{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import numpy as np\n", "import scipy.stats\n", "from matplotlib import rc\n", "import seaborn as sns\n", "rc('font',**{'family':'serif','serif':['Arial']})\n", "plt.rcParams['pdf.fonttype'] = 42\n", "rc('xtick', labelsize=7) \n", "rc('ytick', labelsize=7) \n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# dataframe with percent change values at each timepoint\n", "pc_df=pd.read_csv('2020-06-25_CPDseq/pc_df_TTgreaterthan5',index_col=0)\n", "pc_df=pc_df[pc_df>0]\n", "# RNA-Seq RPKMs\n", "TS_rpkm=pd.read_csv('2018-05-22_RNAseq/TS_rpkm.csv',index_col=0)\n", "NTS_rpkm=pd.read_csv('2018-05-22_RNAseq/NTS_rpkm.csv',index_col=0)\n", "# combine all data into one dataframe\n", "joined1=pc_df.join(TS_rpkm)\n", "joined2=joined1.join(NTS_rpkm)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "ratio_df=pd.DataFrame()\n", "ratio_df['TS/NTS']=joined2['bm03_TS']/joined2['bm03_NTS']\n", "ratio_df['TS/NTS_pc']=joined2['wt_20_TS']/joined2['wt_20_NTS']\n", "ratio_df=ratio_df.dropna()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "ratio_df=ratio_df.sort_values(by='TS/NTS_pc',ascending=False)" ] }, { "cell_type": "code", "execution_count": 86, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TS/NTSTS/NTS_pc
gene
fdhE66.720930300.210468
dadX232.400000128.037389
aceF442.800000118.822620
rfbA742.00000083.864194
glrR52.00000054.526191
.........
csgD27.5000000.031079
yodB0.2631580.009595
yfjW9.0666670.003383
elfA8.3000000.001554
gadE2.4166670.001421
\n", "

3290 rows × 2 columns

\n", "
" ], "text/plain": [ " TS/NTS TS/NTS_pc\n", "gene \n", "fdhE 66.720930 300.210468\n", "dadX 232.400000 128.037389\n", "aceF 442.800000 118.822620\n", "rfbA 742.000000 83.864194\n", "glrR 52.000000 54.526191\n", "... ... ...\n", "csgD 27.500000 0.031079\n", "yodB 0.263158 0.009595\n", "yfjW 9.066667 0.003383\n", "elfA 8.300000 0.001554\n", "gadE 2.416667 0.001421\n", "\n", "[3290 rows x 2 columns]" ] }, "execution_count": 86, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ratio_df\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
TS/NTSTS/NTS_pc
gene
gntT49.0185191.161269
rhtB3.2083331.161193
yfdQ6.6666671.159862
nikR0.8666671.159182
ydcA65.0000001.159029
.........
csgD27.5000000.031079
yodB0.2631580.009595
yfjW9.0666670.003383
elfA8.3000000.001554
gadE2.4166670.001421
\n", "

1098 rows × 2 columns

\n", "
" ], "text/plain": [ " TS/NTS TS/NTS_pc\n", "gene \n", "gntT 49.018519 1.161269\n", "rhtB 3.208333 1.161193\n", "yfdQ 6.666667 1.159862\n", "nikR 0.866667 1.159182\n", "ydcA 65.000000 1.159029\n", "... ... ...\n", "csgD 27.500000 0.031079\n", "yodB 0.263158 0.009595\n", "yfjW 9.066667 0.003383\n", "elfA 8.300000 0.001554\n", "gadE 2.416667 0.001421\n", "\n", "[1098 rows x 2 columns]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "low" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "high=ratio_df.iloc[:1096,:]\n", "mid=ratio_df.iloc[1096:2192,:]\n", "low=ratio_df.iloc[2192:,:]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "x1=np.log2(ratio_df['TS/NTS'].tolist())\n", "x2=np.log2(high['TS/NTS'].tolist())\n" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAE7CAYAAAD9xDziAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxU1d348c83GyHsS1jCFllCgAiIWKsV3CviIwrIg7hVUBAUUWrxQR/U4l5x4Yc7YA1VUASpVPvQalUUrbUiEGQJghARAmGXfUny/f1xb+hkmJCZMJmZ5H7fr9e84J67nZnMd+45555zrqgqxhhviYt2BowxkWeBb4wHWeAb40EW+MZ4kAW+MR5kgW+MB1W7wO/Tp48C9rKXvU6i2gX+jh07op0FY2JetQt8Y0z5LPCN8SALfGM8yALfGA+ywDfGgyzwjfEgC3xjPMgC3xgPSojkyUTkBmAcTq+ig8AYVV0sIjuATT6bTlLVmSLSAXgNaAzsB25S1dxI5tmcmrFjx5Kfn18qLS0tjeeeey5KOTIQwcAXkY7AJKCHqm4Rkb7APBG5FNilqt0D7DYTmKyqs0TkcmCuiJyuNm1QlZGfn88NN9xQKu3NN9+MUm5MiUgW9Y8At6rqFnd5MdAMuAAoEpFFIrJcRB4UkXgRaQFkAm8DqOoCoDZwRgTzbEy1FLErvqrmAXkAIiLAs8BfgGLgH8B4IBH4K7AX+BeQr6rFPofZBLQElvgeW0RGACMAWrduXYnvwpjqIaJ1fAARqQVkA62APqq6x2/9s8AY4N+cOMJIgCL/Y6rqVGAqQM+ePa0aYEw5It241xp4H1gNXKiqh0TkRiBHVZeXbAYcAzYCzUVEfOr0aZRuBDRV0MqVKxk8eHCpNGvwi6xINu7VARYCM1R1os+qLGCgiAwEkoDRwExV3SQi64DBwNsichlOteC7SOXZVI7CwkJr8IuySF7xRwNtgP4i0t8n/QrgEZyATgTmANPddUOAaSIyATgMDPKr8xtjKiCSjXtPAE+UsXpYGfusxWn1N8aEUcQb94wJxOr9kWWBb2KC1fsjy/rqG+NBFvjGeJAFvjEeZHV8E7MCNfiBNfqFgwW+iVmBGvzAGv3CwYr6xniQBb4xHmSBb4wHWeAb40EW+MZ4kAW+MR5kgW+MB1ngG+NB1oHHVIjNl1+1WeCbCrH58qs2K+ob40EW+MZ4kAW+MR5kdXwTNoGG0ebm2jNOY5EFvgmbQMNox40bF6XcmJOxor4xHmRXfFPl2FTcp84C31Q5NhX3qbOivjEeZIFvjAdZ4BvjQRb4xniQBb4xHmSBb4wH2e08U4qNs/eGiAa+iNwAjAMUOAiMAZYCzwB93Pw8raqvuNt3AF4DGgP7gZtU1Tp/VyIbZ+8NEQt8EekITAJ6qOoWEekLzAOeBDKALKAO8JWILFHVfwMzgcmqOktELgfmisjpqqqRyrcx1VEk6/hHgFtVdYu7vBhoBgwCXlfVQlXdDbwN3CAiLYBMdxlVXQDUBs6IYJ6NqZYiFviqmqeqfwUQEQGeBf4CNAd+8tl0E9ASaAXkq2pxgHWliMgIEVksIou3b99eWW/BmGoj4q36IlILeAdoD9zq5sG36C5AUYB033WlqOpUVe2pqj1TU1MrJd/GVCcRDXwRaQ38Eyd4L1TVPcBGIM1nszScK/tGoLlbOvBfZ4w5BRELfBGpAywE5qnqtap6yF01HxgmIgkiUh+4FnhPVTcB64DB7v6XAcXAd5HKszHVVSRv540G2gD9RaS/T/plQDsgB0gCXlXVz9x1Q4BpIjIBOAwM8qvzmwiwKbWqn4gFvqo+ATxRxuq7y9hnLXBBZeXJBMem1Kp+rMuuMR5kgW+MB1ngG+NBFvjGeJAFvjEeZIFvjAdZ4BvjQRb4xniQBb4xHmSBb4wHWeAb40EW+MZ4kAW+MR5kgW+MB9m8+qZaCDRngD0PoGwW+KZaCDRngD0PoGxW1DfGgyzwjfEgC3xjPCjowBeRySLyi8rMjDEmMkK54jcDPhaR9SLymIhkVVamjDGVK+jAV9VrgSbA/+A85PJrEVkhIveJSNvKyqAxJvxCquOr6iFVnaOqg4CmwJ+BB4C1IvKViAz1e/KNMSYGhXQf3w3q3sB/AwOAGsAsnCfapuH8CFyG8zQcY0yMCjrwReQFnGCvB3wAjAQWqOpRn22OAK+FO5OmcowdO5b8/PxSafaEHG8I5YrfDqd+/2dV3V/GNv8GrjzlXJmIyM/PtyfkeFQojXuXAz8AZ5SkicjvReRsn202qOqn4c2iMSbcQrmPPxT4GDjdJ7k18KmIDA68lzEmFoXSqv+/wFBVfakkQVWHAbcAE8OdMWNM5Qkl8JsD3wZIX4xz5TfGVBGhBP43wN0B7