
PhyloInformatics 1: 1-54 - 2004

1

Taxonomer: a relational data model
for managing information relevant to
taxonomic research

Richard L. Pyle

Department of Natural Sciences
Bishop Museum
1525 Bernice St.
Honolulu, HI 96817, USA

Received: 22 October 2003 - Accepted: 6 January 2004

Abstract
Taxonomic research, as a field of biological sciences, is fundamentally an exercise in information
management. Modern computer technology offers the potential for both streamlining the taxo-
nomic process, and increasing its accuracy. Effective use of computer technology to successfully
manage taxonomic information is predicated upon the implementation of data models that
accommodate the diverse forms of information important to taxonomic researchers. Although
sophisticated data models have been developed to manage some information relevant to taxo-
nomic research (e.g., natural history specimen information; descriptive data relating to morpho-
logical and molecular characters of specimens), similarly robust models for managing information
about taxonomic names and how they are applied to taxonomic concepts, though they exist,
have not attained widespread use and adoption.

Herein I describe portions of a relational data model developed to manage information relevant
to taxonomic names and concepts. The core entities of the described portions of this model are
Agents, References, and Assertions (along with their associated Protonyms). Agents (people
and organizations) in this context refer primarily to taxonomic authorities. References are broadly
defined as date-stamped information (usually, but not exclusively, in the form of a publication),
as documented by the Agents who serve as the Reference authors. Assertions consist of basic
elemental information about the treatment of taxonomic names by taxonomic authorities as
documented in a particular Reference, and correspond to what many authors refer to as taxon
“concepts”. Protonyms are a special subset (subtype) of Assertions, which constitute original
descriptions of taxonomic names (serving to unite multiple assertions pertaining to the same
taxonomic name), and include elements of botanical Protologues and Basionyms.

I also illustrate how these core entities can serve as a foundation for taxonomic names and
concepts as integrated with other datasets, such as biological specimens and observations (and,
by extension, geographic distributions and character matrices). The broadest data content
source used to populate and test the data model is derived from a systematic revision of the
reef-fish family Pomacanthidae (marine angelfishes). Additional datasets used to test the imple-
mentation of the data model include specimen data from the Department of Natural Sciences,
Bishop Museum; nomenclatural data from The Catalog of Fishes; and nomenclatural and bio-
geographic data from two published taxonomic catalogs (insects and terrestrial mollusks in
Hawai‘i).

An intuitive, feature-rich software application based on Microsoft Access® has also been devel-
oped in conjunction with this data model, and will be the topic of a future article.

PhyloInformatics 1: 1-54 - 2004

2

Introduction

More so than in many other fields of biologi-
cal research, taxonomy is ultimately about
managing and organizing information. New
species descriptions, systematic revisions,
and biogeographic analyses are based on
information associated with and derived
from biological specimens. Such information
includes details related to the circumstances
of the specimens as they were found to
occur in nature (geographic location, macro-
and micro-habitat details, etc.), as well as
morphological and biochemical characters
exhibited by those specimens. It also
includes the need to track and index histori-
cal literature relating to taxonomic names
and concepts, going back two and a half
centuries (Minelli, 2003). Indeed, unlike
many other avenues of biological research
(which are usually based on limited data
sets obtained from specific experiments
designed to test certain hypotheses),
taxonomic researchers must draw from a
much larger and more diverse pool of data
from a variety of disparate sources. This
need can present a significant information
management challenge.

Throughout history (and continuing to the
present), most taxonomists have relied on
“manual” systems and techniques to gather,
organize, and synthesize the information
necessary to conduct their research (e.g.,
Winston 1999). Published and unpublished
references cite information contained in
other published and unpublished references;
researchers travel (sometimes over great
distances) to museums in order to examine
specimens directly; species descriptions are
usually formatted and generated on a case-
by-case basis, synthesizing hand-written
notes and data sheets into summarized
tables, diagnoses, and descriptions; and
distribution patterns of species are compiled
manually from many and varied sources
(often without consistent documentation of
such sources).

Few would dispute the observation that
taxonomy, as a field, faces greater perils
than it has throughout much of its history
(e.g., Lee, 2000; Godfray, 2002; Mims,
2003). An ever-increasing demand for high-
quality taxonomic information is falling on

the shoulders of an ever-dwindling supply of
taxonomists with enough experience and
training to provide such high-quality informa-
tion. In response to this situation, there have
been an increasing number of proponents of
using computer technology and the internet
to facilitate the taxonomic process in ways
never-before possible (e.g., Bisby, 2002;
Gewin, 2002.; Godfray, 2002; Moretzsohn,
2002). While taxonomy is ultimately limited
by a dearth of taxonomic expertise, informa-
tion technology can improve the efficiency
and consistency of work that is performed by
existing taxonomists.

Among the earliest to adopt computer
technology to assist in the taxonomic
process were natural history collections
utilizing specimen databases. SELGEM
(Creighton & Crocket, 1971) was perhaps
the first major effort to use computer tech-
nology to organize natural history collections
data, using punch cards (and later ticker
tape). The database application MUSE
(Humphries, 1994) was one of the earliest to
attain widespread use. In the years that
followed, a plethora of similar systems
followed suit, such as: BIBMASTER (Pando,
2001), BioLink (Shattuck & Fitzsimmons,
2000), BioOffice (BIOGIS Consulting, 2003);
Biota (Colwell, 2002); Biótica (CONABIO,
2003), BRAHMS (Filer, 2001); Vernon
(Vernon Systems, 2003), Herbar (Pando &
Anonymous, 2003); KE EMu (KESoftware,
2003), MANTIS (Naskrecki, 2003); MVZ
Collections Information Model (Blum, 1996);
SAMPADA (NCBI, 2002); Specify (IBRC,
2003); TAXIS (Bio-Tools.Net, 2003); and
Tracy (Minnigerode, 1998); among others.
Most of these models were developed with
extant taxa in mind, but Morris (1998)
describes a data model designed to ac-
commodate paleontological data.

While many of these specimen-centric data
management systems include (sometimes
extensive; e.g., BioLink) taxonomic compo-
nents, other computer databases and
applications have focused specifically on
taxonomic information (e.g., Linnaeus II
[ETI, 2003]; MacTaxon [Dessein & Schols,
2003]; PISCES [Eschmeyer, 1995]; Platypus
[ABRS, 2003 – the progenitor of the taxo-
nomic components of BioLink]; SysTax
[Hoppe et al., 1996; Hoppe & Ludwig, 2003];

PhyloInformatics 1: 1-54 - 2004

3

Taxon-Object [Saarenmaa, 1995]; etc.).
However, Pullan et al. (2000) point out that
many of these taxonomic databases are
designed to accommodate only a single
taxonomic “view” or classification scheme,
which imposes serious limitations on the
ability to reflect the true dynamic nature of
taxonomic nomenclature, as used to repre-
sent taxonomic concepts.

Many authors have discussed and described
the “concept problem” in taxonomy; that is,
the distinction between a taxonomic name,
and the scope of organisms implied by the
name. Geoffroy & Berendsohn (2003)
provide an excellent overview, and I discuss
it from a the perspective of the specific data
model described herein. In summary,
taxonomic names (text character strings, as
established according to codes of nomencla-
ture) have historically been used to repre-
sent taxonomic concepts (sets of individual
organisms collectively representing a
particular taxon circumscription). The
“problem” stems from the imprecise correla-
tion between names and concepts: the
same taxon concept might be represented
by more than one available name; and the
same taxon name is often used by different
authorities to represent different sets of
organisms (i.e., different concepts). This
historically pervasive disjunction between
names and concepts represents a barrier to
modern taxonomic information manage-
ment.

While this “problem” has been identified and
discussed for many years, only relatively
recently have a number of more or less
independent efforts attempted to address
the “concept problem” in the context of data
models and information management
schemes (Anonymous, 2002; Berendsohn,
1995; 1997; Geoffroy & Berendsohn, 2003;
Gradstein et al., 2001; Koperski et al., 2000;
Le Renard, 2000; Pullan et al., 2000;
Raguenaud, 2002; Ytow et al., 2001; Zhong
et al., 1996). Most of these models attempt
to define the scope of taxon concepts using
either publications or specimens. Although
these alternative approaches have many
similarities, the differences between them
are usually a reflection of different opera-
tional paradigms (e.g., botanical taxonomy
versus zoological taxonomy) or different

information priorities. None has yet risen
above the others as the clear path to taxo-
nomic information management “salvation,”
and most emphasize that they are prelimi-
nary, in development, and/or subject to
future modification.

