{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import numpy as np\n", "import scipy.stats\n", "from matplotlib import rc\n", "import seaborn as sns\n", "rc('font',**{'family':'serif','serif':['Arial']})\n", "plt.rcParams['pdf.fonttype'] = 42\n", "rc('xtick', labelsize=7) \n", "rc('ytick', labelsize=7) \n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# dataframe with percent change values at each timepoint\n", "pc_df=pd.read_csv('2020-06-25_CPDseq/pc_df_TTgreaterthan5',index_col=0)\n", "pc_df=pc_df[pc_df>0]\n", "# RNA-Seq RPKMs\n", "TS_rpkm=pd.read_csv('2018-05-22_RNAseq/TS_rpkm.csv',index_col=0)\n", "NTS_rpkm=pd.read_csv('2018-05-22_RNAseq/NTS_rpkm.csv',index_col=0)\n", "# combine all data into one dataframe\n", "joined1=pc_df.join(TS_rpkm)\n", "joined2=joined1.join(NTS_rpkm)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "ratio_df=pd.DataFrame()\n", "ratio_df['TS/NTS']=joined2['bm03_TS']/joined2['bm03_NTS']\n", "ratio_df['TS/NTS_pc']=joined2['wt_20_TS']/joined2['wt_20_NTS']\n", "ratio_df=ratio_df.dropna()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "ratio_df=ratio_df.sort_values(by='TS/NTS_pc',ascending=False)" ] }, { "cell_type": "code", "execution_count": 86, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | TS/NTS | \n", "TS/NTS_pc | \n", "
---|---|---|
gene | \n", "\n", " | \n", " |
fdhE | \n", "66.720930 | \n", "300.210468 | \n", "
dadX | \n", "232.400000 | \n", "128.037389 | \n", "
aceF | \n", "442.800000 | \n", "118.822620 | \n", "
rfbA | \n", "742.000000 | \n", "83.864194 | \n", "
glrR | \n", "52.000000 | \n", "54.526191 | \n", "
... | \n", "... | \n", "... | \n", "
csgD | \n", "27.500000 | \n", "0.031079 | \n", "
yodB | \n", "0.263158 | \n", "0.009595 | \n", "
yfjW | \n", "9.066667 | \n", "0.003383 | \n", "
elfA | \n", "8.300000 | \n", "0.001554 | \n", "
gadE | \n", "2.416667 | \n", "0.001421 | \n", "
3290 rows × 2 columns
\n", "\n", " | TS/NTS | \n", "TS/NTS_pc | \n", "
---|---|---|
gene | \n", "\n", " | \n", " |
gntT | \n", "49.018519 | \n", "1.161269 | \n", "
rhtB | \n", "3.208333 | \n", "1.161193 | \n", "
yfdQ | \n", "6.666667 | \n", "1.159862 | \n", "
nikR | \n", "0.866667 | \n", "1.159182 | \n", "
ydcA | \n", "65.000000 | \n", "1.159029 | \n", "
... | \n", "... | \n", "... | \n", "
csgD | \n", "27.500000 | \n", "0.031079 | \n", "
yodB | \n", "0.263158 | \n", "0.009595 | \n", "
yfjW | \n", "9.066667 | \n", "0.003383 | \n", "
elfA | \n", "8.300000 | \n", "0.001554 | \n", "
gadE | \n", "2.416667 | \n", "0.001421 | \n", "
1098 rows × 2 columns
\n", "