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Abstract 

The Epidermal Growth Factor system is present in human organs and play important 

role in cell proliferation, differentiation and apoptosis during embryogenesis and 

postnatal development. It has four receptors (EGFR, ErbB-2, ErbB-3 and ErbB-4) and 

numerous ligands. 

ErbB receptors are trans-membrane glycoproteins. Their dimerization leads to 

intracellular kinase activation. As a result, a number of tyrosine residues in the COOH-

terminal portion of ErbB receptors become phosphorylated. Those phosphorylated 

tyrosine residues function as docking sites for cytoplasmic proteins. Recruitment of 

proteins initiates intracellular signalling via several pathways: 1) Ras/Raf/mitogen-

activated protein kinase (MAPK) pathway (regulates cell proliferation and survival), 2) 

Phosphatidylinositol 3-kinase (PI3K)/Akt pathway (regulates cell growth, apoptosis, 

tumour invasion, migration and resistance to chemotherapy), 3) Signal transducers and 

activators of transcription (STAT) pathway (regulates oncogenesis and tumour 

progression), 4) Src Kinase pathway (regulates cell proliferation, migration, adhesion, 

angiogenesis and immune function), 5) Phospholipase Cγ/protein kinase C pathway. 

Dysregulation of the Epidermal Growth Factor system signalling network is 

implicated in the pathogenesis of various disorders. Especially in cancer, it becomes 

hyperactivated with various mechanisms (ligand overproduction, receptor 

overproduction, constitutive receptor activation). It is also contributes in proliferation, 

transformation, angiogenesis, migration and invasion. 
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During menstrual cycle, ErbB receptors have different levels in normal 

endometrium. Moreover due to the inactive status of postmenopausal endometrium, it is 

expectable to find significantly higher expression of the 4 ErbB receptors in endometrial 

cancer tissue. 

Especially in patients with type II endometrial cancer (papillary serous or clear cell), 

there are high expression levels of ErbB receptors. Among them, many patients with 

dismal outcome are positive for all ErbB receptors. EGFR overexpression in type I 

endometrial cancer, did not affect disease progression. However EGFR overexpression in 

type II endometrial cancer, associated with high grade and adverse clinical outcome. 

Moreover ΕrbB-2 overexpression, especially in type II endometrial cancer, is an indicator 

of a highly aggressive disease with poor overall survival. 

The potential role of ErbB receptors (especially EGFR and ErbB-2) as targets for 

cancer therapy has been investigated for over 20 years. There are 2 major classes of ErbB 

targeted therapies: 1) anti-ErbB monoclonal antibodies (MoAbs): Anti-EGFR MoAbs 

bind to the extracellular domain of EGFR and prevent ligand binding and ligand 

dependent receptor activation. Anti-ErbB-2 MoAb binds to the extracellular domain of 

ErbB-2 and interferes with ligand independent receptor activation, 2) ErbB-specific 

tyrosine kinase inhibitors (TKIs): TKIs block the binding of ATP to the intracellular 

domain of EGFR and/or ErbB-2 and blocks ErbB activity and subsequent intracellular 

signalling. The overall response rate to ErbB targeted therapies is modest, unless they are 

associated with chemotherapy or radiotherapy. Moreover molecular targeted therapies 

have still shown modest effect, in unselected endometrial cancer patients. However, 

preclinical data suggest that ErbB targeted therapies may be clinically active as adjuvant 

therapy, in well-defined subgroups of type II endometrial cancer patients with EGFR and 

ErbB-2 overexpression. 