The data model described herein (called
“Taxonomer”) is proposed as one specific
approach to organizing and managing
information about taxonomic names and the
concepts they are intended to represent. It is
the culmination of nearly fifteen years of
development, which began as an effort to
manage specimen data for the B.P. Bishop
Museum (BPBM) ichthyological collection.
The taxonomic component of the model
arose from an attempt to integrate an
electronic version of the Catalog of the
Genera of Recent Fishes (Eschmeyer,
1990), and later The Catalog of Fishes
(Eschmeyer, 1998) as a taxonomic authority
for the BPBM fish specimen database. As
the system expanded over the years, it grew
to encompass other specimen collections at
BPBM (Botany, Entomology, Malacology,
Vertebrates, Marine Invertebrates) and took
on the more generalized purpose of manag-
ing a wide range of information associated
with taxonomic research activities, broadly
including “agents” (people and organiza-
tions), publications and other reference
citations, taxonomic names and concepts,
specimens (and their associated morpho-
logical character data), observations,
images, geographic place names and
descriptions, and an assortment of other
related data sets. In addition to the BPBM
specimen databases and The Catalog of
Fishes, the model was tested for its ability to
accommodate historical taxonomic data
using three separate data-sets. The first is a
broad and comprehensive (i.e., spanning the
full suite of taxonomic information manage-
ment needs) set of data concerning the
taxonomic revision of the marine fish family
Pomacanthidae. The second is an exhaus-
tive catalog of insect taxonomy for the
Hawaiian Islands, cross-referenced to an
extensive bibliography (Nishida, 2002). The
third is a taxonomic catalog of terrestrial and
freshwater mollusks of the Hawaiian Islands
(Cowie et al., 1995). A wide array of other
taxonomic and related data from various
sources have been used to test the effec-

PhyloInformatics 1: 1-54 - 2004

4

tiveness of the model for managing diverse
taxonomic data management needs.

The data model was also influenced by
personal communication with Stanley D.
Blum (currently of the California Academy of
Sciences), and by the MVZ Collections
Information Model (Blum, 1996). Unless
otherwise stated, the structure of the model
was developed independently of other data
models with analogous functions, and
similarities to other such models are, in
almost all cases, convergences of design.
This last point is emphasized only to sug-
gest that when independent data model
developers converge on similar structures, it
may reveal fundamentally optimal solutions
to common information management needs.
Specific examples of such convergences in
the context of this and other taxonomic data
models are included in the “Discussion”
section of this article.

A feature-rich user-interface application was
developed concurrently with the data model,
using Microsoft Access® software (versions
1.0 through 9.0). The complete system (data
model and application) bears the name
“Taxonomer,” though this article describes
only the taxonomic components of the data
model. A full description of the complete
application will be the subject of a future
article.

The data model presented here (hereinafter
referred to as the Taxonomer data model) is
not intended as a proposed standard for
broader adoption. Rather, it is a detailed
description of my own approach to solving
taxonomic data management needs, with
the hope that some of the ideas and per-
spectives presented herein will be of use to
others who are engaged in similar endeav-
ors.

System and Methods
The “Implementation” section below is
divided into four sections, the first three of
which describe the three major data compo-
nents (Agents, References and Taxa), and
the fourth section describes how certain
other components of the full Taxonomer
data model interface with these three
components. Each of the first three sections

is further subdivided into three subsections:
an introductory preamble (describing the
general context of the section), individual
Table Descriptions (describing each table
and fields), and Limitations (acknowledged
limitations or aspects of the data not ac-
commodated by the described model). Each
Table Description section highlights a major
table and its associated dependant tables
and relationships. Table names are format-
ted in bold, with the “tbl_” prefix included.
More general references to the entity
represented by the table are similarly in
bold, but lack the “tbl_” prefix. Individual
attribute (field) names, when referred to in
the text, are shown in italics.

The key to the meaning of elements in
various figure diagrams of physical data
models is shown in Figure 1. The “core”
table for each major component (i.e., the
table to which foreign keys of tables in other
major components join) are shown in blue,
and supporting tables are shown in white.
The top line in each table box is the table
name. Four categories of attributes are
distinguished:

• Unique Keys. The attributes in the this
section of each table box represent the
uniquely-identifying key fields for each
table. All tables have a surrogate Pri-
mary Key, which by convention takes the
name of the table (minus the “tbl_” pre-
fix), with the addition of an “ID” suffix (in-
dicated in bold in the diagrams, with a
“P” indicator). In my implementation,
these surrogate keys are almost always
long integers, with automatically-
assigned “random” (arbitrary) values
(i.e., with no inherent information con-
tent). In cases where a table is limited to
a relatively small, finite number (<255) of
instances of defined values, often with
an inherent sort order, the surrogate pri-
mary key is of type “Byte,” and values
are assigned according to the appropri-
ate sort sequence (when applicable).
This departure was made to allow im-
proved performance of certain queries,
and to simplify coding in the Taxonomer
application. Also, each table is populated
with a single special record having a sur-
rogate key ID value of 0 (zero), that
serves as an “Unspecified” indicator.

PhyloInformatics 1: 1-54 - 2004

5

This place-holder record is provided in
each table to allow enforcement of non-
null rules for Foreign Keys (i.e., when a
Foreign Key would otherwise be left un-
populated, it is instead populated with a
value of zero, serving the equivalent in-
formational content of “unspecified
value”). In addition to the surrogate keys,
when “natural” (information-bearing)
keys exist for a table (either as a single
attribute, or composite set of attributes),
they are similarly listed in this section. In
many cases, individual attributes that
form part of a composite natural key also
represent Foreign Keys to other tables.

• Foreign Keys. This section includes all
Foreign Key attributes (except those that
constitute part of a composite natural
key, as described above). These serve
as the linking field to the surrogate Pri-

mary Key of another table. They are
shown in Red Bold text, and include an
“F” indicator.

• Non-Key Attributes. These are actual
data-bearing Attributes, not representing
foreign keys to other tables.

• Cheat Fields. These are “artificial”
system fields created solely for the pur-
pose of enhancing multi-record process-
ing performance. They are non-data-
bearing in the sense that they only con-
tain derived data (i.e., derived from other
fields in the containing table or in linked
tables). These can be completely elimi-
nated from the model without resulting in
any loss in information content, and are
thus not correctly represented as “attrib-
utes.” Users never have editing access
to these fields – they are maintained en-

Figure 1. Key to physical data model diagrams.

tbl_TableName

SurrogateKeyID P lng
NaturalKeyAttribute1 lng
NaturalKeyAttribute2 txt

ForeignKey1ID F lng
ForeignKey2ID F lng

BooleanAttribute bool
ByteNumericAttribute byt
IntegerAttribute int
LongIntegerAttribute lng
SinglePrecisionNumber sng
DoublePrecisionNumber dbl
DateAttribute date
FixedTextAttribute txt
UnlimitedTextAttribute mem

CheatField1 txt
CheatField2 lng

Foreign Keys

Non-Key Attributes

Cheat Fields

Unique Keys
tbl_CoreTable

SurrogateKeyID P lng
etc…

Unique Keys
tbl_SupportingTable

SurrogateKeyID P lng
etc…

Unique Keys

tbl_Table1

SurrogateKeyID P byt
etc…

Unique Keys
tbl_Table2

SurrogateKeyID P byt

ForeignKeyID F lng
etc…

Unique Keys

Foreign Keys

DefinedValues:
0=ValueA
1=ValueB
2=ValueC
3=ValueD

ExampleValues:
Example1
Example2
Example3
Example4
etc…

tbl_SubType1

SurrogateKeyID P lng
etc…

Unique Keys
tbl_SubType2

SurrogateKeyID P lng
etc…

Unique Keys

Subtype

tbl_SuperType

SurrogateKeyID P byt

ForeignKeyID F lng
etc…

Unique Keys

Foreign Keys

Core Data Table Supporting Data Table Attribute Types

Recursive
Relationship

Subtype Relationship

Relationship Types
Exactly One

Zero or One

One or More

Zero, One or More

PhyloInformatics 1: 1-54 - 2004

6

tirely by software code, and are only ex-
posed to users indirectly to enhance the
performance of query/search/sort activi-
ties. The fields in this category are so
designated by a “Cheat” prefix in their
names. Although they have no bearing
on the information model, they are de-
scribed herein to illustrate how applica-
tion performance costs associated with
highly normalized data structures can be
mitigated through their judicious imple-
mentation.

The right-hand column in each of the table
boxes indicates the data type for each
attribute. The data type codes are listed in
Table 1 along with their corresponding data
types as they exist in the Microsoft Access®
application. Approximate corresponding data
types for Microsoft SQLServer® are also
shown, along with the size and value
domains for each (based on Microsoft
Access®).

