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Abstract. Estimating demographic parameters of interest is a critical component of applied conservation
biology and evolutionary ecology, where demographic models and demographic data have become
increasingly complex over the last several decades. These advances have been spurred by the development
and use of information theoretic approaches, programs such as MARK and SURGE, and Bayesian infer-
ence. The use of Bayesian analyses has also become increasingly popular, where WinBUGS, JAGS, Stan,
and NIMBLE provide increased user flexibility. Despite recent advances in Bayesian demographic model-
ing, some capture–recapture models that have been implemented in Program MARK remain unavailable
to quantitative ecologists that wish to use Bayesian modeling approaches. We provide novel parameteriza-
tions of capture–mark–recapture–resight–recovery models implemented in Program MARK that have not
yet been implemented in the BUGS language. Simulations show that the models described herein provide
accurate parameter estimates. Our parameterizations of these models can easily be extended to estimate
additional parameters such as entry probability, additional live states, or cause-specific mortality rates.
Additionally, implementing these models in a Bayesian framework allows users to readily estimate param-
eters as mixtures, incorporate random individual or temporal variation, and use informative priors to assist
with parameter estimation.
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INTRODUCTION

An understanding of the causal mechanisms
underlying population trends and individual fit-
ness is a primary purpose of applied and evolu-
tionary ecology. Demographic data are often the
foundation of our understanding of these
mechanisms, where the most effective applied

management actions specifically target problem-
atic demographic components, and these data
expand our understanding of life-history theory
and individual fitness (Stearns 1992, Cam et al.
2002, Gimenez and Gaillard 2018, Gimenez et al.
2018). However, there is often substantial uncer-
tainty when estimating demographic parameters
given imperfect observations of demographic
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processes. Thus, models that allow researchers to
accurately estimate demographic parameters of
interest are critically important; such models can
be used to estimate true and apparent survival,
site fidelity, movement and harvest rates, breed-
ing propensity, and relationships between these
parameters and environmental and individual
covariates (Brownie and Pollock 1985, Kendall
et al. 1997, 2013, Cam et al. 2002, Gimenez et al.
2018).

Over time, demographic models have become
increasingly complex. Capture–mark–recapture
(Cormack 1964, Jolly 1965, Seber 1965) and
capture–mark–recovery models (Seber 1970,
Brownie and Pollock 1985) were originally devel-
oped to estimate survival. Following the devel-
opment of these model types, researchers
developed robust design models that allowed for
the estimation of individual heterogeneity in
detection probability (Pollock and Raveling
1982). This model was subsequently expanded to
estimate recruitment and immigration (Nichols
and Pollock 1990), as well as temporary emigra-
tion or breeding probability (Kendall et al. 1995,
1997). Concurrently, multistate or multistrata
models were developed to estimate movement
among discrete sites or transitions among states
(Hestbeck et al. 1991, Brownie et al. 1993), and
capture–mark–recapture and capture–mark–
recovery models were combined to estimate site
fidelity (Burnham 1993). These advances were
rapidly followed by the inclusion of auxiliary live
resights and dead recoveries during survival
intervals (Barker 1997), the integration of the
robust design with Burnham’s live-dead model
(Lindberg et al. 2001), and the integration of both
dead recoveries and auxiliary resights simultane-
ously (Barker and White 2004, Barker et al. 2004,
Kendall et al. 2013). The implementation of these
model types in programs such as MARK (White
and Burnham 1999) and E-SURGE (Choquet
et al. 2009) has dramatically expanded inference
in ecology and evolution, and the continued
development of multi-event (Schofield et al.
2009) and various spatial capture–recapture
models (Royle et al. 2013) will undoubtedly lead
to further advances.