1. Introduction

Endometrial cancer (EC) is the most common malignancy of the female genital tract. [1] 

It occurs primarily in postmenopausal women. [1, 2] Overall, about 2.64% of women develop 

EC during their lifetime. [1] In those patients, the most common presenting symptom is 

abnormal uterine bleeding. [2] 

Based on clinical and pathological features, sporadic EC is classified into 2 types. [3,4] 

Type I EC, represents the majority of sporadic EC cases (70-80%). [3,4] It is usually well 

differentiated and endometrioid in histology. [3,5] Type II EC, represents the minority of 

sporadic EC cases (10-20%). [3,4] It is poorly differentiated and usually papillary serous or 

clear cell in histology. [3,5] 

The epidermal growth factor system (EGF system) is present in human organs and play 

important role in cell proliferation, differentiation and apoptosis during embryogenesis and 

postnatal development. [6,7] 

Dysregulation of the EGF signaling network is implicated in cancer, diabetes, 

autoimmune, inflammatory, cardiovascular and nervous system disorders. [6,8] In cancer, the 

EGF system contributes in proliferation, transformation, angiogenesis, migration and 

invasion. [9] 
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2. Epidermal Growth Factor System

2.1. Receptors and Ligands 

The EGF system is present in human organs and play important role during 

embryogenesis and postnatal development. [6,7] 

The EGF system has 4 receptors: epidermal growth factor receptor (EGFR) (also known 

as ErbB-1, HER1), ErbB-2 (also known as HER2, Neu), ErbB-3 (also known as HER3) and 

ErbB-4 (also known as HER4)]. [6,9,10] 

ErbB receptors belong to subclass I of the superfamily of Receptor Tyrosine Kinases 

(RTKs). [6,9] They are trans-membrane glycoproteins with an extracellular region containing 

two ligand-binding domains, an extracellular juxtamembrane region, a hydrophobic 

transmembrane domain and an intracellular domain with tyrosine kinase activity. [10,11] 

They catalyse the transfer of the γ phosphate of ATP to hydroxyl groups of tyrosines in target 

proteins. [12] However, ErbB-3 lacks intrinsic tyrosine kinase activity. [13] 

The extracellular region of ErbB receptors has 4 subdomains (I-IV). Subdomains I and III 

(also called L1 and L2) are important for ligand binding. Subdomain II (also called S1) is 

important for dimerization between two receptors. [14] 

Moreover, EGF system has numerous ligands. According to their affinity for one or more 

ErbB receptors, they divided into three groups: 

1. The first group includes ligands with binding specificity for EGFR: EGF,

transforming growth factor-a (TGF-a) and amphiregulin (AR). [9,10,15]

2. The second group includes ligands with dual binding specificity for EGFR and

ErbB4: betacellulin (BTC), heparin-binding growth factor (HB-EGF) and epiregulin

(EPR). [9,10,15]

3. The third group includes ligands with binding specificity for ErbB-3 and ErbB-4:

neuregulins (NRGs) or heregulins (HRGs). They divided in two subgroups based on

their ability to bind ErbB-3 and ErbB-4 (NRG-1 and NRG-2) or only ErbB-4 (NRG-

3 and NRG-4). [9,10,15-17]

The ligands for ErbB receptors bind to the extracellular domain, resulting in receptor 

activation by homodimer and/or heterodimer formation and the subsequent 

transphosphorylation of tyrosine residues in the cytoplasmic region. [9,10,18] However, no 

direct ligand for ErbB-2 has been described. [9] 

2.2. Receptor Homodimerization and Heterodimerization 

The extracellular region of EGFR, ErbB-3 and ErbB-4 has two distinct conformations: 

1. The closed conformation (inactive) has intramolecular interactions between

subdomains II and IV. [11,19,20]
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2. The open conformation (active), where subdomains I and III form a ligand-binding

pocket that permits interactions between a single ligand and subdomains I and III.

[11,19,20]

In the absence of ligand binding, the extracellular region of EGFR, ErbB-3 and ErbB-4 

has equilibrium between closed and open conformation. [11,19-21] This equilibrium favours 

the closed conformation. [11,21] 

Ligand binding stabilizes extracellular region in the open conformation and leads to the 

formation of both homodimeric and heterodimeric ErbB receptor complexes. [11,20-22] The 

dimeric formation triggers receptor activation by an allosteric mechanism. [23] That leads to 

intracellular kinase activation and initiation of downstream signalling pathways. [10,22,24] 

The extracellular region of ErbB-2 has a conformation not suitable for ligand binding. 