tPfgfNse2NMFRFKq/5Y4B9AXxFZ5qZ1A2oDVwRzAPdHIxv4TlWfdtN2AJt8NpukqjNFpAPOrcHGwH7gJlW1e03GhEHQga+qS0UkA6dzTifgKPAhMFNV95a3v4h0Al4Ezga+c9M6ArtUtXuAXWYCk1V1lohcDswVkdNVVYPNs/E2m5WnbCH13FPVnTjBWxF3ANOBjT5p5wJFIrIIp2PQXOAxnAFBmTg9AlHVBSLyMs6txCUVPL/xGJuVp2yh9Nw7DXgcOAtIBErV9VX1pA18qjraPc6v/c7/D2C8e8y/AnuBfwH5qlrss+0moCUW+MacslCu+K/hXIn/H05wnjJVnea7LCLPAmNwegD6F+kFKAp0HBEZAYwAaN3abjAYU55QAv8s4HxVDdsVV0RuBHJUdXlJEnAMpzrQXETEp06fRulGwONUdSowFaBnz57WBmBMOUK5nbceqBvm82cBD4tIvIjUBEYDs1V1E7AOGAwgIpcBxbiNgsaYUxPKFf9pYJqIPIfzI3DUd6WqflKB808EXsAJ6ERgDk4DIMAQ93wTgMPAIL86vzGmgkIJ/Bnuvy8EWKdAfDAHUdWbff5/EBhWxnZrgQtCyJ8xJkih3Me3GXmNqSZCCmYRSRaR693huA1F5EIRaVZZmTPGVI5Q7uO3xxmWWwi0Av6EMwvPJSLya1UNNIDHGBODQrniTwHmA+2BI27aEJzedpPDnC9jTCUKJfDPBV7w7SvvtrI/hc+sPMaY2BdK4O/HGZPvLwvYHZ7sGGMiIZTAfwV4VUSuwulh10lEhuP0mLOZdY2pQkK5nfeoiPwMPA+kAO8D24BncDr3mBhmU2kbX6EOy30eeF5EagEJqvpz5WTLhJtNpW18hXI774Qedr6zcKnqH8OUJ2MqjU3O4Qjliv9AgH2b4NzX/xKwwDcxzybncIRSxz/NP80t8r8CrA5npowxleuU+t+r6gGcEXZ3hyc7xphICMfAm7MJcmSeMSY2hNK4t4gTp8Oqi/NIrUnhzJQxpnKF0rj3D79lxZmM4x5V/Th8WTLGVLZQGvfs+XjGVBOhFPX/FOy2qnpTxbJjjImEUBr3tgP/jfOgi93AVpxBOzcAtXCmvi55GWNiWCh1/LbA06o6wTdRRH4LXKCqQ8OaM2NMpQnlin8pzqw7/j4ALglPdowxkRBK4H8P3OqbICJxOJ137DHZxlQhoRT17wI+EJGBwHKcMflnuP/2rYS8GWMqSSi38xa5z6y/FugIHMSZg+8tVT1cSfkzxlSCUMfjbxORd4EM4GugjgW9MVVP0HV8EaktInOBn4CPcJ6cO1VEvhKRJpWVQWNM+IXSuPcM0Ag4DTjkpt2D8zDLKWHOlzGmEoVS1O8H9FXVH0tm3lHVdSJyO/BpZWTOGFM5Qrni18TvCbmuGjgt+8aYKiKUwJ8PPCEi9d1ldVv5n8fpxGOMqSJCCfw7gWPATpy++TlArrt8V/izZoypLKHU8VsB1+A07nVy912jqjY5uzFVTChX/E+BHqq6XlX/qqrzQw16ccwQkd+5y/EiMllEckVknYiM9Nm2g4h8LiKrROTfIpIZyrmMMWULJfA3AS0qeiIR6YTzmO1rfJJvw+kMlAWcBdwtIr9w180EXlHVzsBDwFzxncjfGFNhoRT1lwPvishSIA8o1WMviMk37gCmAxt90voDU1W1ENgtIm8DN4jIZpxx/2+7x14gIi/jjA1YEkKejTEBhBL4ClT4yQOqOhpARH7tk9wKpydgiU1AVzc9330Mt++6lljgG3PKThr4IrIcOF9Vd5dMtCEijYFdfkFZUXGUnrlXcGbw8U/3XRconyOAEQCtW7cOQ7ZMLNv04zr69etXKq1Wss3wHoryrvhZQKJf2nqgu/vvqdoIpPksp+Fc2TcCzUVEVFX91p1AVafiPK6bnj17+v9gmGrmwOEidGbpNLneZnwLRUUeqBHOBrb5wDARSXA7Bl0LvKeqm4B1wGAAEbkMZ0zAd2E8tzGeFdKw3ErwMtAOpzNQEvCqqn7mrhsCTBORCTgNiYPCVL0wVciIW25i6/Y90c5GtRPxwFfVm33+X0gZz91T1bXABZHJlYkVgQL9xGJ9BDNUTQUT+ENEZJ/PcjwwSES2+26kqvaYbHPKtm7fUyrQLcgrR3mBv5ETr8gFwEi/NAUs8I2pIk4a+KqaHqF8GGMiKByPyTbGVDHRbtU3JupWrlzJ4MGDS6WlpaXx3HPPRSlHlc8CvxoaO3Ys+fn5pdJyc230dFkKCwu54YYbSqW9+WaFe6dXCRb41VB+fv4JX+Rx48ZFKTeRUSORUt14m6XWp17DplHMUWyzwDfVwpFjpe/3J9+8h63b99iPQRks8E215P9DACDX77HAd1mrvjEeZIFvjAdZ4BvjQRb4xniQBb4xHmSBb4wHWeAb40EW+MZ4kHXgMRHhP7NOv379aJZan6mv/SlieaiRCGvWrLHefFjgmwjxn1kHnJ50kWS9+f7DAt+YAKr7UF0LfGMCqO5DdS3wTdT4D6X1fzqOqTwW+CZqAte5o5MXr7HbecZ4kAW+MR5kgW+MB1ngG+NBFvjGeJAFvjEeZIFvjAfZffwqzh6ecWr8B+5EeuBQtFjgV3FefHhGOPl3Ior0wKFoiYmivog8IyIbRWSZ+5otIvEiMllEckVknYj4P5rbGFNBsXLFPxe4VlX/WZIgIrcDGUAWUAf4SkSWqOq/o5RHEwLf8ffWBz/2RD3wRaQGcAZwr4i0A74HxgL9gamqWgjsFpG3gRsAC/wYU1aQly5CRzpX5mSiHvhAGvAJMAFYCfwOmA+kAD/5bLcJ6BroACIyAhgB0Lp168rMqwkg8CQb0cmLCU7U6/iqukFV+6rqClVV4GmgHdAWUJ9NBSgq4xhTVbWnqvZMTU2t/EwbU8VF/YovIl2Bbqr6hm8y8BlOaaBEGs5V37Ps1p0Jl6gHPlAMTBGRL1R1AzAKWI5T3B8mIu8DtYFrAU+37NutOxMuUQ98VV0hIncC74tIPM5VfQiQj1PkzwGSgFdV9bPo5dSAtdZXF1EPfABVfRMINKHZ3ZHOizk5a8irHmIi8I2pCqrTzLsW+MYEqTrNvBv123nGmMizK74xPnyn/K7OI/Ys8I3xUdZjtqobK+ob40EW+MZ4kBX1jSlHdaz3W+AbU47qWO+3wDcnVdJF17rnVi8W+Oak/LvoWvfc6sEC3xxnV3fvsMA3x9kAHO+w23nGeJAFvjEeZIFvjAdZHT9G2fx6pjJZ4Mcom1/PVCYLfGNOQVWdlccC35hTUFVn5bHAN6YC/AfuVLVBOxb4xlRAVX+8tgV+lAVqvYfKb8G37rneZoEfZYFa76HyW/Cte663WQceYzzIAt8YD7Kivkds+nGd1efNcRb4HnHgcJFNqBEhVaFTjwW+MWHge18fnOD3vbcfa516LPArSaDbdLH2q2/Cp6pNyGmBX0kC3aYLx6++7/PpAZITT3xOfa3k+FM+j6neLPAjKFDdL9SOOoEmvzzxSlNU0Swaj4j5wBeRK4AngBrAcuAWVd0biXOHu7geaECHDbU10RDTgS8iqcDrwK9Uda2I/AF4Erg93Ocqa+KLRx99tFTafffdd8JVOy8vj/T09BP2PVX+xfpg+Tc0mejw/zu888471KtTg8suvwqIbptPTAc+8GvgG1Vd6y6/DOSIyB2qqhU9aLBB7n81LgnElStXHk9rllqfeg2bnvRK7hvAJV+ElBrCwSN6PM132VdFutUGbmgqfz8TXoH+Dsk3H+Gdd945vvzqS5M5dLT0NjWTKDetYb0Udu45UOG8ySnET6UTkfFAuqqOdJcTgGNAPd/ivoiMAEa4ix2BNZHOq4/GwI4onv9kYjVvsZovqNp526GqfQKtiPUrfhwQ6JepVOuVqk4FpkYkR+UQkcWq2jPa+QgkVvMWq/mC6pu3WO+rvxFI81luAexW1YqXcYwxMR/4HwK/FJEO7vJIYH4U82NMtRDTRX1V3SYiQ4G5IpIE/ADcFOVslScmqhxliNW8xWq+oJrmLaYb94wxlSPWi/rGmEpggW+MB1ngVwIReUZENorIMvc1O8r5uUJElovIGhGZIyJ1o5kfXzH4WYmIzBCR37nL8SIyWURyRWSdiIyMlby5aTt8PrtlIsF11Yrpxr0q7FzgWlX9Z7QzEsluzxUUS59VJ+BF4GzgOzf5NiADyALqAF+JyBJV/Xe08yYiHYFdqto91OPZFT/MRKQGcAZwr4h8JyLvikjrKGYpULfn60VEopgnICY/qzuA6cAcn7T+wOuqWqiqu4G3gROnRY5O3s4FikRkkVuie1BEghqTbYFfQSLSV0QK/V/AeOATYALQFfgXMD+KgdYK+MlneRNQF+fqFW1pxNBnpaqjVXWWX3Kgz69l5HLlKCNvCcA/gD5Ab+Ay4M5gjmdF/QpS1f8jiM9PRJ4GHgDSgQ2VnK1Agur2HA2qugHoW7IcA59VIP6fnxADnx2Aqk7zXRaRZ4ExwOTy9rUrfpiJSFcRudE/GWdwUTTEbLfnGPysAvH//NJwrvpRJyI3ikhX3ySC/Ows8MOvGJgiIqe5y6OA5aoarS9LLHd7jrXPKpD5wDARSRCR+sC1wHtRzlOJLOBh985DTWA0ENRdESvqh5mqrhCRO4H33YaWTcCQKOYnZrs9x9pnVYaXgXZADpAEvKqqn0U3S8dNBF7AaeVPxGn4mx7MjtZl1xgPsqK+MR5kgW+MB1ngG+NBFvjGeJAFvjEeZIFfCUQkXURURNqH6XgXi8g3IrLfHWF3S4BtHhaRO0TkZvfcZb2y3e1ri8jT7si4IyKyQUQmiUhtv+MmuiPAaorIQne7mmW933Cf3+88CwMcb6+IfCIiWT7bZfttUyQiBSLymojUcbe5WURO6C8gIi+IyEER6eXzvg6JSEqAbZ9019/qLo8UkcdO/teMEapqrzC/cLqcKtA+DMfqABwC7gfaA9cDh4ErfbZpD3yPcy+3JtDMfbVw8zHAJ62eu88cYBFwnpvfy3CmJf+z3/l7A5+4/1/oHu/xst5vuM/vd56FwHM+x2oO/ApYDKwF4tztsoG5PtulAecD+cBr7jY3A5v8jv8QcAS4zO99HQWuCpCfXJxOSLe6ywnAaiAj2t/Bcr9X0c5AdXyFOfAnAF/5pU0F3vZbnhBg3wQ3Hxf4pddzv7A9/dIvcrdv5pM2Efhf9/8LgTw3ODLLe7/hOL/f+oXAowHSf+Xu181dzgbeDLDdeGCP+/9SgY/To7EQGBjgff2j5AfDZ11HYDPwY0ngu+n/479tLL6sqB8BItJARKa6xc29IjJTRBr6rD9TRP7lFin/6RbbF7qr38HpiulLgWR33zo4pYBQupGq+7rEL/1zoDOw0yftEuBjn+WZwFKcseEVFcr5g3HE/bewnO0KfbY9TkQG4fSAu0VV3w2w33zgCr9Rg/1xPnP/HnB/AYa43