798.2592824
https://doi.org/10.1109/SP.2010.34
https://csrc.nist.gov/publications/detail/fips/180/3/archive/2008-10-31
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.ndss-symposium.org/ndss-paper/hera-hotpatching-of-embedded-real-time-applications/
https://www.ndss-symposium.org/ndss-paper/hera-hotpatching-of-embedded-real-time-applications/
https://doi.org/10.1109/ICCAD45719.2019.8942118
https://www.usenix.org/conference/usenixsecurity20/presentation/nunes
https://owasp.org/www-pdf-archive/OWASP-IoT-Top-10-2018-final.pdf
https://doi.org/10.1109/SP.2017.20
https://doi.org/10.1109/CODESISSS.2015.7331385
https://doi.org/10.1109/SECPRI.2004.1301329
https://doi.org/10.1109/ISCA.2006.8
https://www.spectra.de/cms/splash/embedded-configuration-manager/
https://www.embedded.com/catching-the-z-wave/
https://doi.org/10.1023/B:TIME.0000045319.20260.73
https://doi.org/10.1145/2988546
https://doi.org/10.6028/NIST.SP.800-82r2
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.1109/SIES.2012.6356583
https://www.eenewsautomotive.com/news/number-automotive-ecus-continues-rise
https://www.eenewsautomotive.com/news/number-automotive-ecus-continues-rise
https://doi.org/10.1109/SRDS.2007.31
https://doi.org/10.1145/3054977.3054999
https://doi.org/10.1109/RTAS.2013.6531076
https://doi.org/10.1145/2744769.2744869
https://doi.org/10.1016/j.jnca.2017.02.009
https://doi.org/10.1109/ICCAD.2017.8203803
https://www.wired.com/2015/01/german-steel-mill-hack-destruction/

	Abstract
	1 Introduction
	2 Background
	2.1 Realtime Systems
	2.2 Remote Attestation

	3 Problem Statement
	4 System and Threat Model
	4.1 System Model
	4.2 Threat Model

	5 Concept of RealSWATT Attestation
	5.1 Design Considerations
	5.2 Attestation Scheme
	5.3 IoT Network Architecture

	6 Implementation of RealSWATT
	6.1 Prover and Verifier
	6.2 Testbed
	6.3 Integrating RealSWATT

	7 Evaluation
	7.1 Timing
	7.2 Power Consumption
	7.3 Communication Overhead
	7.4 Race Conditions
	7.5 Implementation on Real-World Devices
	7.6 End-to-End Case Study
	7.7 Conclusion of Evaluation

	8 Security Considerations
	8.1 Hardware Restrictions
	8.2 Common Attack Scenarios
	8.3 Attacks on Attestation Protocol
	8.4 Network-based Attacks

	9 Related Work
	10 Conclusion and Summary
	A Implementation Details
	A.1 Prover and Verifier

	B Real-World Devices
	B.1 Syringe Pump
	B.2 Power Consumption

	Acknowledgments
	References