[25] However, this conformation allows extension of the receptor dimerization arm in

subdomain II. [11,25] This suggests that ErbB-2 is capable for ligand independent

dimerization and signalling. [11] ErbB-2 heterodimerizes with other ErbB receptors and it is

their preferred heterodimerization partner. [10,22,25-27] At elevated expression levels ErbB-

2 homodimerizes. [25]

ErbB-3 lacks intrinsic tyrosine kinase activity and therefore can initiate signalling only in 

association with another ErbB receptor, usually ErbB-2. [13] 

Although both homodimerization and heterodimerization result in activation of the EGF 

system network, heterodimers are more potent and mitogenic. [8] ErbB-2 and ErbB-3 

heterodimer is the most transforming and mitogenic receptor complex and increases cell 

motility on stimulation with a ligand. [10,28,29] 

The dimerization of ErbB receptors represents the fundamental mechanism that drives 

transformation [Figure 1]. [30] 

2.3. Signaling Pathways 

Dimerization of ErbB receptors leads to intracellular kinase activation. [10,22,24] As a 

result, a number of tyrosine residues in the COOH-terminal portion of ErbB receptors become 

phosphorylated. [9,25,30] These phosphorylated tyrosine residues function as docking sites 

for cytoplasmic proteins containing Src homology 2 (SH2) and phosphotyrosine binding 

(PTB) domains. [8,10,30,31] Recruitment of proteins initiates intracellular signalling via 

several pathways [Figure 1]: 

2.3.1. Ras / Raf / Mitogen-Activated Protein Kinase (MAPK) Pathway 

The Ras / Raf / mitogen-activated protein kinase (MAPK) pathway regulates cell 

proliferation and survival. [32] Following ErbB phosphorylation, the complex of Grb2 and 

Sos adaptor proteins binds directly or indirectly (through Shc adaptor protein) to specific 

intracellular ErbB docking sites. [33,34] 

This interaction results in conformational modification of Sos, leading to recruitment of 

Ras-GDP and subsequent Ras activation (Ras-GTP). [35] Ras-GTP activates Raf-1 and, 

through intermediate steps, phosphorylates MAPK-1 and MAPK-2. [35,36] Activated 

MAPKs phosphorylate and regulate specific intranuclear transcription factors involved in cell 

migration and proliferation. [32,37,38] 
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Figure 1. ErbB receptors signalling. 

2.3.2. Phosphatidylinositol 3-Kinase (PI3K) / Akt Pathway 

The Phosphatidylinositol 3-kinase (PI3K) / Akt pathway regulates cell growth, apoptosis, 

tumour invasion, migration and resistance to chemotherapy. [39,40] 

PI3K is a dimeric enzyme that composed of a regulatory p85 subunit and a catalytic p110 

subunit. [39] The regulatory p85 subunit, is responsible of the anchorage to ErbB receptor 

specific docking sites, through interaction of its Src homology domain 2 (SH2) with 

phosphotyrosine residues. [41] The catalytic p110 subunit, catalyse the phosphorylation of 

phosphatidylinositol 4, 5 diphosphate at the 3‘ position. [39] Phosphatidylinositol 3, 4, 5 

triphosphate, phosphorylates and activates the protein serine/threonine kinase Akt. [39,42] 

ErbB receptor specific docking sites for p85 subunit are present on ErbB-3 and absent on 

EGFR. [10,43] EGFR dependent PI3K activation occurs through dimerization of EGFR with 

ErbB-3 or through the docking protein Gab-1. [32,44] 

2.3.3. Signal Transducers and Activators of Transcription (STAT) Pathway 

Signal transducers and activators of transcription (STAT) pathway regulates oncogenesis 

and tumour progression. [45] 

STAT proteins interact with phosphotyrosine residues via their Src homology domain 2 

(SH2) and, on dimerization, translocate to the nucleus and induce the expression of specific 

target genes. [46-48] Constitutive activation of STAT proteins (especially STAT-3 and 

STAT-5) is present in various primary cancers. [45,46] 

EGFR regulate STAT pathway through a Janus kinase (JAK) or a JAK independent 

mechanism. [49,50] Augmented activity of EGFR and ErbB-2, promote persistent STAT-3 

activation and subsequently induce oncogenesis and tumour progression. [45] 
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2.3.4. Src Kinase Pathway 

The Src kinase pathway regulates cell proliferation, migration, adhesion, angiogenesis, 

and immune function. 