XtjlgV+ZPwZ6A5cCVyMc7V4A0BE6gF/wwmmM4BZwH0lO6rq96r6bcmyiDTF6S/+uZt0PrBXVVcEmxl1nkKUDTwhImtF5HkRuQpIUtXVqnrMPVcdN6/f+O6O06f+fBG5LuhPoALnD4aINAeeBVbiFL0DbSMicgbOmPa/+K27GHgTmKeqM8o4zSdALZxJMEpcRYAfW1VdDezC+bvErmgXOarji9J13q7u/zv5rO/opnXBefTXRiDBZ/1bwMIAx60FfIlTj0xx036PWwcPsH3Aora7Lg4ngL/BKXYrsAe40Web/wLm+ywvxC1qA88DW3DG9h9/v+E8f4B9FuLUt/e7r0Pu6y9AG5/tsnFGqZVsdxTnav8e0MDd5mZ33V7gU3eb7if5O84BHnPTm+GUShJxqj63+u33IQGqJLH0sit+5esE7FPnSgCAqq4BdrvrugJLVdW3mPqV/0F8SgZtgf9S1YPuqiZU4Nluqlqsqi+r6lk4X+Tf4DSQZbtXRzixmO9rgvvvo2WsD8f5A5mGU3o6G/gTToPdA6r6o992f3W3647TQFpHVa9WZxadErWAl3BKYd+6504s47zzgZJH314F/J+WXTLZifN3iVkW+JXvcBnp8e6rEGccta9SyyLSGOeq1Bbn6vmDz2olxL+jiFwgIg8dP4DqNlX9E04L+1acQICTBL6q/gz8DmfuvpMF6qmcP5DdqrpOVVfiNMh9D3wQoE69391unar+qKqHAhxrq6qOV9ViYDhO+8L/lnHevwKZ4gwhvgqn+laWeGJkso6yWOBXvlygjjiTJQIgIp1xishrcOqm3aT0XGln+mybBHyA82TU3m5pwddWd10oGgL/KyKtfBNV9QhO0Xm725bQ0A2wgFR1Jk5bw7PhPn8wB1GnXH0b0AB4IsQ8gE9wqtNG8iRwv4icMHmlW1JYhDNs+Bzg7yc5biOgoAL5iRgL/ErmBuoHwAwROUtEzgJmAF+o6jKc+nwtYLKIdHQ7g1zLf1qLx+L8EAwFDohIM/dVcldgCXB6iNl6H2cM90ciMsDtqHKOiEzDKW3MxbnafxLEsW6n9Aw14Tp/UFR1I/A4MKKcKkIwHgPW4fytAhX55+PcEvxMTz6D0ek4fQtilgV+ZJTUXz/GafhZiVtfVNX9OK395wHLcRqd3sRpbAIYxH8mVdzi8yppnf4USBGRLsFmxq2bXoLTZvA0TsnjLzidb853v9QXU3b93vdYucAzwZ47hPOH4hmcOfpe9LvlFhK3xDEcJ3AfCLDJfJxJSsu8dSoime42wfxoRo1NxBFlbp2xhap+4ZP2IlBLVW8O8hjTgS2qGujLaiJIRCYCaao6PNp5ORkL/Chz65Nf43TC+QanWJ8NDFHVvwZ5jI44V89M96plosBtj1kN9A3QFhNTLPBjgFuv/x+cOdw3Ak+palBzp/kc4zGgQFWnVEIWTRBE5A6glaqOj3ZeymOBb4wHWeOeMR5kgW+MB1ngG+NBFvjGeJAFvjEeZIFvjAdZ4BvjQRb4xniQBb4xHmSBb4wHJUQ7A1XFt99+m5SQkDANZ/hsfHnbGxOEYhHZWlhYOLFHjx4nm9gj7KyvfpCWLl16V/369e9s06bNz3FxcfahmVNWXFwshw4dSs7Ly0s6cuTI6EgGvxX1gxQfHz80LS3tgAW9CZe4uDitVavWofT09KMJCQkPlb9HGM8dyZNVZapaLykpKej53o0JVs2aNQ+rarNIntMCP3inMquTMWVyS5ERjUVr3KugW2+9tXVBQUGNyjp+06ZNj0yfPn1jZR3feJsFfgUVFBTUuPnmm4+Wv2XFZGdnB/2jIiJndujQ4VBcXBwiwqFDh+Jq165d9NJLL/3Yu3fvg1OmTGl07733tlm0aNGqs8466/g8/xdeeGH7/v377x4zZszxZ9UNHz68ZXZ2dpPc3Nzv2rVrF/Gqzf33399s3rx5DQE2btxYo0GDBoV16tQpAnj33Xd/SEtLOzZq1KhWS5YsqSUixMXFMXz48G2//e1vjz9U5K233qq3cOHCOl26dDl0svfdunXro+PHj28FsGPHjsSioiKaNm16DOCee+7ZMnz48N0TJkxoOnfu3EaqSnFxsVx44YU/T5kyZXNycnKVbuuxon418dlnn32fm5u7avXq1avy8vJWDBgwYNeYMWNal6xXVa6//vq2Bw8eLLO+cvDgQZk7d26jPn367H7mmWei8iSYxx9/fGtubu6q3NzcVVlZWQcfffTRTSXLXbp0OTJmzJiWtWrVKs7NzV21Zs2aVQsWLFg7adKk5vPmzatbcoz33nuv/oABA/bAyd/31Vdfva/k2DfddNP2K6+8cnfJ8vDhw3f/8Y9/bPDBBx80WLx48eo1a9asysnJWbV27drk3/3ud6FOJx5zLPCroWPHjrFx48ak+vXrH38s1znnnLO3cePGx0aOHNmqrP2mT5/esHXr1kfGjRtXMHPmzNR9+/aV+f34wx/+kNqxY8fOWVlZnc4888yO3377bTLAhg0bEi+99NJ2Xbp06ZSRkdF5/PjxxxutnnzyydQ2bdpkZWVldRozZkxaixYtQn0eAAUFBYmHDx+Wo0ePCkB6evqx2bNn/5CZmXkYoKioiKVLl9a65JJL9gf7vsuSn5+fWFRUJAcOHIgDSElJ0VdeeWXjwIEDd5e3b6yzwK8mzj///IyMjIzOTZo06XraaaedDjBz5sy8kvUiwltvvZX3wQcfNHjrrbfqBTrGtGnTmgwePHhn7969D6amph576aWXGgXarrCwkAceeKDVhx9+uHbFihWrhw0btv3TTz+tDTBkyJDThg4dumPlypWrly1btnrhwoV1p0+f3mDRokUpkyZNSlu0aFHu8uXLV2/fvr2sZ9Sd1COPPJL/5Zdf1m3cuHH3Xr16dRg3blzz+vXrF3Xu3PkowMcff1yre/fuB+Lj44N+32UZNWrUzrp16xa2bNmyW/fu3TOHDx/ecv369UkXXnjhwfL3jm0W+NXEZ5999v3333+/at68eesOHz4cd9FFF+1r0aJFqefFt2nT5tgLL7yQd8cdd6Rv3LixVPvOF198kbJmzZqaw4YN2wVw7bXX7njllVeaFBcXn3CuhIQELr/88t3nnntu5k033dS6QYMGRXffffeOvXv3xn3zzTd1Hn744RaZmZmde/To0Sk/Pz9p2bJlKR999FGdXr167W3dunVhXFwcd95557aKvM+zzz770Pr161csWLBgzcUXX7z366+/rn3WWWd1mTVrVj2AefPmNbj66qv3BLqM5mwAAAsjSURBVPu+T6ZRo0ZFX3755dqcnJwVv/nNb3Zs37498ZprrukwatSoFhXJeyyxwK9mzjvvvIOPPfbYT3fccUf6mjVrkvzXX3fddT9fccUVu4cMGXKab6/NKVOmpMbHx+uZZ57ZuUWLFqdPmzat6Y8//pg8Z86cep9//nlKZmZm55IXwPz58ze89957a9u3b3/46aefbt6vX7+2hYWFqCrffPNNbkld+euvv8597LHHttSsWbPY93w1atQIuXHs2LFjXHfddW22b98e36tXr4O///3vCz7//PO1d91115Zp06alAnz++ed1+vXrtzfY930yEyZMaPrRRx/V6ty589GxY8fueO+99zbMmzdv7YwZM2L6SbjBsMCvhm677bZdp59++oHRo0cHrNe++uqrP23bti3pq6++qguwY8eO+Pfff7/hO++8s27z5s3fbd68+buCgoLlV1111c4pU6Y06d2798GSQM7NzV21ZcuWhGbNmnVt0qRJ0YMPPrht4sSJm3Nycmo1bNiwuFu3bgceeeSRpiXHPeecczJnzZpV/4orrtj75Zdf1l27dm0SwLRp00J90CeJiYmsW7cu+f777087cuSIgPNjkJubm9ytW7eDS5YsSW7ZsuXR2rVrB4xs//ddnoMHD8bfd999LQsKCo6PzVi2bFnNzp07V/mivt3Oq6ZefvnljWeddVaXd99994QveUpKis6cOXN97969O7nbNmrXrt3hK6+8cp/vdhMnTtzSo0ePrG+++SbZ93ZY8+bNC++55578iy66KCM5Obk4Pj5eX3zxxTyAt99+e/3IkSNbZ2RkdD569GjcgAEDdo0aNWoXwNNPP/3jFVdc0T4xMVHbtm1b1uPDT2r+/Pk/jBkzpmXbtm2zatasWVxcXEzfvn33TJo0Kf+hhx5qduWVV+4pa1//912ep556Kn/8+PHNf/nLX2aKCMXFxdK1a9cD8+bN+6H8vWObDdIJUk5OTl63bt2O3yu2Djyn5vPPP08ZMmRIu82bN38X7bzEgpycnMbdunVLj9T57IpfQdU5KE31Z3V8ExW9e/c+aFf76LHAN8aDLPCN8SALfGM8yALfGA+ywDfGg+x2XgW1bN642+atOyvt82vRrFHhpi07cirr+MbbLPAraPPWnQk6s/KOL9cH/6MiImfm5+fnNG/e/PignClTpjT685//3ODTTz9dd/fdd6e1b9/+yOjRo3eWdQzf7U92rj59+rTNy8tLBlizZk3NkglA6tWrV/j1119/v3Tp0uSxY8e2zM/PTwKoV69e0aOPPrr5sssu219yjBEjRrS86KKL9s2ZM6fBkiVLauXk5KyuW7fu8dFAKSkpZyxdunTljBkzGp7qpBwlPvjggzrXXHNNh/T09OM9Bg8cOBDXoUOHw7NmzdrQrFmzomA+61AMHjy4zZAhQ3ZdffXV+8rfOrIs8D1g8uTJ+eE61t/+9rf1Jf8XkTM/++yz731/cAYNGtTuwQcf3HzTTTftAViwYEHta665pv26deu+a9q0aRHAokWL6k6ePHnznDlzGuTn59cYPnx4q9mzZ//of67HH3986+OPP74V4Be/+EXHUaNGbRs6dOjxsfA33nhj65JJOeLi4sjLy0s855xzMtPT048OGDDghIE6rVq1OpKbm7uqZLmwsJA+ffq0e+SRR5q9+OKLm8P1GZUI9J5ihdXxPWDgwIHpDz74YFOA2bNn18vIyOicmZnZeeDAgelNmzbtWjKKb9u2bYkXXHBB+4yMjM6dOnXqvGTJkuRQz7V9+/bE/fv3H/9eXX755fuzs7PXJyQ415jFixcnt2nT5nBKSooCDBs2rOCTTz6pl52dXT/Uc5U3KUd5du/eHb9r167Ehg0bFgLs3LkzfuDAgeklk4jccsstrY4dc2YfS0hIOHPMmDFpXbp06XTaaad1mTFjRn2AvXv3xvXv3z+9e/fumenp6VldunTplJOTUwOcH6vXX3+9wZo1a5KaNWvW9Ve/+lWH9PT0rB9//LFCcxGEkwV+NXH++edn+A6dfeKJJ06YHmrr1q3xt91222kzZszYkJubu+qCCy7Yt23btuNfwp9++qnGCy+88NP333+/6pe//OW+J598smmo+Xjqqac2jh8/vnWTJk269u3bt+3jjz+eet555x1o1KhREcCcOXPq+w6kSU1NLXz11Vfz7r777vR169aFFBDlTcrh76effqqRmZnZuX379l0aNmzY7fzzz8+4/PLL90yYMGEbwMiRI1v16NHj4MqVK1evWrVq1c6dOxMmTpzYFJyZfVJSUopXrly5+u23314/evTo9Pz8/IR33323Xr169YqWLVuWm5eXt6Jbt24Hnn322ROG7RYUFCQ+8MADW/Ly8la0adMm6tO0W+BXEyVz7pW87rvvvhOK9x9++GGddu3aHTrnnHMOAdx55507a9eufbxu27Vr1wNZWVlHALp3735wx44dIV+Zbrvttl1bt27NmTp16oaMjIzDb775ZuMuXbpklZQqPvzww/rXXHPNz777DBgwYO+gQYN2DBkypG1RUfBV7fIm5fBXUtRft27dyoceemjT9u3bE6+//vpdJXMDfPzxx/Wys7NTMzMzO2dlZXVetmxZrRUrVqSU7H/vvfduKzlvRkbGoQ8//LD20KFDd9966607H3vssSZDhw5t9dVXX9U5cODACY9Yi4+P14svvni/f3q0WOB7SEJCwglDMX2fFZCYmKi+6aGO3Fy6dGny7bff3iIlJUWvvvrqfZMnT85ftWrV6oyMjEMzZ85skJeXl1izZs3ikrq+r+eff37zgQMH4u67777mwZwrmEk5Tuauu+7aeemll/48aNCgdiXF+eLiYpk9e/YPJT+eixcvXv3aa68dH4yVmPif30FVlfj4eP7whz+kDh8+PD0lJaX4xhtv3DVgwIBdgT63pKQk9d0/2izwPeTiiy/ev2HDhuSvv/66JkB2dnb9ffv2xYfrQSEtW7Y8NnPmzNTXX3+9QUlaQUFB/NatWxN79ux5cPbs2fX79u0bcLx8cnKyvvXWW+tffvnlpkeOHCn3e1nepBzB5HfKlCmbtmzZkvTkk082AejVq9fPkyZNalpcXMyhQ4ekT58+7Z966qnjPyIvv/xyI3CmKVu/fn1ynz599n300Ud1r7vuuh1jx47d0bVr18N///vf6xcVFcX8k1esVb+CWjRrVBjKLbeKHD/cx2zatGnR66+/vv43v/nNaXFxcdqtW7eD8fHxWrt27RMn1quA1NTUogULFqwZP358ywkTJrSsWbNmcVJSUvE999yzpV+/fvsmTZrUbPr06WW2dHfr1u3IxIkTN91zzz1tgjnfySblCGb/xo0bFz300EObJkyY0Ormm2/eNXXq1J9uu+22Vh07duxy7Ngx6dWr196HH364oGT7f/7zn7U7d+7cuLi4WLKzs39ITU0tGjduXMHtt9/e5o033mgMcOaZZx5YvXp1zWDOH002EUeQ/CfiqIp27doVd//996dNmjQpv06dOsVffPFFSv/+/dsXFBQsj4uzwt/JBOorEU42EYepNA0bNixOSkoqPuOMMzolJCRoQkKCvvHGG+st6L3HrvhBqg5XfBO7In3Ft5/64Kn9SJrKUFxcLEBY2lmCZYEfJBH5+ejRo7FzP8ZUG4cOHUoWka2RPKcFfpCKiopez8/Pr+X+OhtzyoqLi+XAgQM18/LykgoLCydG8txWxw/St99+m5SQkDANOA84oWeWMRVQLCJbCwsLJ/bo0ePvkTyxBb4xHmRFfWM8yALfGA+ywDfGgyzwjfEgC3xjPOj/A+Y6dAWuS3yfAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax= plt.subplots(figsize=(3.5,4))\n", "ax.hist(x1,bins=35,edgecolor='k',color='grey',alpha=0.6, label='RNA-seq TS/NTS')\n", "ax.hist(x2,bins=35,edgecolor='k',color='orange',label='High TS/NTS Repair')\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['top'].set_visible(False)\n", "#ax.spines['left'].set_visible(False)\n", "\n", "ax.legend(fancybox=True,fontsize=12,loc='upper center', bbox_to_anchor=(0.5, -0.19))\n", "#ax.legend(bbox_to_anchor=(0.7, 1))\n", "ax.set_xlabel('log2(TS/NTS RPKM)',fontsize=14)\n", "ax.set_ylabel('Frequency',fontsize=14)\n", "for label in (ax.get_xticklabels() + ax.get_yticklabels()):\n", " label.set_fontsize(12)\n", " \n", "#ax.tick_params(axis='both', which='major', labelsize=9,rotation=0)\n", "\n", "#plt.savefig(\"wt_hist_high_20min_2.png\",bbox_inches='tight',transparent=True,dpi=600)\n" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "y1=np.log2(ratio_df['TS/NTS'].tolist())\n", "y2=np.log2(mid['TS/NTS'].tolist())" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAANEAAAE7CAYAAABDkmS/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de1xUZcIH8N/DdQBRuagohHgDBEU24zUtKbNW0zQzLa3W3FYqs2jNLCy737bs9lpaG75FrahrRrqyr1u9tYpa60dTsdRB8IaAIuAVUbk97x/nDA3DjAw8wMzA7/v5zEfPmTPnPDPMb87zPOc85wgpJYio+dwcXQAiV8cQESliiIgUMUREihgiIkUMEZEij0aeZ/830W+EtZncExEpYoiIFDFERIoYIiJFDBGRIoaISBFDRKSIISJSxBARKWrsjAVyInPnzkVRUVG9eb169cJ7773noBIRwBC5lKKiItx333315i1fvtxBpSETVueIFDFERIoYIiJFbBO5uL179+Luu+9uMJ8dDm2HIXJx1dXVDTobAHY4tCVW54gUMUREilida6estZXYTmodDFE7Za2txHZS62B1jkgRQ0SkiCEiUsQ2UQfCzobWwRB1IOxsaB2szhEpYoiIFDFERIoYIiJFDBGRIoaISBFDRKSIISJSxIOtToDXk3NtDJET4PXkXBurc0SKGCIiRQwRkSK2iZyUtWELRqPRQaWhK2GInJS1YQvz5893UGnoSlidI1LEPVEHx9Gu6hiiDo6jXdWxOkekiCEiUsQQESliiIgUMUREihgiIkXs4m5FHCfUMTBErYjjhDoGVueIFDFERIoYIiJFDBGRIoaISBFDRKSIXdxtjMO+2x+GqI1x2Hf7w+ockSKGiEgRQ0SkiCEiUsQQESliiIgUMUREihgiIkUMEZEihohIEUNEpIghIlLEEBEpYoiIFHEoBDXAexY1DUNEDfCeRU3D6hyRIoaISBFDRKSIISJSxBARKWKIiBQxRESKGCIiRTzY2kKs3RWPVzbtGBiiFmLtrni8smnHwOockSKGiEgRQ0SkiCEiUsQQESliiIgUsYub7MLRrrYxRGQXjna1jdU5IkUMEZEihohIEUNEpIghIlLEEBEpYoiIFDFERIoYIiJFDBGRIoaISBFDRKSIISJSxLO4m4GXxyJzDFEz8PJYZI4hombjQD0NQ0TNxoF6GnYsECliiIgUMUREihgiIkUMEZEihohIEUNEpIghIlLEEBEpYoiIFDFERIoYIiJFDBGRIoaISBFDRKSIISJSxBARKWKIiBQxRESKGCIiRQwRkSKGiEgRQ0SkiCEiUsQQESliiIgUMUREihgiIkUMEZEi3hXCBT344AycOHGm3vQnn3zhwBJ1bAyRCzpx4gyk/G1aiDO2F6ZWx+ockSKGiEgRQ0SkiG0ialEd8T6uDFEj5s6di6KionrzjEajg0pjnbc3MHHixHrz/PzcHVKWjngfV4aoEUVFRQ2+FPPnz3dQaay7fBn1eusAQIgaxxSmA2KI2inLvVNISFd06dLDgSVqvxiidspy72QwnMGJE2fqghUS0pUHaFsIQ9RBWIaKB2hbDru4iRQxRESKGCIiRQwRkSKGiEgRQ0SkiCEiUsQQESliiIgU8YwFanXtfXgEQ0Strr0Pj2B1jkgR90ROxvxyWDzj2jUwRE7G8nJYAM+4dnaszhEpYoiIFLE65wLMh3pbXpCkJVm2x9gWsw9D5AIajkpVX6etYHL0a9MxRB2U9SsEOaYsro4hamMFBXm8Ck87wxCZaekLNVoGxuRKV+Eh18MQmWnpCzVeuFDTaJWpNdo71LbYxU2kiCEiUsQQESliiIgUMUREijps75wr3HeIXEOHDVFr3HfI/Nyz9sja+3vwwRkd/vy6Dhui1mA5Fqi9HfPhWCfr2CYiUsQ9ETlEe7oCEENEDtGergDE6hyRIoaISBFDRKSIbSKyyXwIOdnGEDVTez+wCnCsk70YomayfuDRMWVxJMu9lZ+fuwNL4xgMESlpuLeqcVxhHIQdC0SKGCIiRQwRkSKGiEgRQ0SkiCEiUsQQESnqEMeJWuJ6Ch3hDAVqng4Ropa4nkJ7H/pNzdchQkRtx/I0oKbc9cJVR7syRNSiGp4GdMbuELnqaFd2LBApYoiIFLW76hyvbOpcvL2BnJycdn13wHYXota4sik1n/V7w9rfTnIF7S5ELcXydvREtjBENvC4UOuxrOKFhHR16et5M0TU5qx1g7syhoicmiscgGWIyKm5wgFYlwiRtW5roPm/SKZOA1Od3NdXoKJCq1+wE6HtmZ8qNHHiRJdrI7lEiKx1WwPN/0Vq2GkgefkrB3L1NpJLhMgWa/VlHlilttZmIbJWJVNtIFqrL/PAquuzPBPc2at4rRIiW6fevPrqq/XmLViwoMGe5MiRI4iIiAAAfPPNOpw9exkAsHr1agDNO6ZQUJDHto4LsXaWg8Fwpt7fcP361bh48bfnAwN9UVZ2oY1KWJ9yiOwNzPTpdzT4IhsMWpXMxHROlWnvsnr16ibfI9RWYHjg1LVZuy54/emKK/4gNzZfpVYkpOW31PxJIf4FILhZa24ZwQBKHbj9K2HZms5ZywXYV7ZSKeVYy5lXDJGjCSF2SCmvcXQ5rGHZms5ZywWolY3jiYgUMUREipw9RJ84ugBXwLI1nbOWC1Aom1O3iYhcgbPviYicHkNEpMjpQySEeEcIkS+E2K0//u7g8owXQuwRQuQIIb4UQnR2ZHnMOeFnJYQQnwshntSn3YUQ7wshjEKIPCHEw85SNn1eqdlnt1sIca9dK5NSOvUDwE