Whenever possible, lines representing
relationships (joins) between tables are
drawn in such a way that they connect
directly to the attributes that participate in
the relationship. Two consistent exceptions
to this are recursive (self) relationships and
Supertype-Subtype relations. In cases of the
former, the connection point for the “many”
side of the relationship is generally aligned
with the appropriate field, but the “one” side
connects to the top of the table box, with the
implication that it joins to the surrogate
Primary Key. Supertype-Subtype relation-
ships are indicated with a half-circle symbol.
A cross inside the half-circle indicates that
Subtypes are mutually-exclusive. In most
cases, both sides of Supertype-Subtype
relationships connect to the top or bottom of
the table box, with the implied connection

being between the surrogate Primary Keys
of tables on both sides of the join (i.e., “one-
to-one”). In other cases where lines could
not be aligned with associated attributes, the
attributes involved with the relationships are
usually evident (i.e., to the surrogate Pri-
mary Key). In a few cases, the lines connect
directly between the top of one table box
and the bottom of another (e.g., between
tbl_Thesaurus and tbl_Glossary, and
between tbl_Reference and tbl_Ref-
erenceBibliography, as shown in Figure 4.)

Four different symbols are used to indicate
the nature of each table join, as shown in
the lower-left corner of Figure 1. A simple
perpendicular line indicates that exactly one
record in the corresponding table partici-
pates in the join. A perpendicular line with a
circle indicates that one or zero records may
participate in the join. A perpendicular line
with a “crow’s foot” (two extra angled lines)
indicates that one or more records must
participate in the join. Finally, a perpendicu-
lar line with both a circle and a “crow’s foot”
indicates that zero, one, or many records in
the corresponding table may participate in
the join. One example of a “one-to-many”
join is included in Figure1, but joins may
include any combination of the four symbols.
It is important to note that, in many cases
where the join to a Foreign Key attribute is
shown with a circle (i.e., allowing for zero
linked records), an actual value of 0 (zero;
equivalent to “Unspecified” as described
above) is entered into the Foreign Key field
when it would otherwise be Null, thus
allowing enforcement of non-null values in
Foreign Keys. This practice is implemented
both to enhance output query performance,
and to utilize referential integrity rules built
into Microsoft Access® application software.
Thus, although these joins should techni-

Table 1. Key to data types used in physical model diagrams.
Data
Type

Microsoft
Access®

Microsoft
SQLServer®

Size

Domain (Microsoft Access®)

bool Yes/No bit 1 bit 0 or –1
byt Number (Byte) tinyint 1 byte 0 to 255
int Number (Integer) smallint 2 bytes –32,768 to 32,767
lng Number (Long Integer) int 4 bytes –2,147,483,648 to 2,147,483,647
sgl Number (Single) real 4 bytes 7-decimal precision
dbl Number (Double) float 8 bytes 15-decimal precision
date Date/Time datetime 8 bytes Year 100 to 9999
txt Text varchar 0-255 bytes <=255 characters

mem Memo text 0-64KB <= 64,000 characters

PhyloInformatics 1: 1-54 - 2004

7

cally be represented without the circle
symbol (implying the requirement for at least
one entry, even if it is the “Unspecified”
place-holder zero value) to reflect the actual
implemented procedure and business rules,
they are shown with a circle because
conceptually there is no requirement for a
joining instance.

For the fields with only a few defined domain
values, those values are usually listed in
blue text beneath or adjacent to the corre-
sponding table box, with their numeric
equivalences to text-string values. In other
cases, where there may be a limited number
of values within the domain of a field, but
where they are not universally known and
defined, a similar list in blue text is provided,
except without defined numeric equivalen-
cies. In most cases, such “example” lists
include “etc…” at the bottom.

Other comments (e.g., business rules) are
added to the diagrams for various relation-
ships, to enhance clarity. The Taxonomer
application makes extensive use of business
rules and other data integrity enforcement

procedures. Although some of these are
described herein (either in the text, or as
annotations on the diagrams), the majority
are not. The emphasis of this article is to
describe the individual data elements, the
basic structure of how those elements are
arranged in tables, and how tables are
joined via relationships. A complete list of
business rules and other referential integrity
procedures will be included in the forthcom-
ing article describing the Taxonomer appli-
cation.

Implementation
The descriptions herein focus on those
components associated with taxonomic
information management. This narrowed
focus was followed because these are the
most well-developed components of the full
model; because these components are more
in keeping with the scope of this journal;
and, perhaps most of all, because these
components address an area of biological
informatics that is just now coming to the
forefront of active development across a
broad international community. Neverthe-

Figure 2. Conceptual overview of the core Taxonomer data model (excludes specimen transac-

tion management and population assessment components). Areas highlighted in dark gray
constitute the primary focus of this article, and areas shaded in light gray are discussed in
terms of how they interface with the primary components.

Photo-
graphers Collectors

References

Agents Authors

Assertions

Protonyms

Images Stations

Image
 Content Specimens

Characters Character
States

Determina-
tions

Localities

PhyloInformatics 1: 1-54 - 2004

8

less, to provide a broader contextual place-
ment of the described components, a highly
simplified conceptual schema of a more
complete version of the full model is illus-
trated in Figure 2.

Agents
The physical model for Agent data is
represented in Figure 3. The term “Agent”
(synonymous with “Party,” as used by
Taswell & Peet, 2000, and others) was
introduced in the context of biological
databases in the ASC data model (ASC,
1993), and applies to an individual human
(Person), or an organized group of humans
(Organization). AgentAssociation in-
stances may be established between any
combination of a Person, and/or an Organi-
zation, and/or an Address. A minimum of
two of these three values must be included
for any single instance of AgentAssocia-
tion (i.e., no “association” can be made
within only one of these three). For each
AgentAssociation, there may be zero to
many EContacts (e.g., telephone and fax
numbers, telex, email addresses, websites,
etc.). For convenience, each Agent is
indicated by a default AgentAssociation
instance, to select one of potentially several
AgentAssociation instances as represent-
ing the set of preferred contact details.

tbl_Agent
Every Agent instance is assigned a Vali-
dAgentID, corresponding to the particular
“alias” of the agent that is currently regarded
as valid. If ValidAgentID=AgentID for a
particular instance, then that specific in-
stance represents the “most correct” varia-
tion of that Agent. If ValidAgentID≠AgentID,
then the current Agent instance is regarded
as a “junior alias” of the record indicated by
the value of ValidAgentID. In all cases, the
value in ValidAgentID must be drawn from
the set of “valid” Agent instances (i.e.,
where ValidAgentID=AgentID). The Vali-
dAgentID field may not contain a Null value
nor a “0” (Agents are assumed to be valid).
The ValidAgentID system is primarily
intended to map people or organizations
who have used different names over the
course of their lives (e.g., maiden name and
married name, organization renaming, etc.),
however it is also used to record different
variations of the same name for a single

Agent (e.g., when a person serves as the
role of ReferenceAuthor to different publi-
cations using different sets of given-name
initials, or different styles of the same multi-
part last name, or different translations of
the same name in different languages, etc.).
It is important to clarify that instances within
this table do not necessarily represent a
single “Agent” (Person or Organization),
but actually represent various NAMES that
have been applied to individual Agents.
Unique Agents can be quickly identified as
those instances where ValidAgentID=
AgentID. This logic cascades to apply to
Organization and Person subtypes.

Every instance of Agent is assigned an
AgentTypeID value that corresponds to an
existing instance of the tbl_AgentType
table, indicating which Subtype the Agent
represents. This data model currently allows
only two AgentType values – Person and
Organization – but additional AgentType
values may be defined in the future (e.g.,
“Team,” which would represent a set of
multiple Agents who do not collectively
constitute an Organization). In addition to
the zero-ID “Unspecified” instance in
tbl_Agent, there is also a more specific
“Unspecified” instance for each Subtype
(i.e., “Unspecified Person” and “Unspecified
Organization”). Hence, there is at least one
instance of tbl_Agent for each AgentType
(as indicated in Figure 3).

The DefAgentAssociationID Foreign Key is
provided to select one of potentially several
different AgentAssociation instances as
the “default” instance, from which to derive
primary contact details (see description of
tbl_AgentAssociation below).

An Agent is flagged as Ambiguous if the
instance does not represent a specific,
identified individual Person or Organiza-
tion, but rather a generic Person or Or-
ganization (e.g., “local fisherman,” “fish
market,” etc.).

Each Agent has a BirthDate (or the found-
ing date of an organization), and a Death-
Date (or the termination date of an organiza-
tion). These values are useful for distin-
guishing different Agents with similar or
identical names.

PhyloInformatics 1: 1-54 - 2004

9

Figure 3. Agent physical data model.

If AgentID=ValidAgentID then Agent is
Valid, else Agent is a junior alias of
ValidAgentID. Available values for
ValidAgentID are limited to those cases

A minimum of two non-null, non-zero values must be
among the three fields PersonID, OrganizationID and
AddressID for each instance of AgentAssociation.

tbl_Agent

AgentID P lng

ValidAgentID F lng
AgentTypeID F byt
DefAgentAssociationID F lng

Ambiguous bool
BirthDate date
DeathDate date

CheatFullAgentName txt

Foreign Keys

Non-Key Attributes

Cheat Fields

Unique Keys

AgentType:
1=Person
2=Organization

GeoScope:
0=Unspecified
1=Local
2=Regional
3=National
4=International

ParentOrganizationID cannot
equal OrganizationID for a
single instance, nor can a
circular relation be established
for multiple instances.