Recently, Bayesian parameterizations of demo-
graphic models have become increasingly popu-
lar (King et al. 2010), where the flexibility of
BUGS and JAGS (Lunn et al. 2000, Plummer

2003, Gimenez et al. 2009), Stan (Gelman et al.
2015), and NIMBLE (de Valpine et al. 2017)
allows researchers to effectively incorporate
additional parameter uncertainty and prior infor-
mation. For instance, quantitative ecologists can
use information from previous studies to affect
inference when sample sizes are small, or esti-
mate demographic parameters as mixtures or
distributions (Kéry and Schaub 2012, Gimenez
et al. 2018). Further, it is relatively straightfor-
ward to include other data types in Bayesian cap-
ture–recapture, matrix, or integrated population
models (Kéry and Schaub 2012). Recent advances
in Bayesian demographic modeling include the
development of live–dead models (Kéry and
Schaub 2012, novel parameterizations of the
robust design (Riecke et al. 2018, Gibson et al.
2018), and various multistate and multi-event
models (Schofield et al. 2009). However, Baye-
sian parameterizations of the models developed
by Barker (1997), Lindberg et al. (2001), and
Kendall et al. (2013) have not previously been
published or developed to our knowledge
(although see Robinson et al. 2020 for a partial
Bayesian implementation of the Barker 1997
model). Implementing these models in the
BUGS language would provide increased flexi-
bility to researchers interested in modeling
demographic parameters, or the joint modeling
of demographic components and abundance
(Schaub and Kéry 2021). Thus, in this manu-
script we use a state-space framework (King
2012) to parameterize and test the some of the
most complex existing capture–mark–recapture–
resight–recovery models available in Program
MARK (Barker 1997, Lindberg et al. 2001,
Kendall et al. 2013) in the BUGS language using
simulated data, expanding the tools currently
available to quantitative ecologists.

METHODS

We simulated capture–mark–recapture–resight–
recovery data using a multistate approach
(Lebreton et al. 2009, Kéry and Schaub 2012) fol-
lowing Kendall et al. (2013) that required simu-
lating nine parameters (Table 1): (1) true survival
from primary occasion t to tþ 1 (ϕt), (2) site
fidelity from primary occasion t to tþ 1 (Ft), (3)
the probability of availability for encounter dur-
ing primary occasion tþ 1 given availability
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during primary occasion t (γ00t ), (4) the probabil-
ity of availability for encounter during primary
occasion tþ 1 given that an individual was not
available during primary occasion t (γ0t), (5) reen-
counter probability during secondary occasions
(j) within each primary occasion (pt;j), (6) reen-
counter probability during each primary occasion
(p∗t ), (7) reencounter probability between primary
occasions t and tþ 1 (Rt), (8) reencounter proba-
bility between primary occasions t and tþ 1 (R0

t)
prior to mortality (1� ϕ) between reencounter
and primary occasion tþ 1, and (9) recovery
probability of individuals that died between pri-
mary occasion t and tþ 1 (rt; Table 1). For each
iteration of our simulation, we generated time
invariant demographic and observation parame-
ters from uniform distributions for parameters ϕ,
F, γ ¼ γ00 ¼ γ0, p, R, and r. We derived primary
occasion detection probability (p∗) as a function
of secondary occasion (j) detection prob-
abilities (Lindberg et al. 2001, Kendall et al.

2013), p∗ ¼ 1� QJ
j¼1

1� p j

� �
. We also derived

non-breeding detection probability for individu-
als, which did not survive from breeding occa-
sion t to breeding occasion tþ 1 (R0) as a
function of non-breeding detection probability
for individuals that did survive the interval (R,
Barker 1997, Kendall et al. 2013), where R0 ¼ R

2.
We then simulated individual state transi-

tions among five latent states: (1) available for
detection during primary occasion t, (2) tem-
porarily unavailable for detection during pri-
mary occasion t, (3) permanently unavailable
for detection during primary occasions, (4)
recently dead, and (5) dead prior to the interval
between t and tþ 1. We simulated the latent
states of each individual using a state-transition
matrix (S) populated with demographic param-
eters (Table 1) following Kendall et al. (2013),
where rows represent states in primary occa-
sion t, and columns represent states in primary
occasion tþ 1.

si;t ¼

ϕFγ00 ϕF 1� γ00ð Þ ϕ 1� Fð Þ 1� ϕ 0
ϕFγ0 ϕF 1� γ0ð Þ ϕ 1� Fð Þ 1� ϕ 0
0 0 ϕ 1� ϕ 0
0 0 0 0 1
0 0 0 0 1