8ARji6HHpZugE4CWCAPv0mgKWOLpeTflYDAfwA4AKAJ/V5jwD4X2hnygQAMAL4LycpWxSAA81Zn1PviYQQ3gB+B+ApIcQvQoivhBDhDizS7wFsl1Lm6tMfAbhXCMefSOSEn9UcAMsAfGk27w4An0kpq6WUpwGsAtBwjItjyjYCQI0QYrNe03heCGHXrdCdIkRCiHFCiGrLB4AUaL8YCwHEAfgPgHUO/NJeBeCY2XQBgM4A/B1TnHp6wYk+Kynlo1LKFRazrX1+YW1XKo2NsnkA+D8AYwEkAhgD4DF71ucU44mklKZd/BUJId4G8ByACACHW7lY1rgBsHZMwOH3nZdSHgYwzjTtBJ+VNZafn4ATfHYAIKVMNZ8WQrwLIBnA+4291in2RLYIIeKEEH+wnA2gyhHlAZAP7RffJBTAaSmlY87BN+OEn5U1lp9fL2h7I4cTQvxBCBFnPgt2fnZOHSIAtQAWCyH66NOzAeyRUjrqg/8WwLVCiAH69MMA1jmoLJac7bOyZh2AB4QQHkKIrgCmAVjr4DKZDALwst6D6APgUQB29W46RXXOFinlr0KIxwCs1xt5BQCmO7A8J4UQfwSwRgjhBeAggBmOKo85Z/usbPgIQD8A2QC8APxVSrnJsUWq8xKADwH8AsATWqfDMnteyNN+iBQ5e3WOyOkxRESKGCIiRQwRkSKGiEiR04dICBEhhJBCiP4ttL7RQojtQohy/UzsP1lZ5mUhxBwhxEx927YeafrynYQQb+tnUF8WQhwWQiwSQnSyWK+nfqawjxBio76cj63329Lbt9jORivrOyeE+EEIMchsuTSLZWqEEMVCiP8RQvjry8wUQjQ4HiWE+FAIUSGEGGn2vi4KIXytLPsX/flZ+vTDQojXrvzXdBKOPtvXjjNuI6CdKtK/BdY1AMBFAM8A6A/gXgCXAEwwW6Y/gAPQjhX4AAjRH6F6OSabzeuiv+ZLAJsBXK+XdwyAHABfW2w/EcAP+v836ut73db7bentW2xnI4D3zNbVE8B1AHYAyAXgpi+XBmCN2XK9ANwAoAjA/+jLzARQYLH+FwBcBjDG4n1VArjdSnmM0A4Yz9KnPQDsBxDp6O9go98rRxegjUO0EMBPFvM+AbDKYnqhldd66OW40WJ+F/2Pf43F/Jv05UPM5r0E4FmzL/ER/YsW3dj7bYntWzy/EcCrVuZfp79uiD6dBmC5leVSAJzR/18vRNDO5KgGcKeV9/V/pvCZPRcFoBDAUVOI9PlPWy7rjA+nr85ZEkIECCE+0asU54QQ6UKIQLPnhwoh/qNXG37Uq2Yb9adXQzudw5wEYNBf6w9t79SUU1Gk/rjZYn4WgBgAZWbzbgbwvdl0OoBdAJY0YXsq27fHZf3f6kaWqzZbto4QYiq0I/9/klJ+ZeV16wCMtzi7/A5on7nlkf9/AJiunyLktFwuRAC+BhAPYAKA0dB+xf4GAEKILgD+Be2L+TsAKwAsML1QSnlASvmzaVoI0QPa+VtZ+qwbAJyTUv5qb2GklOeg/Vq/IYTIFUJ8IIS4HYCXlHK/lLJK35a/Xtbt5i+Hdo7bDUKIe+z+BJqxfXsIIXoCeBfAXmjVK2vLCCHE76CNyfmHxXOjASwHkCGl/NzGZn4A4AdgmNm822Hlh0tKuR/AKWh/F+fl6F1hYw/UbyPE6f8faFEVkABiATwI7UxhD7PnVwLYaGW9fgC2Qqt3++rzXoTeZrGyvNXqlP6cG7QwbIdWtZIAzgD4g9kytwFYZza9EXp1CsAHAI5DG5tU935bcvtWXrMRWvukXH9c1B//ANDbbLk0aGczm5arhLYXWgsgQP5WnSsHcA7Av/Vl4q/wd/wSwGv6/BBoe0tPaNXbWRav+xZWqp3O9HC1PdFAAOf1XygAgJQyB8Bp/bk4ALuklOZVkZ8sV2K2x+oL4DYpZYX+VHc041rRUspaKeVHUsoEaF+K+6E1ztP0X22gYVXO3EL931dtPN8S27cmFdpefRiAL6B1FjwnpTxqsdw/9eXioXXO+EspJ0ltdKqJH4Cl0GoHP+vb9rSx3XUATHcduB3A/0rbe8wyaH8Xp+VqIbpkY767/qiGNg7EXL1pIUQwtF/LvtB+1Q+aPS3RxM9ECHGjEOKFuhVIeVJK+QW0nrIT0L5UwBVCJKU8C+BJaNcguNKXXmX71pyWUuZJKfdC6ww4ACDTShukXF8uT0p5VEp5seGqcEJKmSKlrAWQBK099qyN7f4TQLTQhm3cDq2Kbos7nGTgni2uFiIjAH8hxEDTDCFEDLRqUA60uvwQUX9s/FCzZb0AZEK7A0CivhczdwJNvwtGIIBnhRBXmc+UUl6GVj0q0dtegfqX1SopZTq0ttm7Lb19e1YitbrTQ9AuIPJGE8sAmH3Rpdam/AuAZ4QQ8Va2dRpal/x0AMMBfHOF9QYBKG5GedqMS4VI/9JnAvhcCJEghEgA8DmALVLK3dDaP34A3hdCROkH7qbht16fudBC9UcAF4QQIfrD1Lu3E8DgJhZrPbQxKN8JISbrBxWHCyFSoe0F10DbC/1gx7oeQf2Rny21fbtIKfMBvA7gwUaqgfZ4DUAetL+VtWrdOmjd5JvklUcGD4Z27MppuVSIdKb6/vfQGp17odevpZTl0HrtrgewB1qDdzm0hi4ATMVvF6Q4bvYw9TL9G4CvECLW3sLodfmbobWx3oa2R/wHtAOlN+hfkNGw3R4yX5cRwDv2brsJ22+Kd6Bdk2GJRTd0k+h7wiRoIXjOyiLroF3gxebhBCFEtL6MPT9ADtOuBuXpdexQKeUWs3lLAPhJKWfauY5lAI5LKa394akNCSFeAtBLSpnk6LJcSXsLUTyAbdAOmG6HVnVLAzBdSvlPO9cRBe1XPVr/NSUH0Nuv+wGMs9J2dSrtKkQAoLeDnoZ2jbN8AG9JKe0aK2+2jtcAFEspF7dCEckOQog5AK6SUqY4uiyNaXchImprrtixQORUGCIiRQwRkSKGiEgRQ0SkiCEiUsQQESliiIgUMUREihgiIkUOvz/Rzp07x3h4eLwgpQwBQ01NVwNgS3V1ddLQoUMrG126FTg0RDt37hzj7e39YURERKWPj89pNzc3nshHTVJbWyuOHj16/ZkzZ2YD+G9HlMGhv/weHh4vREREVPr5+V1kgKg53NzcZK9evcrd3d1nOqwMjtowAEgpQ3x8fGxdfITILl5eXlVSyi6O2r6j2yBu3AORKn0Uu8O+yw7vWLA0a9as8OLiYu/WWn+PHj0uL1u2LL+11k8dj9OFqLi42HvmzJmt1suSlpZmd0CFEEMHDBhw0c3NDUIIXLx40a1Tp041S5cuPZqYmFixePHioKeeeqr35s2b9yUkJNRVS0eNGtX/jjvuOJ2cnFx3HeykpKSwtLS07kaj8Zd+/frZfWnflvLMM8+EZGRkBAJAfn6+d0BAQLW/v38NAHz11VcHe/XqVTV79uyrdu7c6SeEgJubG5KSkk4+8cQTdRezXLlyZZeNGzf6x8bGXrzS+w4PD69MSUm5CgBKS0s9a2pq0KNHjyoAmDdv3vGkpKTTCxcu7LFmzZogKSVqa2vFqFGjzi5evLjQYDC4XM3E0dU5p7dp06YDRqNx3/79+/cdOXLk18mTJ59KTk4ONz0vpcS9997bt6KiwuaVcSoqKsSaNWuCxo4de/qdd95xyNU8X3/99RNGo3Gf0WjcN2jQoIpXX321wDQdGxt7OTk5OczPz6/WaDTuy8nJ2bdhw4bcRYsW9czIyOhsWsfatWu7Tp48+Qxw5fc9adKk86Z1z5gxo2TChAmnTdNJSUmnP/3004DMzMyAHTt27M/JydmXnZ29Lzc31/Dkk0829XJhToEhaoKqqirk5+d7de3ate4yxcOHDz8XHBxc9fDDD19l63XLli0LDA8Pvzx//vzi9PT0bufPn7f5ub/55pvdoqKiYgYNGjRw6NChUT///LMBAA4fPux5yy239IuNjR0YGRkZk5KSEmJ6zV/+8pduvXv3HjRo0KCBycnJvUJDQ5t67TwUFxd7Xrp0SVRWVgoAiIiIqPr73/9+MDo6+hIA1NTUYNeuXX4333xzub3v25aioiLPmpoaceHCBTcA8PX1lR9//HH+nXfeebqx1zojhqgRN9xwQ2RkZGRM9+7d4/r06TMYANLT04+YnhdCYOXKlUcyMzMDVq5cabWHKDU1tfvdd99dlpiYWNGtW7eqpUuXBllbrrq6Gs8999xV3377be6vv/66/4EHHij597//3QkApk+f3uePf/xj6d69e/fv3r17/8aNGzsvW7YsYPPmzb6LFi3qtXnzZuOePXv2l5SU2Lr+9RW98sorRVu3bu0cHBwcP3LkyAHz58/v2bVr15qYmJhKAPj+++/94uPjL7i7u9v9vm2ZPXt2WefOnavDwsKGxMfHRyclJYUdOnTIa9SoURWNv9r5MESN2LRp04EDBw7sy8jIyLt06ZLbTTfddD40NLTevXt69+5d9eGHHx6ZM2dORH5+fr125pYtW3xzcnJ8HnjggVMAMG3atNKPP/64e21tbYNteXh44NZbbz09YsSI6BkzZoQHBATU/PnPfy49d+6c2/bt2/1ffvnl0Ojo6Jirr756YFFRkdfu3bt9v/vuO/+RI0eeCw8Pr3Zzc8Njjz12sjnvc9iwYRcPHTr064YNG3JGjx59btu2bZ0SEhJiV6xY0QUAMjIyAiZNmnTG3vd9JUFBQTVbt27Nzc7O/vX+++8vLSkp8ZwyZcqA2bNnhzan7I7GENnp+uuvr3jttdeOzZkzJyInJ8fL8vl77rnn7Pjx409Pnz69j/kVlBYvXtzN3d1dDh06NCY0NHRwampqj6NHjxq+/PLLLllZWb7R0dExpgcArFu37vDatWtz+/fvf+ntt9/uOXHixL7V1dWQUmL79u1GU9ti27Ztxtdee+24j49Prfn2vL29m9wwr6qqwj333NO7pKTEfeTIkRUvvvhicVZWVu7jjz9+PDU1tRsAZGVl+U+cOPGcve/7ShYuXNjju+++84uJiamcO3du6dq1aw9nZGTkfv7550599wdbGKImeOihh04NHjz4wqOPPmq1HfDXv/712MmTJ71++umnzgBQWlrqvn79+sDVq1fnFRYW/lJYWPhLcXHxnttvv71s8eLF3RMTEytMoTAajfuOHz/uERISEte9e/ea559//uRLL71UmJ2d7RcYGFg7ZMiQC6+88koP03qHDx8evWLFiq7jx48/t3Xr1s65ubleAJCamtrUC/LD09MTeXl5hmeeeabX5cuXBaAFy2g0GoYMGVKxc+dOQ1hYWGWnTp2spsTyfTemoqLCfcGCBWHFxcV1Nx7YvXu3T0xMjEtW55yui9vZffTRR/kJCQmxX331VYMvjK+vr0xPTz+UmJg4UF82qF+/fpcmTJhw3ny5l1566fjVV189aPv27QbzLuKePXtWz5s3r+imm26KNBgMte7u7nLJkiVHAGDVqlWHHn744fDIyMiYyspKt8mTJ5+aPXv2KQB4++23j44fP76/p6en7Nu3b7POAFm3bt3B5OTksL59+w7y8fGpra2txbhx484sWrSo6IUXXgiZMGHCGVuvtXzfjXnrrbeKUlJSel577bXRQgjU1taKuLi4CxkZGQcbf7XzcejFG7Ozs48MGTKk3k21eLBVTVZWlu/06dP7FRYW/uLosrSl7Ozs4CFDhkQ4YttOtydqz19wap/YJmpnEhMTKzraXsjRGCIiRQwRkSKGiEgRQ0SkiCEiUuR0XdxhYcFDCgvLWq1coaFB1QUFpdmttX7qeJxuT1RYWOYhJdBaD3sDmpOT4yWEGJqQkBBl+dydd94ZIYQYevz4cY+srCzfsWPH9rW2jlGjRvVfvHhxvTO2S0tL3U3nyoWHhw8yGAxXm6YfeuihMABYtWpVl/j4+OioqKiY/v37x44bN67vwYMH652dHR8fH11aWuoeGho6eNKkSX3Mn8vKyvI1DYcYO3ZsX9P6hRBDIyMjY6Kjo2OGDRsWCQC7du0y3Hjjjf0jIyNjIiMjYxISEqK++eabTtbezxNPPNErICBgiGl9UVFRMaGhoYNnzZoVZu2E2pYQHR0dU1pa6t74ko7jdHsiZ+Lt7S0PHz5sOHDggFdkZGQlAJw7d85tx44ddV+yxMTEisTExEP2rjM4OLjGaDTuA4DMzEz/uXPnhpumAeDIkSOes2fPjti2bdt+0zaffvrpkClTpvTbtWuXEQAOHjzo6evrWxMcHFwDABs2bAhYunTp2UceeeSU5fb+9a9/1ZVNCDF006ZNB3r27Fl3FvrUqVP7Pf/884UzZsw4o6+r05QpU/rn5eX90qNHjxrL9U2YMOH0F198UXdAvKSkxH3w4MGxX3/99bk777yzwQmqqsw/G2fldHsiZ+Lm5iYnTJhw6tNPPw00zfvb3/7WdcyYMXXnkWVmZvoPGDAgFtACMGLEiAH9+/ePveGGG/o3Z2xPcXGxR1VVldu5c+fq/jbPPvvsyaeeeuq4aXr16tVdb7vttroypKSkFKakpIQbjcYGZ5c3pqSkxLO8vLxuW7feemt5WlraIQ8P+35fCwoKPC9duuQWGBhYDQA7d+40XHfddQNiY2MHRkdHx7z//vtBgPY5xcXFRY8bN65vZGRkTFxcXPTOnTsNALBnzx7vESNGDBgyZEh0r169Bo8ePbqfacSsaY+/ePHioKFDh0bFxMQMNO1FnQVD1IgHHnigbPXq1XVVsvT09OCkpKRSa8smJSWFJyQkXMjLy9u7ZMmSY4cOHTI0dXvDhg27OH369JLhw4fH9OvXL3batGm9V61a1WXKlClnTctkZmZ2nTp1at306NGjz99///0l06ZN61tV1bTLN7z11lv5KSkp4d27d48bN25c39dff73b9ddffyEoKKjBXggA1q9fHxAdHR3Tu3fvQV27do2fM2fOVe+9997RUaNGVVRVVeGuu+7q9+abbxbu3bt3/9atW3M++OCDkO+//94PAPbu3euXnJx88sCBA/vuu+++shkzZvQBgCVLlnS77777yrKzs42HDx/+9dixY96rV69uMNAvLy/PZ8uWLTnbtm070KQ32coYokaMHDmywt3dHZs3b/bNy8vzLC8vdzM/89rcjz/+2PnBBx8sA4BBgwZdvvbaa89bW64xqampBceOHct+7rnnCg0GQ+3zzz9/1bBhw6Krq6tRVlbmXl5e7j5gwIB6F3N59913C6WUmDdvXpOuU/DQQw+dOnHiRPYnn3xyODIy8tLy5cuDY2NjB1kbMwVo1Tn9Ogx7b7311tOXL192mzZt2hkA2LNnj+HYsWPes2bNioiOjo657rrroi5duuS2Y8cOXwCIioqqGDt2bDkAJCcnl+7fv9/3xIkT7kuXLi3o0aNH9cKFC3vMmDEjvKSkxPP8+fMN2kFRUVEXAwMDW6fxpYBtIjvcddddZWlpaUHdunWrmjZtWpmt5YQQMD8r3sPDo8mnyKenp3cpLS31ePzxx8tmzpx5ZubMmWfOnj1bGBYWFvfjjz/67tu3z3DLLbectXydp6cnVq5ceejaa6+NCQwMtLoXsbRr1y5Dampq0NKlSwsnTZp0ftKkSecBFI0YMSIyPT094OWXXy629VqDwSA/++yz/Li4uIGzZ88OS0tLO1ZTUyM6depUY96OOXbsmEdQUFDNDz/80Mk0tBxA3efk4eEBfeChmDJlyqlJkyadLSgo8LI2usDPz8+u99XWuCeyw6xZs8oyMzMDvv7668A//elPDRrvJomJiWc//PDDbgCQm5vr9Z///Me/qdvq3Llz7SuvvBJmukAJABiNRm8PDw85cODAy+vXr+86depUq2N7YmJiKt944438N954w65h1mFhYVXp6endPvvsswDTvOLiYvcTJ054XnPNNY0OkDMYDPKDDz7IX758efetW7f6xMXFXTIYDLVLly4NBIC8vDzPuLi42C1btvjq78Nn27ZtPgDw7rvvdouPjy8PDg6uycrK6vziiy8WJSUlnQaAPXv2+NXU1Ni8epKzcbo9UWhoULUQrXucqKmv6dOnT1W/fv0udu7cucZaj5XJsmXL8u+9996Ivn37xoaEhFQOHDiwySM1J0yYcH7RokX5999/f5/z58+7u7u7y+7du1dlZGTk+vv71+bl5RmGDRt20dbr58yZc+rbb7/tYt6DaEu3bt1qNmzYkJOSkhK2cOHCMB8fn1ovL6/aefPmHZ84caJdVdExY8aUT5w4sezRRx/t/fPPPxvXrFmT9/jjj4e///77IdXV1WLBggVFvyeutPQAAADbSURBVP/97y9kZmb6BwcHVy1YsCC0oKDAKygoqHrFihWHAeDZZ58tnDp1an9fX98af3//moSEhPK8vLxWG1PW0pxuUB61T6bu/Nzc3L2tsX5HDspjdY5IEUNEbeK2224731p7IUdzdIhqa2trXaYBSc5Jb5I4rOvboSESQpy4ePFikw9IEpmrrKz0FEI06PZvKw4NUXV19UtHjhzxunDhgg/3SNQctbW1oqioqFNNTU2ao8rg0N45gDc+JmUOv/Gxw0NE5Or4y0+kiCEiUsQQESliiIgUMUREiv4fHchxuSv+fhcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax= plt.subplots(figsize=(3.5,4))\n", "ax.hist(y1,bins=35,edgecolor='k',color='grey',alpha=0.6, label='RNA-seq TS/NTS')\n", "ax.hist(y2,bins=35,edgecolor='k',color='yellow',label='Mid TS/NTS Repair')\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "ax.get_yaxis().set_ticks([])\n", "ax.legend(fancybox=True,fontsize=12,loc='upper center', bbox_to_anchor=(0.5, -0.19))\n", "ax.set_xlabel('log2(TS/NTS RPKM)',fontname='Arial',fontsize=14)\n", "\n", "for label in (ax.get_xticklabels() + ax.get_yticklabels()):\n", " label.set_fontsize(12)\n", "\n", "#plt.savefig(\"wt_hist_mid_20min_2.png\",bbox_inches='tight',transparent=True,dpi=600)\n" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [], "source": [ "z1=np.log2(ratio_df['TS/NTS'].tolist())\n", "z2=np.log2(low['TS/NTS'].tolist())\n" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAANEAAAE7CAYAAABDkmS/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de3xMd/4/8Nd7cpHEJUQiJETqlkgU5atbtlJKu22zqNvPkl2rtmn5ulXLftGqpYu22rK+qhdaqS22ddkoXV22Fazt+lp1qUsiLhGViLhUkEQymc/vjzOjkzG5+SSZSfJ6Ph7zYM6cy2cm85rzOZ9zPp8jSikQ0b0zuboARDUdQ0SkiSEi0sQQEWliiIg0MUREmjzLeJ3t30Q/EWcTuSci0sQQEWliiIg0MUREmhgiIk0MEZEmhohIE0NEpIkhItJU1hUL5EamTp2KjIyMYtNCQkKwePFiF5WIAIaoRsnIyMCvf/3rYtM+/fRTF5WGbFidI9LEEBFpYoiINPGYqIY7duwYRowYcdd0NjhUH4aohjObzXc1NgBscKhOrM4RaWKIiDSxOldLOTtW4nFS1WCIailnx0o8TqoarM4RaWKIiDQxRESaeExUh7CxoWowRHUIGxuqBqtzRJoYIiJNDBGRJoaISBNDRKSJISLSxBARaWKIiDTxZKsb4HhyNRtD5AY4nlzNxuockSaGiEgTQ0SkicdEbspZt4Xk5GQXlYZKwxC5KWfdFqZPn+6i0lBpWJ0j0sQ9UR3H3q76GKI6jr1d9bE6R6SJISLSxBARaWKIiDQxRESaGCIiTWzirkLsJ1Q3MERViP2E6gZW54g0MUREmhgiIk0MEZEmhohIE0NEpIlN3NWM3b5rH4aomrHbd+3D6hyRJoaISBNDRKSJISLSxBARaWKIiDQxRESaGCIiTQwRkSaGiEgTQ0SkiSEi0sQQEWliiIg0sSsE3YX3LKoYhojuwnsWVQyrc0SaGCIiTQwRkSaGiEgTQ0SkiSEi0sQQEWliiIg08WRrJXF2VzyObFo3MESVxNld8Tiyad3A6hyRJoaISBNDRKSJISLSxBARaWKIiDSxiZvKhb1dS8YQUbmwt2vJWJ0j0sQQEWliiIg0MUREmhgiIk0MEZEmhohIE0NEpIkhItLEEBFpYoiINDFERJoYIiJNvIr7HnB4LLLHEN0DDo9F9hgiumfsqGdgiOiesaOegQ0LRJoYIiJNDBGRJoaISBNDRKSJISLSxBARaWKIiDQxRESaGCIiTQwRkSaGiEgTQ0SkiSEi0sQQEWliiIg0MUREmhgiIk0MEZEmhohIE0NEpIkhItLEEBFpYoiINDFERJoYIiJNDBGRJoaISBNDRKSJISLSxBARaWKIiDQxRESaGCIiTbzdZDUZ87t4XM3OAgAMHDgQAUHBSPhohYtLVfnq4n1cGaIyTJ06FRkZGcWmJScnV3g9V7Oz0GfxqTvPk6a20y6bO6qL93FliMqQkZFx15di+vTpZS5n2/MMHDiwqopGboIhqiJ1Zc9DbFgg0sYQEWlidc5FxNO72PHSwIED4eHtg6KC/DvTxvwuvla24NU2DJGLKHNBsWMmwDhu4nFUzcMQ3YMz584X24sEBAUjKKBxpW/HcW/l5eNX6dsgfQzRPSjMz71rj1EVIXLcW3HP5J7YsECkiSEi0sTqXA3ieIwE8DjJHTBENUhJLXrkWqzOEWninoiqXG3vHsEQVQLx9EZKSgqv2C5Bbe8ewRBVAh6r1G08JiLSxD1RDefY7F1bu527M4aohuOlQa7H6hyRJoaISBNDRKSJISLSxBARaWLrnJ3KGqiR6haGyM69DtRIdRurc0SaGCIiTazOlYP9HR2IHDFE5cBxtak0rM4RaaqzeyI2Z1NlqbMhYnM2VZY6G6Layr5/UW2+raU7YYhqGfYvqn4MEblEbRoBiCEil6hNIwAxRA54YpUqiiFy4HhiFeBxBZWOJ1uJNDFERJoYIiJNDBGRJjYs1HKOI6QOHDgQHt4+KCrIvzNtzO/ieVWDBoaolitpsH1e1VB5WJ0j0lTn90Q8uUq66nyI2GuVdLE6R6Spzu+J6G5nzp2/69aZXj5+LiqN+2OI6K5mcAC8frAC6kSIOJ5C6diRT0+dCBHHU6CqVCdCRDVDTe3tWudCZH9eyPE4gFyrpvZ2rXMh4nkhqmw8T0SkqdbtidgSVz1s1WJblbguj29X60LElrjqwWrxT2pdiOyxEYGqQ60OEUfuoepQq0IU0qo1Mn9Ix+eff+7qotQ6zi4NIkOtClHmD+msp1cRV10aVBNOwNaqEFHtUxNOwNaIEDlrtgbc7xepLnO8pQtQd5q9a0SInDVbA+73i1SXORsQZdf0qGLBqq2jDNWIEJXEWX2Z3Iez46jaeMxabSFyViWrSHXMcUCRgKBgBAU0LraHYqscuUKlh8jWzGzP5OUDS+FPu3FbXXnmzJkYMWIEtvztK+TdzCm2jG+DRhjw1BMAjMt2HM/57JoeVeyyE6p5nDWbDx72/4pV+Zx1S3e3FjvtEDX0D8DNnGvFppV3sEBby8vnn3/utD5d2p6lpEEJqea414ElnbXY2X6Q7aWlpSE8PPyu5Z1N1wmhKKVKflHkKwCB97TmyhEI4LILt18alq3i3LVcQPnKdlkp9YTjxFJD5Goi8h+l1H+5uhzOsGwV567lAvTKxv5ERJoYIiJN7h6iD11dgFKwbBXnruUCNMrm1sdERDWBu++JiNweQ0Skye1DJCJvi0i6iByyPj5zcXliReSIiKSIyHoRaeTK8thzw89KROQTEZlmfe4hIktEJFlETonIOHcpm3XaZbvP7pCIxJVrZUopt34A+BZAL1eXw1qWIACXALS3Pn8DwHJXl8tNP6uOAL4BcAvANOu0/wbwNxhXyjQBkAzgQTcpWwSAk/eyPrfeE4lIPQAPAPi9iHwvIhtFJMyFRXocwH6lVKr1+XsA4kREXFgmAG75WU0AsBLAertpgwGsUkqZlVLXAPwFwN19XFxTtl4AikRkj7Wm8aqIeJRnZW4RIhF5SkTMjg8AM2D8YrwCoDOAfwPY7MIvbSsA5+2e/wCgEYCGrilOMSFwo89KKTVRKbXWYbKzz69l9ZXKUELZPAH8A8ATAGIA/ALApPKszy36EymlbLv4UonIWwBmAwgHcLaKi+WMCYCzcwJF1V0QR0qpswCesj13g8/KGcfPT+AGnx0AKKWK9Q4UkXcATAawpKxl3WJPVBIR6Swiv3GcDKDQFeUBkA7jF98mFMA1pdQtF5XnDjf8rJxx/PxCYOyNXE5EfiMine0noZyfnVuHCIAFwFIRuc/6fDyAI0opV33w2wE8JCLtrc/HAdjsorI4crfPypnNAMaKiKeINAbwKwCJLi6TTScA86wtiL4AJgIoV+umW1TnSqKUOioikwBssR7k/QBgpAvLc0lEngGwQUS8AZwGMNpV5bHnbp9VCd4D0BbAYQDeAD5QSu1ybZHumAtgGYDvAXjBaHRYWZ4FedkPkSZ3r84RuT2GiEgTQ0SkiSEi0sQQEWly+xCJSLiIKBGplPGwRKSfiOwXkZvWK7F/52SeeSIyQUTGWLdd0iPBOn8DEXnLegX1bRE5KyKLRKSBw3q9rFcK+4pIknU+35Leb2Vv32E7SU7WlyMi34hIJ7v5EhzmKRKRLBH5SEQaWucZIyJ3nY8SkWUikisive3eV56I3DWYnIi8bn39WevzcSIyv/S/pptw9dW+5bjiNhzGpSLtKmFd7QHkAZgFoB2AOAD5AAbYzdMOwEkY5wp8ATS3PkKt5RhiN83fusx6AHsAPGwt7y8ApAD4q8P2YwB8Y/1/knV9C0p6v5W9fYftJAFYbLeuFgB+DuA/AFIBmKzzJQDYYDdfCIBHAGQA+Mg6zxgAPzisfw6A2wB+4fC+CgAMclKeZBgnjJ+1PvcEcAJAB1d/B8v8Xrm6ANUcolcAfOsw7UMAf3F4/oqTZT2t5ejjMN3f+sf/L4fpj1rnb243bS6Al+2+xGnWL1pkWe+3Mrbv8HoSgD86mf5z63JdrM8TAHzqZL4ZAH60/r9YiGBcyWEGMNTJ+/qHLXx2r0UAuADgnC1E1un/4zivOz7cvjrnSESaiMiH1ipFjoisEZEAu9e7i8i/rdWGf1mrZknWlz+HcTmHPQXAx7psQxh7p4pciqKsj/4O03cDiAJwxW5afwBf2z1fA+AggHcrsD2d7ZfHbeu/5jLmM9vNe4eIDIdx5v93SqmNTpbbDCDW4erywTA+c8cz/18AGGm9RMht1bgQAfgrgK4ABgDoB+NX7M8AICL+AL6C8cV8AMBaADNtCyqlTiqlDtiei0gwjOu3dlsnPQIgRyl1tLyFUUrlwPi1XigiqSLyvyIyCIC3UuqEUqrQuq2G1rLut18cxjVuj4jIqHJ/Avew/fIQkRYA3gFwDEb1ytk8IiIPwOiT84XDa/0AfApgk1LqkxI28w2A+gB+ZjdtEJz8cCmlTgC4CuPv4r5cvSss64Hixwidrf/v6FAVUACiATwH40phT7vX1wFIcrLe+gD2wqh3+1mn/QHWYxYn8zutTllfM8EIw34YVSsF4EcAv7Gb55cANts9T4K1OgXgfwFkwuibdOf9Vub2nSyTBOP45Kb1kWd9fAGgtd18CTCuZrbNVwBjL5QIoIn6qTp3E0AOgJ3WebqW8ndcD2C+dXpzGHtLLxjV22cdltsOJ9VOd3rUtD1RRwA3rL9QAAClVAqAa9bXOgM4qJSyr4p867gSuz1WGwC/VErlWl9qhnsYK1opZVFKvaeU6gHjS/FbGAfnCdZfbeDuqpy9V6z//rGi267A9p1ZAWOv/jMAq2E0FsxWSp1zmO9L63xdYTTONFRKPa2M3qk29QEsh1E7OGDdtlcJ290MwHY7iEEA/qZK3mNegfF3cVs1LUT5JUz3sD7MMPqB2Cv2XEQCYfxatoHxq37a7mWFCn4mItJHRObcWYFSl5RSq2G0lF2E8aUCSgmRUuo6gGkwxiAo7Uuvs31nrimlTimljsFoDDgJYKuTY5Cb1vlOKaXOKaXynKzrolJqhlLKAiAexvHYyyVs90sAkWJ02xgEo4peEg+4Sce9ktS0ECUDaCgiHW0TRCQKRjUoBUZdvosU7xvf3W5ebwBbYdwBIMa6F7N3ERW/C0YAgJdFpJX9RKXUbRjVo2zrsVeA9cvqlFJqDYxjs3cqe/vlWYky6k7PwxhAZGEFywDYfdGVcUz5OoBZItLVybauwWiSHwmgJ4C/l7LepgCySnnd5WpUiKxf+q0APhGRHiLSA8AnAP6plDoE4/inPoAlIhJhPXH3K/zU6jMVRqieAXBLRJpbH7bWve8A3F/BYm2B0Qdlh4gMsZ5U7CkiK2DsBTfA2At9U451/TeK9/ysrO2Xi1IqHcACAM+VUQ0sj/kATsH4Wzmr1m2G0Uy+S5XeM/h+GOeu3FaNCpGVrb7/NYyDzmOw1q+VUjdhtNo9DOAIjAPeT2Ec6ALAcPw0IEWm3cPWyrQTgJ+IRJe3MNa6fH8Yx1hvwdgjfgHjROkj1i9IP5R8PGS/rmQAb5d32xXYfkW8DWNMhncdmqErxLonjIcRgtlOZtkMY4CXEk8niEikdZ7y/AC5TK3qlGetY4cqpf5pN+1dAPWVUmPKuY6VADKVUs7+8FSNRGQugBClVLyry1Ka2hairgD2wThhuh9G1S0BwEil1JflXEcEjF/1SOuvKbmA9fj1BICnnBy7upVaFSIAsB4H/Q+MMc7SAbyplCpXX3m7dcwHkKWUWloFRaRyEJEJAFoppWa4uixlqXUhIqpuNbFhgcitMEREmhgiIk0MEZEmhohIE0NEpIkhItLEEBFpYoiINDFERJpcdn+iAwcOeHt6eq6A0W2hXDeYJSqBRUQums3mud26dSutg1+VcNm1cwcPHpzSuHHjSa1bt75uMpl4AR/dM4vFInl5eT5paWnet2/fnljdQXJZdc7Dw+OZkJCQWwwQ6TKZTKp+/fp54eHhBZ6ennPKXqKSt1/dG7RRSvl7e3u70015qYbz9fXNV0o1r+7turJhQaf3MdFdrLWaav9Ou9WNj5999tmwrKyselW1/uDg4NsrV65Mr6r1U93kViHKysqqN2bMmIKy57w3CQkJ5QqoiHRv3759nslkgoggLy/P1KBBg6Lly5efi4mJyV26dGnT3//+96337NlzvEePHnfGwuvbt2+7wYMHX5s8efKd8a/j4+NbJiQkNEtOTv6+bdu21V59nTVrVvNNmzYFAEB6enq9Jk2amBs2bFgEABs3bjwdEhJSOH78+FbfffddfRGByWRCfHz8pRdffPHOIJbr1q3zT0pKahgdHZ1X2vsOCwsrmDFjRisAuHz5sldRURGCg4MLAeCll17KjI+Pv/bKK68Eb9iwoalSChaLRfr27Xt96dKlF3x8fGrssTHPE5Vg165dJ5OTk4+fOHHieFpa2tEhQ4ZcnTx5cpjtdaUU4uLi2uTm5pZYJ83NzZUNGzY0feKJJ669/fbbLhnFc8GCBReTk5OPJycnH+/UqVPuH//4xx9sz6Ojo29Pnjy5Zf369S3JycnHU1JSjm/bti110aJFLTZt2tTIto7ExMTGQ4YM+REo/X0//fTTN2zrHj16dPaAAQOu2Z7Hx8df+/jjj5ts3bq1yX/+858TKSkpxw8fPnw8NTXVZ9q0aRUdJsytMETlUFhYiPT0dO/GjRvfGZ64Z8+eOYGBgYXjxo1rVdJyK1euDAgLC7s9ffr0rDVr1gTduHGjxM/7jTfeCIqIiIjq1KlTx+7du0ccOHDABwDOnj3r9dhjj7WNjo7u2KFDh6gZM2bcOXB+/fXXg1q3bt2pU6dOHSdPnhwSGhpa0THzkJWV5ZWfny8FBQUCAOHh4YWfffbZ6cjIyHwAKCoqwsGDB+v379//Znnfd0kyMjK8