Prefix:
Mr.
Mrs.
Ms.
Dr.
Prof.
Sir
etc…

Gender:

0=Unspecified
1=Male
2=Female

Suffix:
Jr.
Sr.
II
III
etc…

AgentRole:
Home
Employee
Advisor
Director
President
etc…

EContactType:
Phone
Fax
Pager
eMail
URL
Telex
etc…

tbl_EContact

EContactID P lng

AgentAssociationID F lng

EContact txt
EContactType txt

Foreign Keys

Non-Key Attributes

Unique Keys

tbl_Address

AddressID P lng

Street txt
MailStop txt
City txt
State txt
Zip txt
Country txt
FmtAddress mem

Non-Key Attributes

Unique Keys tbl_AgentAssociation

AgentAssociationID P lng
PersonID F lng
OrganizationID F lng
AddressID F lng

AgentRole txt
StartDate date
EndDate date

Non-Key Attributes

Unique Keys

tbl_AgentType
AgentTypeID P byt
AgentType txt

Unique Keys

tbl_Organization

OrganizationID P lng

ParentOrganizationID F lng

Abbreviation txt
OrganizationName txt
GeoScope byt

CheatFullOrganizationName txt

Foreign Keys

Non-Key Attributes

Cheat Fields

Unique Keys
tbl_Person

PersonID P lng

Prefix txt
GivenName txt
FamilyName txt
Suffix txt
PrimaryGivenName byt
Gender byt

Non-Key Attributes

Unique Keys

Subtype

PhyloInformatics 1: 1-54 - 2004

10

CheatFullAgentName is used store a text
string representing a consistently formatted
name of the Agent, for faster display in
output queries. The format for Agent
instances of type Person is: “FamilyName,
GivenName, Suffix (Prefix).” The format for
instances of type Organization is: “[Par-
ent]OrganizationName; OrganizationName”
(all levels of parent Organization names are
included, representing the complete organ-
izational hierarchy).

tbl_Organization
Organizations represent one of the defined
subtypes of Agents. Conceptually, an
Organization is a place-holder for the
collection of individual persons who form the
Organization (i.e., an “organization of
people”). Informal sets of multiple individual
persons (e.g., a set of authors for a particu-
lar reference, or a set of collectors for a
particular specimen) generally do not
constitute an Organization; rather, Organi-
zations exist as a collection of people
independently of who those particular
people are at any given point in time.

Organizations can be nested hierarchically,
such that any Organization might be a
subset of a “Parent” Organization, as
indicated by ParentOrganizationID. Because
no form of systematic “Rank” is applied to
individual Organizations in this implementa-
tion of the model (e.g., “Department,”
“Division,” “Working Group,” etc.), code must
be used to enforce the business rule that no
organization can be its own parent, and no
chain of multiple Organiza-
tion→[Parent]Organization links can be
circular.

Organizations often have an Abbreviation
(sometimes thought of as an acronym) and
an OrganizationName, which are the text-
strings used to represent the organization.
An organization can be semi-objectively
classified according to its GeoScope, using
pre-defined values ranging from “Local” to
“International” (allowing also for “Unspeci-
fied”).

CheatFullOrganizationName is used
differently from CheatFullAgentName;
whereas the latter provides the full hierar-
chical-context name of the specific Organi-

zation in a format suitable for direct output;
the former contains embedded Organiza-
tionID values, used for parsing in certain
kinds of output queries and drop-down lists.
A semicolon is used as the delimiter (and
also as leading and trailing characters), with
alternating values of OrganizationID and
OrganizationName for the entire hierarchy:

;ParentOrganizationID;ParentOrganizationName;
…;OrganizationID;OrganizationName;

tbl_Person
The other defined subtype of Agent is
Person. As explained earlier, each unique
Person may be represented by multiple
instances in this entity – one for each
different “alias” or name variation. However,
the unique individual Persons can be easily
identified by filtering on cases where Per-
sonID is equal to the corresponding Vali-
dAgentID in tbl_Agent (this applies equally
to Organizations).

The core fields of this table primarily involve
different elements of a Person’s name:
Prefix, GivenName, FamilyName, and
Suffix. Prefix and Suffix are straightforward,
with examples given in the diagram. Given-
Name includes all elements of a person’s
given name, with each element separated
by a space. FamilyName includes all ele-
ments of a person’s family name (i.e.,
including “de,” “van der,” etc.). Primary-
GivenName is a “Byte” integer (i.e., “tinyint”)
representing which sequential name ele-
ment of a multi-part GivenName is used as
the primary given name. For example, for
the name “John Edward Smith,” the Given-
Name would be entered as “John Edward”
(with a space delimiting the two given
names). A PrimaryGivenName value of 1
would indicate that the name is formatted
typically as “John E. Smith,” and a value of 2
would indicate “J. Edward Smith.” A Pri-
maryGivenName value of 0 indicates an
unspecified primary given name. Gender
indicates whether the person is Female (2),
Male (1), or unspecified (0).

tbl_AgentAssociation
The primary function of this table is to track
associations between Organizations and
individual Persons. In most cases, this table
simply serves to establish a many-to-many

PhyloInformatics 1: 1-54 - 2004

11

relationship between people and organiza-
tions; but the function is more complex than
this, because this table also serves the
purpose of connecting an Association with
an instance of the tbl_Address table.
Consequently, either of the Foreign Key
fields PersonID or OrganizationID (but not
both) can contain a zero (≈null; see discus-
sion above) value, but only if AddressID for
that instance is non-zero (≈non-null). Such
an instance would allow for linking an
Address directly to either an Organization
or a Person, without the need to establish
an Association between an Organization
and a Person (e.g., a Person’s home
address, or an Organization’s general
address). If both PersonID and Organiza-
tionID are non-zero (≈non-null) for a given
AgentAssociation, then AddressID may be
zero (≈null) for that instance (but doesn’t
have to be). (see also ASC, 1993).

The AgentRole for each instance of
tbl_AgentAssociation is intended to
represent the role played by the Person at
the associated Organization. Examples are
given in blue text in the diagram.

Each AgentAssociation has a StartDate
and an EndDate to establish the window of
time in which the AgentAssociation ex-
isted.

In principle, no instance should exist in the
tbl_Address entity, unless it exists in at
least one instance of AgentAssociation.
Thus, the former is a “dependent” entity of
sorts, even though it serves on the “one”
side of a one-to-many relationship. The
individual attributes of tbl_Address do not
need elaboration, except perhaps for
FmtAddress, which contains a fully-
formatted mailing address to be entered or
modified by the user. Usually, this field is
automatically generated – derived from the
other fields in this table – but it is not treated
as a “Cheat” field because the user is
allowed to over-ride the auto-formatting, to
meet some particular address formatting
situation. This should be regarded as an
optional, application-defined field, rather
than a core field.

Whereas only one Address can be linked to
any particular AgentAssociation, there can

be many instances of the tbl_EContact
table linked to a given AgentAssociation.
The concept of EContacts represents any
sort of electronic contact number or text
string, such as various telephone and fax
numbers, TELEX, email addresses, web
URLs, and other such electronic points of
contact. The type of EContact is indicated
by the EContactType field, examples of
which are given in blue text in the diagram.

Limitations
• AgentAssociations cannot be made

directly between one Person and an-
other Person, or between one Organi-
zation and another Organization, ex-
cept for the special case of “Aliases” (by
way of the ValidAgentID recursive For-
eign Key in tbl_Agent), and of an Or-
ganization linking directly to a “parent”
Organization. Such associations (e.g.,
between husband and wife, or between
two organizations joined by an MOU or
other agreement) are considered to be
outside the scope of this data model.
Additional tables could easily be ap-
pended to this model to track such asso-
ciations. To accommodate such relation-
ships within the current context, one
could re-define the OrganizationID and
PersonID Foreign Keys of
tbl_AgentAssociation to be AgentID
and AssociatedAgentID (without restric-
tion of which Subtype each is drawn
from), but it would need to accommodate
tracking directionality of such a relation-
ship (perhaps in place of AgentRole).

• To link EContacts directly to a single
Person or Organization (without the
context of the other), an AddressID must
be provided for that Person or Organiza-
tion. This limitation stems from the fact
that tbl_EContact links to an instance of
tbl_AgentAssociation, and the latter
can exist only if a minimum of two of the
three attributes PersonID, Organiza-
tionID, and AddressID have been popu-
lated with non-zero values. Relaxing this
requirement of having a minimum two
out of three populated foreign keys in
tbl_AgentAssociation, to the more lib-
eral rule of either PersonID or Organiza-
tionID being populated (regardless of
AddressID), would remove this limitation.