2
6666664

3
7777775

(1)

We then simulated a robust-design observation
process (i.e., resight and recapture) during a por-
tion of the year assumed to be closed, and simu-
lated auxiliary live resights and dead recoveries
(i.e., resight and recovery) during the “open”
interval between t and tþ 1 (e.g., Kendall et al.
2013, Leach et al. 2020), given five possible types
of observations: (1) detected during primary
occasion t given primary occasion detection
probability, p∗, and resighted in the interval
between primary occasions t� 1 and t given a
resighting probability, R; (2) detected during pri-
mary occasion t, but not resighted in the preced-
ing interval; (3) not detected during primary
occasion t, but resighted during the preceding
interval; (4) not detected during primary occa-
sion t or the preceding interval; and (5) recently
dead, recovered, and reported to researchers. We
defined a state-observation matrix (O) populated
with appropriate nuisance (i.e., observation)
parameters (Table 1) for each possibility follow-
ing Kendall et al. (2013),

Table 1. Parameters and the distributions used to
generate capture–mark–recapture–recovery–resight
data to test Bayesian parameterizations of Barker
(1997), Lindberg et al. (2001), and Kendall et al.
(2013).

Parameter θ Distribution Model

True survival ϕ Uniform(0.7, 0.9) B,L,K
Site fidelity F Uniform(0.9, 0.99) B,L,K
Breeding propensity for
breeders in t� 1

γ00 Uniform(0.6, 0.95) L,K

Breeding propensity for
non-breeders in t� 1

γ0 γ00 ¼ γ0 L,K

Secondary occasion
detection probability

p j Uniform(0.15, 0.35) L,K

Primary occasion
detection probability

p∗ p∗ ¼ 1� QJ
j¼1

1� p j

� �
B,L,K

Non-breeding detection
probability

R Uniform(0.15, 0.45) B,K

Non-breeding detection
probability given
mortality

R0 R0 ¼ R
2 B,K

Recovery and reporting
probability given
mortality

r Uniform(0.05, 0.5) B,L,K

Notes: Letters indicate estimation in different capture–
mark–recapture–recovery–resight model types, where B
denotes estimation in Barker (1997), L denotes estimation in
Lindberg et al. (2001), and K denotes estimation in Kendall
et al. (2013).
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We simulated a single dataset for each iteration
of the simulation and then selectively removed
data given the parameterizations of each model

of interest. To create data for the model devel-
oped by Barker (1997), we excluded the robust
design data. To create data for the model devel-
oped by Lindberg et al. (2001), we excluded the
live-resight data (R and R0) collected during the
interval between t and tþ 1. We retained all data
for the model proposed by Kendall et al. (2013).
Thus, we used the exact same simulation and
datasets to estimate the parameters described in
Barker (1997), Lindberg et al. (2001), and Kendall
et al. (2013). We ran 100 simulations in which we
initially released 100 marked individuals and
then released an additional 50 marked individu-
als per primary occasion for the subsequent 14
occasions (T = 15).

To analyze our simulated data, we reparameter-
ized the models of Barker (1997), Lindberg et al.
(2001), and Kendall et al. (2013). We first con-
structed a state-transition matrix (Ψ), where rows
represent an individual’s latent state in primary
occasion t, and columns represent an individual’s
latent state in time tþ 1. Kéry and Schaub (2012)
demonstrated that it is necessary to include obser-
vation or nuisance parameters associated with
mortality (e.g., r) in the state-transition matrix
rather than the observation matrix for Seber
(1970) band-recovery models. Therefore, we

incorporate six latent states into our novel param-
eterization: (1) available for detection during pri-
mary occasion t; (2) temporarily unavailable for
detection during primary occasion t; (3) perma-
nently unavailable for detection during primary
occasions; (4) died during the interval between
t� 1 and t and recovered (r); (5) died during the
interval between t� 1 and t, resighted (R0), but
not recovered (1� r); and (6) dead, absorbing. We
then populated the state-transition matrix with
the appropriate demographic and observation
parameters (see Eq. 3 and Table 1).