ioqK5NatWyYA8PPzU++//3760KFDr5W1rDtjiErwyCOPdOjQoUNUs2bNOt933333A8CaNWvSbK+LCNatW5e2devWJuvWrfN3to4VK1Y0GzFixJWYmJjcoKCgwuXLlzd1Np/ZbMbs2bNbbd++PfXo0aMnxo4dm71z584GADBy5Mj7nnnmmcvHjh07cejQoRNJSUmNVq5c2WTPnj1+ixYtCtmzZ0/ykSNHTmRnZ5c07nWpXnvttYy9e/c2CgwM7Nq7d+/206dPb9G4ceOiqKioAgD4+uuv63ft2vWWh4dHud93ScaPH3+lUaNG5pYtW3bp2rVrZHx8fMszZ8549+3bN7fspd0XQ1SCXbt2nTx58uTxTZs2ncrPzzc9+uijN0JDQ4vds6d169aFy5YtS5swYUJ4enp6sePLf/7zn34pKSm+Y8eOvQoAv/rVry6///77zSwWy13b8vT0xJNPPnmtV69ekaNHjw5r0qRJ0QsvvHA5JyfHtH///obz5s0LjYyMjOrWrVvHjIwM70OHDvnt2LGjYe/evXPCwsLMJpMJkyZNunQv7/NnP/tZ3pkzZ45u27YtpV+/fjn79u1r0KNHj+i1a9f6A8CmTZuaPP300z+W932XpmnTpkV79+5NPXz48NHf/va3l7Ozs72GDRvWfvz48aH3UnZ3wRCV4eGHH86dP3/++QkTJoSnpKR4O74+atSo67GxsddGjhx5n/3VH0uXLg3y8PBQ3bt3jwoNDb1/xYoVwefOnfNZv369/+7du/0iIyOjbA8A2Lx589nExMTUdu3a5b/11lstBg4c2MZsNkMphf379yfbji327duXPH/+/ExfX1+L/fbq1atX4QPzwsJCjBo1qnV2drZH7969c//whz9k7d69O3XKlCmZK1asCAKA3bt3Nxw4cGBOed93aV555ZXgHTt21I+KiiqYOnXq5cTExLObNm1K/eSTT9z6rg9lYYjK4fnnn796//3335o4caLT44APPvjg/KVLl7y//fbbRgBw+fJljy1btgR8/vnnpy5cuPD9hQsXvs/KyjoyaNCgK0uXLm0WExOTawtFcnLy8czMTM/mzZt3btasWdGrr756ae7cuRcOHz5cPyAgwNKlS5dbr732WrBtvT179oxcu3Zt49jY2Jy9e/c2Sk1N9QaAFStWVHQgfnh5eeHUqVM+s2bNCrl9+7YARrCSk5N9unTpkvvdd9/5tGzZsqBBgwZOU+L4vsuSm5vrMXPmzJZZWVl3rpU8dOiQb1RUVI2uzrlVE7c7e++999J79OgRvXHjxru+MH5+fmrNmjVnYmJiOlrnbdq2bdv8AQMG3LCfb+7cuZndunXrtH//fh/7JuIWLVqYX3rppYxHH320g4+Pj8XDw0O9++67aQDwl7/85cy4cePCOnToEFVQUGAaMmTI1fHjx18FgLfeeutcbGxsOy8vL9WmTZuSbjtTqs2bN5+ePHlyyzZt2nTy9fW1WCwWPPXUUz8uWrQoY86cOc0HDBjwY0nLOr7vsrz55psZM2bMaPHQQw9FiggsFot07tz51qZNm06XvbT7ctkFqIcPH07r0qVLsRtq8WTrvdu9e7ffyJEj2164cOF7V5fFlQ4fPhzYpUuX8OrcplvtiWrrF5xqNx4T1RIxMTG5dX0v5CoMEZEmhohIE0NEpIkhItLEEBFpcqsm7mbNQ7tkZ2VUWZmCgkPMly5eOFxV66e6ya1ClJ2V4dln8akqW3/S1HZlvt+UlBTvBx54IDo3N/dgVZVj2bJlTZctWxYMAJmZmd716tWzBAQEmAFgyZIl6X379r01ZcqU0G+++aaRiEAphSFDhlxdsGDBRZPJqDzs37/f59VXXw2ZMGFC9sCBAzts3LgxdfDgwXeucRs9enRYYGCgOS4u7mpcXFwbALh+/brHzZs3PUJDQwsAYOTIkZfnzJlzaenSpU0/+OCDZmazWYqKiqR79+43ly9f/kPTpk2LHMseGhp6v5eXl/Lx8bGICAoKCsRkMmHhwoXnhw0bdtc1drrWrFnjv2PHjkYJCQnnK3vdlcWtQlRXTJw48crEiROvAMDQoUPDo6Oj8+bNm5dle3327NnBaWlp3seOHTvu5eWFK1eueMTExHQIDAw0T5s27TIArF+/vontkhwvLy/1/PPPhz/00EPHW7RoUexK8+7du+cnJycfB4ClS5c2/etf/9pk586dd36pdu3a5ffmm2+GHDhw4HhwcHCR2WzG6NGjw8aMGRO2ZcuWs87Kv3r16jMxMTF3rndbtWpVk/Hjx4cPGzbsSGV+TgAQFxd3PS4u7nplr7cy8ZioAq5cueIxaNCg+9q3bx/doUOHqHHjxrUsLCzE2LFjW02ZMiUEAM6dO+clIt23bNnSEACWL18eEBsb26Yi28nMzPQqLCyUvLw8E2B0IVi9evXZRx555KZtnu3bt/sPHz78OgCEhYXd7tOnz/W4uLjwir6nH374wUsphZs3b5oAo1vGokWLMp577rnLZS0LABaLBWfOnPH29/e/s9davHhxYHR0dMeOHTtG9erVq8PBgwd9AOMHIy4uLqxr166RrVq16hQXFxdmu/B1yZIlTTt37hzZsWPHqJCQkPvfeOONIMAIft++fdsBwIMPPhjx+OOPt23btm30/Pnz3ebKb4aoAuLj41sFBASYU1JSjh0+fPjE0aNHfefMmdN8+PDh177++mt/AEhMTGwUGBhY+Pe//70RAGzdurXx4MGDK9Rzc+bMmVlZWVnezZo16/rggw9GTJo0KTQ/P19sF62ePXvWy8/PrygoKOjOF3flypXnz5w547NgwYKgimxr2LBhOd27d78ZERHROSoqquPo0aPD9uzZUz82NvZGScuMHj26TURERFRwcHDnFi1adE5JSfH54osvUgHgyy+/bLBmzZqm//73v1NOnDhxfNq0aReHDh3a1rbswYMH61v7ah07efKk79tvvx14/fp1U0JCQtD27dtTT5w4cfzPf/7zmXnz5rV0tu3GjRubT58+fezll1++p/5TVYEhqoCkpCT/F1988ZLJZIKvr6967rnnsnfs2OH/+OOP37x48aL3+fPnPbdv3+7/4osvZiYlJTXKz8+Xffv2NbTtMcqrbdu2hUePHj2xd+/e44MHD76amppa79FHH+34+uuvBwHAZ5991jg2NrbYOhs1amT59NNPzyxcuDB0//79PuXdVr169dQXX3xx9tSpU0cmTZqUVVhYKOPHjw8fMGBAiXvP1atXn0lJSTm+a9euZG9vb0uXLl3ybD1ht2zZ0jg9Pb1ejx49IiMjI6NmzZrVMicnx9PW/WHUqFFX/P39Lb6+vmrUqFFX/vGPf/j7+/tbvvrqq9QNGzY0njJlSsj8+fNb5ObmOv1uPvzwwzedTXclhqgClFKwHyvPYrHAbDaLh4cH+vXr9+OmTZv8Dx06VH/q1KmXs7OzvVatWtWkW7duN/39/e/uzlqKcePGtTxy5Ei97t2758+cOTP7q6++OrN48eK0jz76qBlg7N2GDx9+VxeFhx9+OPeFF17IjIuLa2OrJpVlyZIlTdesWeMfHh5eOH78+Kvr1q0793//938ntm3b1iQzM7PUY+bIyMiCjz/++OzcuXNb7ty50w8wxmQYOnToFVtfqWPHjh3ft2/fcdte09PT8063AYvFApPJpE6fPu3VtWvX6HPnznnHxMTcnD9//oWSttmwYcMKfZbVgSGqgN69e+e88847zSwWC/Ly8mTlypVBffr0yQGAIUOG/PinP/2peURERJ6Pj4/q1atXzrx580IrWpUDgOzsbM+ZM2eG2gY2sVgsOHr0qG+nTp1uXb161XTjxg2PDh06OB1abO7cuVmBgYGFiYmJTsdzcGQymTB79uyWp0+fvjNGw8GDB31atGhREBQUZC5tWQB47LHHbg0ZMuTKpEmTWhcVFeHJJ5/MSUxMDDh37pwXACxatCioX79+Ebb5N27cGJCXlye5ubmydu3aprGxsdf/9a9/1Q8ICCh84403MgcPHpyTmJjoDxhjT9QEbtU6FxQcYi5PM7TO+sszX15ensnPz+8B+2lJSUnJH374YXp8fHxYREREdGFhofTp0+f6woULMwFg0KBBOc8++6zX2LFjswHg8ccfz/nyyy8DRowYUeGWpYSEhPQXXnghNDo6Osrb21uZzWb5+Qs3VRsAAAE4SURBVM9/nvPxxx+nr1+/3r9///4lrtNkMmHdunVpXbt2jSrPtiZPnnwlNzfX9OSTT7YvKCgwiYi67777bm/btu2kp2f5/hSLFy++0LFjx07vvPNO4PTp0y+npKRc7N+/fwcRUQ0bNizasGHDKVvTvK+vr+XBBx+MzMnJ8fjlL395bfLkyZdzc3NNq1atCmzTpk0nEVE9e/a82aRJE/OxY8eqrG9ZZXKrTnlUuzlrzq9sruiUx+ockSa3qs5R7bZx48Y0V5ehKrhyT6RcVZWk2slisQiAam+9c1mIROR6QUHBPY3aSeRMXl6ej4hcrO7tuixERUVFqzIyMupbfz2I7pnFYpFbt275pqWleZvN5rnVvX2Xtc7xxsdUiermjY+Jags2cRNpYoiINDFERJoYIiJNDBGRpv8PUiagfkQImA8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax= plt.subplots(figsize=(3.5,4))\n", "ax.hist(z1,bins=35,edgecolor='k',color='grey',alpha=0.6,label='RNA-seq TS/NTS')\n", "ax.hist(z2,bins=35,edgecolor='k',color='#408FDC',label='Low TS/NTS Repair')\n", "ax.spines['right'].set_visible(False)\n", "ax.spines['top'].set_visible(False)\n", "ax.spines['left'].set_visible(False)\n", "ax.get_yaxis().set_ticks([])\n", "\n", "ax.legend(fancybox=True,fontsize=12,loc='upper center', bbox_to_anchor=(0.5, -0.19))\n", "ax.set_xlabel('log2(TS/NTS RPKM)',fontname='Arial',fontsize=14)\n", "\n", "for label in (ax.get_xticklabels() + ax.get_yticklabels()):\n", " label.set_fontsize(12)\n", "\n", "#plt.savefig(\"wt_hist_low_20min_2.png\",bbox_inches='tight',transparent=True,dpi=600)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 2 }