PhyloInformatics 1: 1-54 - 2004

12

• Although additional AgentTypes can be
defined (e.g., “Team”), they would need
to be established in such a way that links
to tbl_AgentAssociation are main-
tained logically. For example, if the third
AgentType “Team” were established,

then the OrganizationID foreign key of
tbl_AgentAssociation might be rede-
fined as “TeamOrganizationID” , indicat-
ing that it may be populated either with
an OrganizationID or a TeamID (or the
AgentID / AssociatedAgentID method).

Figure 4. Reference physical data model.

tbl_Reference

ReferenceID P lng

ParentReferenceID F lng
ReferenceTypeID F lng
ReferenceSeriesID F lng
LanguageID F lng

Year txt
Title mem
SecondaryTitle mem
PlacePublished txt
Publisher txt
Volume txt
NumberVolumes txt
Number txt
Pages txt
Section txt
TertiaryTitle mem
Edition txt
Date txt
TypeWork txt
ShortTitle txt
AlternateTitle mem
ISBN/ISSN txt
OriginalPublication mem
ReprintEdition txt
ReviewedItem txt
Figures txt
EarliestDate date
LatestDate date
URL mem

CheatAuthors txt
CheatFullAuthors txt
CheatCitation txt

Foreign Keys

Non-Key Attributes

Cheat Fields

Unique Keys

ReferenceTypeID P byt
ReferenceType txt

IsPublished bool
IsParent bool
Year txt
Title txt
SecondaryTitle txt
PlacePublished txt
Publisher txt
Volume txt
NumberVolumes txt
Number txt
Pages txt
Section txt
TertiaryTitle txt
Edition txt
Date txt
TypeWork txt
ShortTitle txt
AlternateTitle txt
ISBN/ISSN txt
OriginalPublication txt
ReprintEdition txt
ReviewedItem txt
Figures txt

tbl_ReferenceType
Unique Keys

Non-Key Attributes

ParentReferenceID cannot equal ReferenceID for
a single instance, nor can a circular relation be
established across multiple instances.
ParentReferenceID must be a Reference of Type
flagged with IsParent=True.

tbl_ReferenceSeries

ReferenceSeriesID P lng

Acronym txt
Abbreviation txt
Title txt
Series txt
Editor txt
Dates txt

Non-Key Attributes

Unique Keys

tbl_Language

LanguageID P lng
Language txt

Unique Keys

tbl_Agent

tbl_Glossary

GlossaryID P lng

LanguageID lng
WordTypeID byt

Word txt
Definition mem

Non-Key Attributes

Unique Keys

Foreign Keys

tbl_WordType

WordTypeID P byt
WordType txt

Unique Keys
WordType:

Noun (genitive)
Noun (apposition)
Adjective
Verb
Acronym
etc…

Relationship:
Synonym
Related Word
etc…

tbl_ReferenceKeyword

ReferenceKeywordID P lng
ReferenceID F lng
GlossaryID F lng

Cited bool

Non-Key Attributes

Unique Keys

tbl_ReferenceBibliography

ReferenceBibliographyID P lng
BibliographyID F lng
ReferenceID F lng

Sequence int

Non-Key Attributes

Unique Keys

tbl_Thesaurus

ThesaurusID P lng
GlossaryID F lng
RelatedGlossaryID F lng

Relationship txt

Non-Key Attributes

Unique Keys

tbl_AuthorType

AuthorTypeID P byt
AuthorType txt

Unique Keys

All instances of Reference must be represented by at least one instance of
ReferenceAuthor. If no author is given for the Reference, then the AgentID FK
would point to an ambiguous instance in Agent ‘Anonymous’ or ‘unspecified’.

tbl_ReferenceAuthor

ReferenceAuthorID P lng
ReferenceID F lng
AgentID F lng

AuthorTypeID F byt

Sequence int

Non-Key Attributes

Unique Keys

Foreign Keys

AuthorType:
0=Unspecified 7=Cartographer
1=Author 8=Programmer
2=Editor 9=Producer
3=Ex 10=Performer
4=Translator 11=Recipient
5=Reporter 12=Subject
6=Artist

PhyloInformatics 1: 1-54 - 2004

13

References
The physical model for Reference data is
represented in Figure 4. Whereas a “Refer-
ence” is most often thought of primarily in
the context of a publication, the concept is
here defined more broadly, in a way best
described as a “Date-stamped instance of
Agent(s).” All References must have as
their source one or more Agents (Refer-
enceAuthors), and each instance of a
Reference represents a statement of
documented information by those Agents at
a particular moment in time. Another way of
expressing this is that a Reference may be
created whenever any set of one or more
Agents establishes or asserts some infor-
mational content (statement) at a certain
point in time. All publications fall within this
definition of “Reference,” because all
publications are drafted at the hand of one
or more Agents (even if the Agent can only
be identified as “Anonymous” or “Unspeci-
fied”), and are published at a particular point
in time. Besides publications, however, there
are other ways in which a set of one or more
Agents may assert informational statements
at a certain point in time. Familiar examples
of unpublished References would include
correspondence and other forms of personal
communications (usually documented in the
form of a letter, memo, or other printed but
unpublished documentation), and specimen
determinations (usually documented in the
form of specimen labels or identification
tags). All other attributes of Reference deal
mainly with elements of information that
identify the documentation and citation
details about the Reference voucher,
indexing by ReferenceKeywords, and
cross-referencing References via the
ReferenceBibliography.

tbl_Reference
The basic structure of tbl_Reference
emulates the structure of EndNote® Version
7 bibliographic software (Anonymous, 2003),
which has, to some extent, become an
industry standard within academia. This
structure was chosen to allow relatively easy
transfer of Reference data between End-
Note® 7 application software and the Tax-
onomer database application. Several
aspects of this model expand upon the basic
EndNote® 7 structure, primarily with regard
to breaking certain data elements out into

separate linked tables, but also in the form
of extended data recording capabilities.
These differences are discussed each in
their relevant context below.

References may contain other References
in a hierarchical fashion. A familiar example
would be a book compiled by one set of
Agents (i.e., editors), which contains
chapters authored by different sets of
Agents. For the purposes of this data
model, a more abstract and less traditional
example is the ‘Sub-Reference’, which
allows for the designation of less discretely
defined portions of a reference to have
different set of authors, or more precise
page numbers or dates than the containing
“parent” Reference. This capability is
especially important for distinguishing text
constituting original descriptions of taxo-
nomic names from the containing Refer-
ence, in cases where the authorship of the
taxon name is not identical to the authorship
of the containing Reference (see “Taxa”
section below for more elaboration). The
hierarchy of References, when it exists, is
tracked by the recursive ParentReferenceID
linkage. As with Organizations, no Refer-
ence can be its own parent, and no multiple
chain of Reference→[Parent]Reference
can be circular.

Every Reference is classified according to
its ReferenceTypeID, which is drawn from
the tbl_ReferenceType table. The existing
values of ReferenceTypeID and their
corresponding text values of ReferenceType
are shown in the first two (bold) columns of
Table 2. The first 26 rows of Table 2 (corre-
sponding to ID values 0-25) directly emulate
the reference types defined in EndNote® 7.
The last three (shaded) rows (which could
potentially correspond to the three “unused”
reference types of EndNote® 7) are defined
in the context of the Taxonomer data model
as ‘Book Series’, ‘Determination’ and ‘Sub-
Reference’. The ‘Book Series’ Refer-
enceType was added to accommodate
citations of entire series, rather than individ-
ual volumes in a series. ‘Determination’ was
added to accommodate the special group of
unpublished References that represent
taxonomic identifications of specimens. The
‘Sub-Reference’ ReferenceType is intended
to represent a portion of another, more

PhyloInformatics 1: 1-54 - 2004

14

Pa
ge

s
Pa

ge
s

Pa
ge

s
Pa

ge
s

Pa
ge

s
Pa

ge
s

Pa
ge

s
Pa

ge
s

Pa
ge

s
Pa

ge
s

Pa
ge

s
- - - -

Le
ng

th

-
Sc

al
e

Pa
ge

s
Pa

ge
s

Pa
ge

s
1st

 P
g.

- - - -

Pa
ge

s
-

Pa
ge

s

N
um

be
r

Is
su

e
N

um
be

r
N

um
be

r
N

um
be

r
N

um
be

r
Is

su
e

- - - - - -
A

cc
. D

at
e

N
um

be
r

- - -
Is

su
e

D
oc

. N
o.

B

ill
 N

o.

La
w

 N
o.

- - -

N
um

be
r

- - -

N
o.

 o
f

V
ol

um
es

-

N
o.

 V
ol

s.
N

o.
 V

ol
s.

-
N

o.
 V

ol
s.

- -
N

o.
 V

ol
s.

- - - -
Ex

te
nt

- - - -

N
o.

 V
ol

s.
- - - - - - -

N
o.