To estimate the remaining nuisance or observa-
tion parameters, we constructed an observation
matrix (Ω), where rows represent an individual’s
latent state in primary occasion t. This matrix is
nearly identical to the matrix used to simulate the
data (O), except that the probabilities of observation
for individuals in latent states four and five were
fixed as these parameters were estimated in the
state-transition matrix (Ψ; Kéry and Schaub 2012),

ωi;t ¼

p∗R p∗ 1� Rð Þ 1� p∗ð ÞR 1� p∗ð Þ 1� Rð Þ 0

0 0 R 1� Rð Þ 0

0 0 R 1� Rð Þ 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0

2
6666666666664

3
7777777777775

(4)

We followed Riecke et al. (2018) to estimate p∗,
or primary occasion detection probability. To
obtain estimates from the model proposed by
Barker (1997), we fixed γ00 ¼ γ0 ¼ 1 to ensure
parameter identifiability and removed the robust
design structure in the model to estimate a single
p rather than the more complex p∗. To obtain esti-
mates from the model proposed by Lindberg

ψi;t ¼

ϕFγ00 ϕF 1� γ00ð Þ ϕ 1� Fð Þ 1� ϕð Þr 1� ϕð ÞR0 1� rð Þ 1� ϕð Þ 1� R0ð Þ 1� rð Þ
ϕFγ0 ϕF 1� γ0ð Þ ϕ 1� Fð Þ 1� ϕð Þr 1� ϕð ÞR0 1� rð Þ 1� ϕð Þ 1� R0ð Þ 1� rð Þ
0 0 ϕ 1� ϕð Þr 1� ϕð ÞR0 1� rð Þ 1� ϕð Þ 1� R0ð Þ 1� rð Þ
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

2
666666664

3
777777775

(3)

oi;t ¼

p∗R p∗ 1� Rð Þ 1� p∗ð ÞR 1� p∗ð Þ 1� Rð Þ 0

0 0 R 1� Rð Þ 0

0 0 R 1� Rð Þ 0

0 0 R0 1� rð Þ 1� R0ð Þ 1� rð Þ r

0 0 0 1 0

2
666666664

3
777777775

(2)
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et al. (2001), we fixed R ¼ R0 ¼ 0. We chose
vague priors for all demographic and nuisance
parameters (θ), where θ ~ Uniform 0, 1ð Þ. We sim-
ulated data using R 4.0.3 (R Core Team 2018),
and all analyses (Supplementary Material) were
conducted in JAGS (Plummer 2003) using the jag-
sUI package (Kellner 2016). We sampled from six
MCMC chains for 25,000 iterations with an adap-
tive phase of 1000 iterations for each model for
the simulated data. We discarded the first 15,000
iterations and retained every fifth saved iteration.
We saved medians and 95% Bayesian credible
intervals for each parameter for each simulation,
and report the normalized mean signed differ-
ence and parameter calibration (Little 2006, Wil-
liams and Hooten 2016) for each parameter.

RESULTS

The Barker (1997), Lindberg et al. (2001), and
Kendall et al. (2013) models required approxi-
mately 30, 25, and 30 min to run, respectively, on
an HP desktop computer with a 10-core Intel i9-
10900 processor (2.8 GHz) and 32 GB of RAM.
All estimates of model parameters were centered
around the true values used to generate the data
(Figs. 1 and 2; Table 2), despite relatively small
sample sizes for models of this complexity.
Parameter coverage was adequate, where true
parameter values were included in the 95% Baye-
sian credible intervals of modeled demographic
parameters in ≥ 94% of simulations (Table 2).