Src is a member of a 10 gene family (FYN, YES, BLK, FRK, FGR, HCK, LCK, LYN, 

SRMS) of non-RTKs. It is located in the cytoplasm and cross-connected with other signalling 

pathways, such as PI3K and STAT pathway. [51,52] 

Although Src functions independently, it may interact with RTKs such as EGFR. The 

interaction between Src and EGFR may enhance ErbB signalling and may be involved in 

resistance to EGFR targeted therapy. [53,54] 

2.3.5. Phospholipase Cγ / Protein Kinase C Pathway 

Phospholipase Cγ (PLCγ) interacts directly with activated EGFR and ErbB-2 and 

hydrolyses phosphatidylinositol 4, 5 diphosphate to inositol 1, 3, 5 triphosphate (IP3) and 1, 2 

diacylglycerol (DAG). [55,56] 

IP3 is important for intracellular calcium release. DAG is cofactor in protein kinase C 

(PKC) activation. Activated PKC activates MAPK and c-Jun NH2-terminal kinase. [57,58] 

2.4. Dysregulation and Carcinogenesis 

Dysregulation of the EGF system signalling network is implicated in cancer, diabetes, 

autoimmune, inflammatory, cardiovascular, and nervous system disorders. [6,8] 

Figure 2. ErbB-targeted therapies. 
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Loss of control of the cell functions mediated by the EGF system signalling network is a 

hallmark of oncogenesis, in which the balance between cell proliferation and differentiation is 

disturbed. Several types of human cancers associated with dysregulation of the EGF system 

signalling network. [6] 

The EGF system signalling network in cancer becomes hyperactivated with a range of 

mechanisms (ligand overproduction, receptor overproduction, constitutive receptor 

activation). [8,10,59] It is also contributes in proliferation, transformation, angiogenesis, 

migration and invasion. [9] 

2.5. Expression and Clinical Significance in Various Cancers 

Overexpression and structural alterations of EGFR are frequent in head, neck, 

oesophageal, breast, lung, gastric, liver, kidney, colorectal, prostate, bladder and ovarian 

cancer.[6,10,60] They associated with higher grade, disease progression, poor survival and 

resistance to radiotherapy and chemotherapy. [10,61] 

Overexpression of ErbB-2 is frequent in head, neck, breast, lung, pancreatic, 

oesophageal, liver, colorectal, prostate, bladder, ovarian, endometrial and cervical cancer. 

[6,10 62,63] It is an indicator of a more aggressive clinical behaviour. [10 62 63] 

Overexpression of ErbB-3 is frequent in head, neck, breast, gastric, liver, colorectal, 

prostate and ovarian cancer.[6,10] Although ErbB-3 overexpression related with ErbB-2 

positivity and lymph node involvement, a definitive relationship with survival has not been 

established. [64-66] 

Overexpression of ErbB-4 is frequent in head, neck, lung and liver cancer. [6,10] It is 

related with favourable prognosis in breast and bladder cancer. [67-69] 

3. Endometrial Cancer

3.1. Classification and Molecular Biology 

EC is the most common malignancy of the female genital tract. [1] Based on clinical and 

pathological features, sporadic EC is classified into 2 types. [3,4] 

1. Type I EC, represents the majority of sporadic EC cases (70-80%). [3,4] It is usually

well differentiated and endometrioid in histology. [3-5] It is estrogen-related, usually

arises from endometrial hyperplasia, has less aggressive clinical course, and

favourable prognosis. [3,4,70]