 V
ol

s.
- -

V
ol

um
e

V
ol

um
e

V
ol

um
e

V
ol

um
e

-
V

ol
um

e
V

ol
um

e
-

V
ol

um
e

- - -
V

er
si

on

A
cc

es
s Y

ea
r

- - - -
V

ol
um

e
-

C
od

e
V

ol
um

e
C

od
e

N
um

be
r

R
ep

or
te

r V
ol

.
- -

V
ol

um
e

- - -

Pu
bl

is
he

r
-

Pu
bl

is
he

r
Pu

bl
is

he
r

-
Pu

bl
is

he
r

- -
Pu

bl
is

he
r

U
ni

ve
rs

ity

In
st

itu
tio

n
Pu

bl
is

he
r

Pu
bl

is
he

r
Pu

bl
is

he
r

Pu
bl

is
he

r
D

is
tri

bu
to

r
Pu

bl
is

he
r

Pu
bl

is
he

r
A

ss
ig

ne
e

Pu
bl

is
he

r
- -

C
ou

rt
- - -

Pu
bl

is
he

r
In

st
itu

tio
n

-

Pl
ac

e
Pu

bl
is

he
d

-
C

ity

C
ity

C

ity

C
ity

-

C
ity

C

on
f.

Lo
c.

C

ity

C
ity

C

ity

C
ity

-

C
ity

C

ity

C
ity

C

ity

C
ou

nt
ry

C

ity

- - - - - -
C

ity

- -

Se
co

nd
ar

y
T

itl
e

-
Se

rie
s T

itl
e

B
oo

k
Ti

tle

C
ol

le
ct

io
n

Ti
tle

Se

rie
s T

itl
e

- -
C

on
f.

N
am

e
A

ca
de

m
ic

 D
ep

t.
- - - -

C
ol

le
ct

io
n

Ti
tle

Se

rie
s T

itl
e

- -
Pu

bl
is

he
d

So
ur

ce

C
om

m
itt

ee

C
od

e
C

od
e

-
So

ur
ce

 P
ro

gr
am

So

ur
ce

 P
ro

gr
am

So

ur
ce

 P
ro

gr
am

- - -

T
itl

e
Ti

tle

Ti
tle

Ti

tle

Ti
tle

Ti

tle

Ti
tle

Ti

tle

Ti
tle

Ti

tle

Ti
tle

Ti

tle

Ti
tle

Ti

tle

Ti
tle

Ti

tle

Ti
tle

Ti

tle

Ti
tle

Ti

tle

Ti
tle

Ti

tle

Ti
tle

Ti

tle

Ti
tle

Ti

tle

Ti
tle

Ti

tle

Ti
tle

Y
ea

r
Y

ea
r

Y
ea

r
Y

ea
r

Y
ea

r
Y

ea
r

Y
ea

r
Y

ea
r

Y
ea

r
Y

ea
r

Y
ea

r
Y

ea
r

Y
ea

r
Y

ea
r

Y
ea

r
Y

ea
r

Y
ea

r
Y

ea
r

Y
ea

r
Y

ea
r

Y
ea

r
Y

ea
r

Y
ea

r
Y

ea
r

Y
ea

r
Y

ea
r

Y
ea

r
Y

ea
r

Y
ea

r

G
en

er
ic

Jo

ur
na

l A
rt

ic
le

B

oo
k

B
oo

k
Se

ct
io

n
M

an
us

cr
ip

t
E

di
te

d
B

oo
k

M
ag

az
in

e
A

rt
ic

le

N
ew

sp
ap

er
 A

rt
ic

le

C
on

fe
re

nc
e

Pr
oc

ee
di

ng
s

T
he

si
s

R
ep

or
t

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

C
om

pu
te

r
Pr

og
ra

m

E
le

ct
ro

ni
c

So
ur

ce

A
ud

io
vi

su
al

 M
at

er
ia

l
Fi

lm
 o

r
B

ro
ad

ca
st

A

rt
w

or
k

M
ap

Pa

te
nt

H

ea
ri

ng

B
ill

St

at
ut

e
C

as
e

Fi
gu

re

C
ha

rt
 o

r
T

ab
le

E

qu
at

io
n

B
oo

k
Se

ri
es

D

et
er

m
in

at
io

n
Su

b-
R

ef
er

en
ce

Ta
bl

e
2.

 R
ef

er
en

ce
 T

yp
es

 a
nd

 th
ei

r u
se

 o
f d

at
a

fie
ld

s.
 M

od
ifi

ed
 fr

om
 E

nd
N

ot
e®

 7
 te

m
pl

at
e

(A
no

ny
m

ou
s,

 2
00

3:
36

6-
37

1)
, r

e-
pr

in
te

d
w

ith
 p

er
m

is
si

on
 fr

om
 T

ho
m

so
n

IS
I R

es
ea

rc
hS

of
t.

S
ha

de
d

ro
w

s
ar

e
no

t i
nc

lu
de

d
in

 E
nd

N
ot

e®
 7

, a
nd

 a
re

 c
or

re
sp

on
d

to

th
e

th
re

e
“u

nu
se

d”
 ty

pe
s

av
ai

la
bl

e
in

 E
nd

N
ot

e®
 7

.
ID

0 1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

PhyloInformatics 1: 1-54 - 2004

15

Fi
gu

re
s

Fi
gu

re
s

Fi
gu

re
s

Fi
gu

re
s

Fi
gu

re
s

Fi
gu

re
s

Fi
gu

re
s

Fi
gu

re
s

Fi
gu

re
s

Fi
gu

re
s

Fi
gu

re
s

- - - - - - -
Fi

gu
re

s
- - - - - - -

Fi
gu

re
s

-
Fi

gu
re

s

IS
B

N

IS
SN

-

IS
B

N

IS
B

N

-
IS

B
N

- -

IS
B

N

-
R

pt
. N

o.

- - - -
IS

B
N

- -

Pa
t.

N
o.

- - - - - - -

IS
B

N

- -

A
lte

rn
at

e
T

itl
e

A
lt.

 Jo
ur

.
-

Sh
or

t T
itl

e
Sh

or
t T

itl
e

Sh
or

t T
itl

e
Sh

or
t T

itl
e

Sh
or

t T
itl

e
Sh

or
t T

itl
e

Sh
or

t T
itl

e
Sh

or
t T

itl
e

Sh
or

t T
itl

e
Sh

or
t T

itl
e

Sh
or

t T
itl

e
Sh

or
t T

itl
e

Sh
or

t T
itl

e
Sh

or
t T

itl
e

Sh
or

t T
itl

e
Sh

or
t T

itl
e

Sh
or

t T
itl

e
Sh

or
t T

itl
e

Sh
or

t T
itl

e
Sh

or
t T

itl
e

Sh
or

t T
itl

e
Sh

or
t T

itl
e

A
bb

. C
as

e
- - - - - -

T
yp

e
of

 W
or

k
- - -

Ty
pe

 W
or

k
- -

Ty
pe

 A
rt.

-

Th
es

is
 T

yp
e

Ty
pe

 W
or

k
Ty

pe
 W

or
k

Ty
pe

 W
or

k
M

ed
iu

m

Ty
pe

 W
or

k
M

ed
iu

m

Ty
pe

 W
or

k
Ty

pe
 W

or
k

- - - - - - - - - -

D
at

e
D

at
e

D
at

e
D

at
e

D
at

e
D

at
e

D
at

e
D

at
e

D
at

e
D

at
e

D
at

e
D

at
e

D
at

e
D

at
e

D
at

e
D

at
e

D
at

e
D

at
e

D
at

e
D

at
e

D
at

e
D

at
e

D
at

e
D

at
e

D
at

e
D

at
e

D
at

e
D

at
e

D
at

e

E
di

tio
n

-
Ed

iti
on

Ed

iti
on

Ed

iti
on

Ed

iti
on

-

Ed
iti

on

Ed
iti

on

- - -
Pl

at
fo

rm

Ed
iti

on

- - -
Ed

iti
on

-

Se
ss

io
n

Se
ss

io
n

Se
ss

io
n

- - - -
Ed

iti
on

- -

T
er

tia
ry

T

itl
e

- -
Se

r.
Ti

tle

- - - -
Se

r.
Ti

tle

- - - - - - - - - -
Le

g.
 B

od
y

Le
g.