DISCUSSION

We demonstrate that the models described by
Barker (1997), Lindberg et al. (2001), and Kendall
et al. (2013) can be effectively implemented and
fit in the BUGS language if users modify the
state-transition and observation matrices (Eqs. 3
and 4, Figs. 1 and 2, Table 2). This allows quanti-
tative ecologists to implement these complex
mark–recapture–recovery–resight models in
Bayesian frameworks using the BUGS language.
We note that generalized m-array parameteriza-
tions have recently been developed for multistate
models (Schaub and Kéry 2021), and a helpful
guide to marginalizing discrete latent states has
also recently been published (Yackulic et al.
2020). Both of these advances greatly reduce
computational requirements for the models

described in this manuscript when individual
covariates are not required. Our code (Data S1)
can also be easily modified by other researchers
to conduct power analyses tailored to their study
system.
Here, we explain three minor inconsistencies

between parameter estimates and the true val-
ues used to generate the data. First, while
parameter constancy was excellent for esti-
mates of p∗ (Table 2) from the models devel-
oped by Lindberg et al. (2001) and Kendall
et al. (2013), coverage was slightly lower than
expected. We attribute this to our use of a fully
conditional likelihood for the secondary cap-
ture occasions as demonstrated in Riecke et al.
(2018). Second, the estimates of p∗ from the
model developed by Barker (1997) were lower
than the true values used to generate the data.
Importantly, we fixed γ00 ¼ γ0 ¼ 1 to ensure
parameter identifiability when using the model
developed by Barker (1997), which does not
include a robust design component. Thus, esti-
mates of p∗ from the Barker (1997) model in
this simulation study are the product of pri-
mary occasion detection probability given pres-
ence (p∗) and the probability of presence (γ).
Finally, while parameter constancy was also
excellent for estimates of R0, we observed sub-
stantial variance around the true values used
to generate the data (Fig. 2). R0, or the proba-
bility of resighting an individual during the
interval between t and tþ 1 that does not sur-
vive the entire interval, is notoriously difficult
to estimate (Kendall et al. 2013) and is often
fixed to zero (Leach et al. 2020). Thus, we sim-
ply attribute this variance to the fairly small
number of releases in the simulated data.
Importantly, these minor inconsistencies were
expected and did not influence constancy or
coverage of demographic parameters.
The continued development of novel models

and effective and efficient parameterizations of
existing models will be critical for an enhanced
understanding of ecological processes. The mod-
els described in this manuscript can easily be
extended to estimate temporal or individual
covariates, examine parameters at multiple sites,
estimate demographic and observation parame-
ters as mixtures or distributions (Kéry and
Schaub 2012, Schaub and Kéry 2021), incorporate
state uncertainty and allow for misclassification
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Fig. 1. Medians of posterior distributions for estimates of survival (ϕ), site fidelity (F), breeding probability (γ),
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(Kendall et al. 2003, Conn and Cooch 2009, Pra-
del 2009), or estimate correlations and share
information among parameters using multivari-
ate normal distributions (Riecke et al. 2019).
Further, these models can now be readily incor-
porated into integrated population models
(Schaub and Kéry 2021) or other joint analyses,

such as using mark–recapture–resight–recovery
and radio-, satellite-, or GPS-telemetry data
simultaneously (e.g., Soisalo and Cavalcanti
2006). As the availability of citizen science data
(i.e., auxiliary resights) increases, and joint analy-
sis methods continue to expand, researchers will
benefit tremendously by using models that can
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Fig. 2. Medians of posterior distributions for estimates of resighting probability (R), and resighting probability
given mortality (R0) between primary occasion t and primary occasion tþ 1 from Bayesian parameterizations of
the models developed by Barker (1997) and Kendall et al. (2013) plotted against the true values used to simulate
the capture–recapture–resight–recovery data.

(Fig. 1. Continued)
primary occasion detection probability (p∗), and band reporting probability (r) from Bayesian parameterizations
of the models developed by Barker (1997), Lindberg et al. (2001), and Kendall et al. (2013) plotted against the true
values used to simulate the capture–recapture–resight–recovery data.
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incorporate multiple data types (e.g., Sun et al.
2019, Gamble et al. 2020). The joint capture–
recapture–resight–recovery model parameteriza-
tions described in this manuscript increase the
number of demographic parameters that can be
estimated (Burnham 1993, Barker 1997, Lindberg
et al. 2001, Kendall et al. 2013), enhance parame-
ter precision, and allow for improved ecological
and evolutionary inference.
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