Type I EC overexpress genes hormonally regulated during the menstrual cycle and

involved in endometrial homeostasis (MGB2, LTF, END1, MMP11). [71,72] It is

also associated with defects in DNA mismatch repair, microsatelite instability

MLH1/MSH6 and specific mutations in PTEN, K-ras and β-catenin genes. [5,73-76]

2. Type II EC, represents the minority of sporadic EC cases (10-20%). [3,4] It is poorly

differentiated and usually papillary serous or clear cell in histology. [3-5] It is not
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estrogen-related, arises from atrophic endometrium, has aggressive clinical course, 

and propensity for early spread and poor prognosis. [3,77,78] 

Type II EC overexpress genes involved in the regulation of the mitotic spindle 

checkpoint and associated with aneuploidy and aggressive clinical behaviour (STK15, BUB1, 

CCNB2). [71,72,75] It is also associated with mutations in p53 gene, inactivation of p16, 

ErbB-2 amplification/overexpression and decreased expression of E-cadherin. [5,74-76,79-

83] 

3.2. Expression and Clinical Significance of ErbB Receptors 

Due to the inactive status of postmenopausal endometrium, it is expectable to find 

significantly higher expression of the 4 ErbB receptors in EC tissue. [84] 

EGFR, in endometrium, is localized to the basal part of surface epithelial cells, only in 

stromal cells, or both to epithelial and stromal cells. [85-93] It is primarily located to the cell 

membrane but also located to the cytoplasm. [84,90-97] 

In unselected patients with EC, it has been reported EGFR expression in 43-67% of 

cases. [90-92,95-100] In patients with type I EC, it has been reported EGFR expression in 

46% of cases. [92] In patients with type II EC, it has been reported EGFR expression in 34-

50% of cases. [92,93,99] 

Although the clinical significance of EGFR has not been studied well in EC, it may have 

a dual role. [99] EGFR overexpression did not affect disease progression in type I EC, 

although affects disease progression in type II EC. [99] EGFR overexpression in type II EC 

associated with high grade disease and adverse clinical outcome. [92,93,99] 

ErbB-2, in endometrium, is localized baso-laterally in the glands and surface epithelial 

cells. [85,86,89-93,101] It is located to the cell membrane. [62,84,90-93,95,96] 

In unselected patients with EC, ErbB-2 amplification/overexpression represents a rare 

event. [100] In patients with type I EC, it has been reported ΕrbB-2 receptor overexpression 

in 8% of cases and ErbB-2 gene amplification in 1.4-3% of cases. [99,102] Although ΕrbB-2 

amplification/overexpression is more common in patients with type II EC, the exact 

frequency remains controversial. [92,93,99] Moreover, there are racial differences regarding 

ErbB-2 overexpression in patients with type II EC. [103] ErbB-2 overexpression is more 

common in Black race patients with type II EC. [103] 

In patients with papillary serous EC, it has been reported ΕrbB-2 receptor overexpression 

in 18%-80% of cases and ΕrbB-2 gene amplification in 17-47% of cases. 

[82,83,92,93,99,102,104] In patients with clear cell EC, it has been reported ΕrbB-2 receptor 

overexpression in 33% of cases and ΕrbB-2 gene amplification in 16-50% of cases. 

[83,92,93,99,102] ΕrbB-2 overexpression especially in type II EC, is an indicator of a highly 

aggressive disease with poor overall survival. [62,82,92,93,102,105,106] 

ErbB-3, in endometrium, is localized to surface epithelial cells. [89-93,107,108] It is 

located to the cytoplasm, with membrane staining in a minority of samples. [84,90-93,108] 

The clinical significance of ErbB-3 has not been studied well in EC. [84,90-93,108] 

ErbB-4, in endometrium, is localized to epithelial and stromal cells. [89-93,108,109] It is 

located to the cytoplasm, with membrane staining in a minority of samples. [84,90-93,108] 

The clinical significance of ErbB-4 has not been studied well in EC. [84,90-93,108] 
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4. ErbB-Targeted Therapies

4.1. Classification 

EGFR and ErbB-2 as targets for cancer therapy have been investigated for over 30 years. 