 B
od

y
- - - - - - - -

Se
ct

io
n

- - - - - -
Se

ct
io

n
- - - - - - - - - - - -

Se
ct

io
n

Se
ct

io
n

- - - - - - -

G
en

er
ic

Jo

ur
na

l A
rt

ic
le

B

oo
k

B
oo

k
Se

ct
io

n
M

an
us

cr
ip

t
E

di
te

d
B

oo
k

M
ag

az
in

e
A

rt
ic

le

N
ew

sp
ap

er
 A

rt
ic

le

C
on

fe
re

nc
e

Pr
oc

ee
di

ng
s

T
he

si
s

R
ep

or
t

Pe
rs

on
al

 C
om

m
un

ic
at

io
n

C
om

pu
te

r
Pr

og
ra

m

E
le

ct
ro

ni
c

So
ur

ce

A
ud

io
vi

su
al

 M
at

er
ia

l
Fi

lm
 o

r
B

ro
ad

ca
st

A

rt
w

or
k

M
ap

Pa

te
nt

H

ea
ri

ng

B
ill

St

at
ut

e
C

as
e

Fi
gu

re

C
ha

rt
 o

r
T

ab
le

E

qu
at

io
n

B
oo

k
Se

ri
es

D

et
er

m
in

at
io

n
Su

b-
R

ef
er

en
ce

Ta
bl

e
2.

 (C
on

tin
ue

d)
 R

ef
er

en
ce

 T
yp

es
 a

nd
 th

ei
r u

se
 o

f d
at

a
fie

ld
s.

ID

0 1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

PhyloInformatics 1: 1-54 - 2004

16

encompassing Reference (excluding cases
that can be assigned to the ‘Book Section’
ReferenceType), primarily to accommodate
assigning appropriate authorship to taxon
names (when such authorship differs from
the encompassing Reference – see discus-
sion above, and below in the “Taxa” sec-
tion).

The top row of Table 2 (ReferenceTypeID=
0; ReferenceType=‘Generic’) correspond to
the generic fields as used in EndNote® 7 to
store reference data (with a few exceptions,
described below). These columns corre-
spond to most of the Non-Key Attributes
shown in Figure 4 for tbl_Reference and
tbl_ReferenceType. Table 2 serves as a
matrix to indicate how each of these non-key
attributes of tbl_Reference are used to
store information, according to the value of
ReferenceTypeID for each instance. For
example, if ReferenceTypeID=1 (‘Journal
Article’), then the Year, Title, Volume,
Number, Pages, Date, etc. fields of
tbl_Reference for that instance are used for
storing data as indicated in Table 2; and the
other fields (i.e., those represented by a ‘-’ in
Table 2) are not used for that particular
tbl_Reference instance. The corresponding
attributes in tbl_ReferenceType are in-
tended to store metadata used by the
Taxonomer software application, and will not
be described here, except to explain that
they were given the same attribute names in
order to simplify coding of the Taxonomer
application. More information on the specific
use and purpose of the various attributes
included in Table 2 can be obtained from
Anonymous, 2003.

The last column in Table 2 (‘Figures’) does
not exist in EndNote® 7, and is here as-
sumed to occupy the ‘Custom 1’ field
provided in EndNote® 7. This attribute of
tbl_Reference is intended to allow docu-
mentation of figures and plates, which may
be important for taxonomic purposes.

Conversely, several additional fields used by
EndNote® 7 are not included in Table 2.
Four of these (‘Author’, ‘Secondary Author’,
‘Tertiary Author’ and ‘Subsidiary Author’) are
accommodated by tbl_ReferenceAuthor,
as described below. EndNote® 7 allows for 6
‘Custom’ fields; the first of which is used for

Figures as described above, and two
additional ‘Custom’ fields are used by
Taxonomer for the tbl_Reference attributes
EarliestDate and LatestDate. These two
date fields are used by Taxonomer to
establish the narrowest possible range in
time when the Reference was published
(whereas the Date attribute allows for a text
description of when the Reference was
published). The other three ‘Custom’ fields
in EndNote® 7 are as yet unassigned in the
Taxonomer model, but could potentially be
used to store values of the Foreign Key
attributes ParentReferenceID, Reference-
SeriesID, and LanguageID, if those values
need to be preserved during a data export to
EndNote® 7.

The ‘Accession Number’, ‘Call Number’, and
‘Label’ fields in EndNote® 7 are accommo-
dated by the tbl_CodeNumber and
tbl_CodeNumberSeries portions of the
Taxonomer data model. Similarly, the
‘Abstract’ and ‘Notes’ fields are accommo-
dated by tbl_Excerpt and tbl_Comment.
All four of these tables are described in the
“General Data Management” section later in
this article. ‘Keywords’ of EndNote® 7 are
linked to tbl_Reference from tbl_Glossary
via tbl_ReferenceKeyword (as described
below). ‘Author Address’ is accommodated
by tbl_AgentAssociation and related
tables, described earlier in the “Agents”
section; and “Image” and “Caption” of
EndNote® 7 are dealt with in a different part
of the Taxonomer model, not described
herein. The ‘URL’ field of EndNote® 7 is
directly mapped to the URL attribute of
tbl_Reference. It is not included in Table 2
(and not among the attributes of
tbl_ReferenceType) because its purpose is
the same regardless of the value of Refer-
enceTypeID: to store a standard internet
URL address, when one is available. Two
additional boolean attributes of
tbl_ReferenceType – IsPublished and
IsParent – are used by the Taxonomer
application to indicate which Refer-
enceTypes are published, and which can
serve as a “parent” Reference to another
Reference (respectively).

Two additional Foreign Key attributes of
tbl_Reference remain to be described.
Depending on which ReferenceTypeID is

PhyloInformatics 1: 1-54 - 2004

17

selected for the particular Reference
instance, there may be a link to the
tbl_ReferenceSeries via the ReferenceSer-
iesID Foreign Key. The reference types that
can be linked to a ReferenceSeries include
‘Generic’, ‘Book’, ‘Book Section’, ‘Confer-
ence Proceedings’, ‘Edited Book’, ‘Journal’,
‘Magazine Article’, and ‘Newspaper Article’.
Attributes of tbl_ReferenceSeries are
indicated in Figure 4, and are not as yet
rigidly defined. The use of
tbl_ReferenceSeries leads to several of the
deviations from standard EndNote® 7 field
usage, compared with what is presented in
Table 2 (i.e., EndNote® 7 uses the ‘Secon-
dary Title’ field to store the same information
as the tbl_ReferenceSeries link provides in
Taxonomer).

Finally, each Reference instance may be
associated with the tbl_Language table, via
the LanguageID Foreign Key, to indicate
which language the Reference was primar-
ily written in.

There are three “Cheat” fields within
tbl_Reference: CheatAuthors, CheatFullAu-
thors, and CheatCitation. CheatAuthors is
used to store formatted single- and dual-
author FamilyNames, or first-author Family-
Name plus “et. al" for multi-authored Refer-
ences. CheatFullAuthors is used to store
formatted author names as they generally
appear in bibliographies – FamilyName and
initials of GivenNames for each individual
author. CheatCitation is a concatenation of
CheatAuthors and Year field. All three of
these “Cheat” fields are used to enhance
output performance.

tbl_ReferenceAuthor
Every Reference instance must be linked to
one or more Agent(s) representing the
author(s) of the Reference, via the
tbl_ReferenceAuthor table. In cases where
the specific author is not known, a link is
established to an ambiguous instance of
Agent representing ‘Anonymous’ or ‘Un-
specified’. The important point here is that a
Reference is defined in the context of its
authoring Agent(s); hence the requirement
for at least one instance of
tbl_ReferenceAuthor for each instance of
tbl_Reference.

The AuthorTypeID Foreign Key to
tbl_AuthorType denotes the nature of the
relationship between the Agent and the
Reference (defined values displayed in blue
text in Figure 4). In most cases, Agents
serve the role of ‘Author’ or ‘Editor’. Other
values of AuthorType are mostly self-
evident, but three warrant elaboration.
AuthorType ‘Ex’ (AuthorTypeID=3) is used
to flag those specific authors who are
authors of taxon names, but not authors of
the Reference itself. For example, suppose
a Reference is linked to ReferenceAuthors
Smith, Jones, and Johnson, with Johnson
indicated by AuthorTypeID=3. Taxon names
linked to this Reference (see “Taxa” sec-
tion) would treat the authorship of that
Protonym as “Smith and Jones (ex John-
son).” Additionally, if this Reference hap-
pens to be of type ‘Sub-Reference’, which
itself is included within a publication au-
thored by (for example) Jones and Wilder,
then the authorship for the taxon name
would be interpreted as “Smith and Jones
(ex Johnson) in Jones and Wilder.” Author-
Type ‘Recipient’ (AuthorTypeID=11) is used
to denote who the recipient of a Personal
Communication Reference was. Finally,
AuthorType ‘Subject’ (AuthorTypeID=12) is
included for references that include bio-
graphical information, to allow indexing of
who the biographical information pertains to.
The Sequence attribute is used to establish
the sequence of authors for multi-authored
References. The value of this field is only
meaningful within the context of a set of
authors that are of the same AuthorType.

tbl_ReferenceBibliography
The tbl_ReferenceBibliography table is
used to record which References (Biblio-
graphyID) cite which other references
(ReferenceID) in their bibliography (or
elsewhere). This can be useful in decipher-
ing implied taxonomic concepts, to indicate
whether or not one Reference explicitly had
access to another Reference at the time a
taxonomic concept was formulated. The
Sequence field is used to establish the
sequence of cited References, as they
appear in the citing Reference. This table is
useful both for constructing bibliographies of
References, and also for creating a “Cita-
tion Index” for References.