[110] Two major classes of ErbB-targeted therapies have been developed [Figure 2]: [61,110]

4.1.1. Anti-ErbB Monoclonal Antibodies (MoAbs) 

1. Anti-EGFR MoAbs (cetuximab, panitumumab) bind to the extracellular domain of

EGFR and prevent ligand binding and ligand dependent receptor activation. [61,110]

2. Anti-ErbB-2 MoAb (trastuzumab) binds to the extracellular domain of ErbB-2 and

interferes with ligand independent receptor activation, but the exact mechanism of

action is still subject of on-going debate. [61,110]

3. Anti-ErbB MoAb (pertuzumab) prevents receptor heterodimerization. [61,110]

4.1.2. ErbB-specific Tyrosine Kinase Inhibitors (TKIs) 

1. EGFR TKIs (gefitinib, erlotinib) block the binding of ATP to the intracellular

domain of EGFR and prevent tyrosine kinase activity and subsequent intracellular

signalling. [61,110]

2. EGFR and ErbB-2 TKI (lapatinib) block the binding of ATP to the intracellular

domain of EGFR and ErbB-2 and prevents tyrosine kinase activity and subsequent

intracellular signalling. [61,110]

4.2. Effectiveness in Endometrial Cancer 

4.2.1. Anti-ErbB Monoclonal Antibodies (MoAbs) in Endometrial Cancer 

Anti-ErbB-2 MoAb (trastuzumab) may be an attractive and viable therapeutic option in 

patients with advanced, recurrent and/or metastatic EC overexpressing ErbB-2. [111] 

Clinical responses to trastuzumab as single agent or in combination with chemotherapy 

have been reported in several case reports. [111-114] 

However a phase II study of trastuzumab as single agent in unselected patients with 

advanced or recurrent EC overexpressing ErbB-2, failed to demonstrate significant activity. 

[115] 

Moreover a phase II study of carboplatin/paclitaxel with or without trastuzumab in 

patients with advanced or recurrent type II EC (papillary serous) overexpressing ErbB-2, is 

currently underway (NCT01367002). [116] 

4.2.2. ErbB-Specific Tyrosine Kinase Inhibitors (TKIs) in Endometrial Cancer 

ErbB-specific TKIs (gefitinib, erlotinib, lapatinib) may be another viable therapeutic 

option in patients with advanced, recurrent and/or metastatic EC overexpressing EGFR and 

ErbB-2. [117-119] 
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However a phase II study of gefitinib as single agent in unselected patients with 

persistent or recurrent EC overexpressing EGFR, demonstrate 4.1% complete response rate 

and 16.6% progression free survival ≥6 months. [117] 

Also a phase II study of erlotinib as single agent in unselected patients with metastatic or 

recurrent EC, demonstrate 12.5% partial response rate. [118] 

Moreover a phase II study of lapatinib as single agent in unselected patients with 

persistent or recurrent EC; demonstrate 3.3% partial response rate and 10% progression free 

survival ≥6 months. [119] 

 

 

4.3. Effectiveness in Well-Defined Subgroups of Endometrial Cancer 

 

Recent years, molecular targeted therapies have still shown modest effect in unselected 

EC patients.[120] Overall response rate to these drugs is modest, unless they are associated 

with chemotherapy or radiotherapy. [110] 

ErbB-targeted therapies have not clinically tested in type II EC.[99] Perhaps they may be 

clinically active as adjuvant therapy in well-defined subgroups of type II EC patients with 

EGFR and ErbB-2 overexpression. [93,99,111,113,121-128] 

The role of ErbB-targeted therapies in EC should be further investigated in clinical trials 

to evaluate their therapeutic efficacy. [62,92,99,111,114-116,118] Moreover additional 

studies into the molecular pathways of EC development and progression, will increase our 

knowledge and lead to the discovery of new generation molecules with higher therapeutic 

efficacy. [92] 
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