PhyloInformatics 1: 1-54 - 2004

18

tbl_Glossary
A generic system of defining words is
established via the tbl_Glossary table.
Each Word exists in the context of a Lan-
guage (linked from tbl_Language via the
LanguageID Foreign Key), and is assigned a
WordType (linked from tbl_WordType via
the WordTypeID Foreign Key – examples of
WordType shown in blue text in Figure 4). A
short Definition is provided for each Word.

Individual words can be cross-referenced to
other words via the tbl_Thesaurus table.
The nature of the relationship between the
two words (e.g., ‘Synonym’, ‘Related Word’,
etc.) is indicated in the Relationship field.
Such relationships are not automatically
treated as symmetrical, so in the case of a
symmetrical relationship (e.g., ‘Synonym’),
two instances are required in the
tbl_Thesaurus table. Future versions of this
data model may define a
tbl_RelationshipType table as a separate
linked entity, allowing additional attributes
for each relationship type (e.g., IsSymmetri-
cal, etc.).

Individual instances of tbl_Glossary are
linked to instances of tbl_Reference via the
tbl_ReferenceKeyword table. If the indi-
cated keyword was designated in the linked
Reference itself, then the Cited field is set to
‘True’. Otherwise, it is assumed that Key-
word assignment was created by the data-
base user.

Limitations
• The general limitation of the whole

Reference structure stems from its
foundation in the EndNote® 7 model. A
somewhat denormalized flat
tbl_Reference structure (as opposed to
establishing multiple subtypes of Refer-
ences) is taken as a compromise to
maintain simplicity of import and export
capability with EndNote® 7 and other bib-
liographic citation data standards.

Taxa
As summarized in the “Introduction” section
of this article, there is a well-acknowledged
subtle but important distinction between a
“Taxon Name” and a “Taxon Concept” (e.g.,
Berendson, 1995; Le Renard, 2000; Geof-
froy & Berendsohn, 2003). A taxonomic

name is an objective entity, and exists (and
is defined) in the form of printed text. The
name itself is a string of text characters
(which can, under certain circumstances,
change in spelling), and is objectively linked
to the biological world via a properly desig-
nated type specimen (a more subjective link
between a name and the biological world is
often represented in the form of characters
that define a taxonomic concept). Most
attributes of each name (e.g., publication
date, original spelling, authorship, etc.) are
usually unambiguous, and not open to
subjective interpretation (except in a few
specific cases). New names are created in
accordance with strict and detailed rules of
nomenclature; i.e., ICBN (Greuter et. al,
2000); ICZN (ICZN, 1999); ICNB (Lapage et
al. 1992); LBSN (Euzéby, 2003); ICVCN
(Francki et al. 1990; Murphy et al. 1995; van
Regenmortel et al. 2000); and ICNCP
(Trehane et al., 1995). For the most part,
information pertaining to taxonomic names
is objective in nature. Taxon Names can be
thought of as the individual “words” compris-
ing the dictionary of the diversity of life.

A “Taxon Concept,” on the other hand, is a
purely abstract, subjective construct that
ultimately exist only in the mind of a tax-
onomist (see Geoffroy & Berendsohn,
2003). Concepts are much less discretely
defined entities, the creation or establish-
ment of which are not governed by Codes of
nomenclature, and whose attributes are
considerably more ambiguous than those of
a taxon name. Whereas a Taxon Name is
generally anchored to the biological world
via a single specimen, a Taxon Concept is
intended to circumscribe a large (potentially
vast) collection of individual organisms,
living, dead, and yet-to-be-born, all of which
share a level of common ancestry (kinship)
and morphological/genetic similarity so as to
be regarded as belonging to the same taxon
(e.g., species). Taxon Concepts can be
thought of as the definitions of those Taxon-
Name “words” that comprise the dictionary
of the diversity of life.

Unlike the definitions of most words in a
conventional dictionary, however, the
mapping of Taxon Concepts to Taxon
Names has been far from consistent among
practitioners of taxonomy. Some taxono-

PhyloInformatics 1: 1-54 - 2004

19

mists tend to prefer more generalized
concepts (definitions), which leads to more
of the names (words) being synonymous
with other names (words). Others prefer
more specific concepts (definitions), thereby
maintaining distinctions between different
names (words). The basic problem is that
most published and unpublished documen-
tation about taxa use only the names
(words), without necessarily including
explicit details about how those names are
circumscribed (defined). Thus, the task at
hand is to find a way to consistently and
objectively map Names (words) to their
various respective implied Concepts (defini-
tions).

In order to map the Names to the Concepts,
the first step is to apply an unambiguous
“handle” on each Name and Concept, and
then build an index to map the Name
handles to the Concept handles. The easiest
and most straightforward way to put a
handle on a taxon name is to attach that
handle to the Basionym of the name.
Although the word “Basionym” is more
frequently used in botanical contexts than in
zoological contexts, the basic concept
applies equally to both (and is becoming
more commonly used in zoological con-
texts). The Basionym can be thought of as a
pointer to a name’s original description – the
moment when a string of text characters
becomes legitimately available for taxo-
nomic use (in accordance with the various
codes of nomenclature) – and therefore as
the handle to a name. Another term used
frequently in botanical contexts is
“Protologue”, which represents the set of
elements constituting an original description
of a name. After much contemplation and
discussion with colleagues, I have decided
that the confusion that may result from
attempting to use either one of these pre-
existing terms to represent a concept that is
not really quite either, would be greater than
the confusion of introducing a new term that
is intended to represent certain elements of
both. For a number of reasons, I have
chosen to use the word “Protonym” instead
of either “Basionym” or “Protologue” for the
Taxonomer data model (see further discus-
sion in the “Limitations” sub-section below).

Hence, the use of Protonym (hereinafter
shown in bold text) in this data model
serves as a common linkage between the
original presentation of a taxonomic name,
and subsequent use of that same name in
(potentially) different Concept contexts.

The textual representation of a Protonym
takes the form of:

Name OriginalAuthor(s), OriginalYear

(although “OriginalYear” is often excluded
for botanical names).

As described in detail within the “Refer-
ences” section of this article, a “Reference”
is generally defined as a documented
instance of “date-stamped Author(s),” which
can also be read as “Author(s), Year.” Thus,
the most convenient handle for a Protonym
can be thought of as:

Name OriginalReference

The method for applying a handle to a
Taxon Concept is less consistent, and not
often as unambiguous as applying a handle
on a Name. However, one common ap-
proach is to cite a name in the context of
another Reference, in the form of:
Name OriginalReference sensu OtherReference

(Geoffroy & Berendsohn, 2003, use the
abbreviation “sec.” instead of sensu).

In the case of the Taxon Concept associated
with the Protonym itself, the representation
would be:

Name OriginalReference sensu
OriginalReference

Reducing this one step further, “Name
OriginalReference” can be substituted with
“Protonym” (as defined above), and the
Concept can then be thought of as:

Protonym sensu Reference

(where “Reference” is either “OriginalRefer-
ence” in the case of the Concept attached to
the original name creation, or “OtherRefer-
ence” in all other cases). Thus, whereas the
handle for a Taxon Name can be thought of
as the Protonym, the handle for a Taxon
Concept can be thought of as the intersec-
tion of a Protonym and a Reference.

PhyloInformatics 1: 1-54 - 2004

20

I have used the term Assertion to represent
this Protonym-Reference intersection,
which has previously been diagramed (e.g.,
Taswell & Peet, 2000) as in Figure 5a. This
diagram implies a “One to Zero-to-Many”
relationship between Names and Asser-
tions. However, a Name cannot exist
without at least one Assertion – the Asser-
tion in which the Name was first proposed
(the original description). Therefore, the
relationship between Names and Asser-
tions should be “One to One-to-Many.”
Taking this one step further, a Name in the
context of the Reference that provided its
original description has been defined above
as the Protonym. Because a Protonym
exists in the context of the Reference that
originally established it, a Protonym can
itself be represented as an Assertion (i.e.,
“Name OriginalReference sensu Original-
Reference”). Given that a Name cannot exist
without its Protonym, the relationship
between a “Name” (Protonym) and an
Assertion becomes recursive, as shown in
Figure 5b. Therefore, the conceptual handle
for the name and the handle for the concept
are one and the same, with the former being
a special-case subtype of the latter.

Stated another way, all Names initially
become available through the Reference
that constitutes its original description (the
Protonym). These original descriptions did
themselves assert a Taxon Concept to be
applied to the Name as proposed, and
therefore also represent Assertions. As a
subset of the broader scope of Assertions
(which include potentially many Reference

treatments of names other than the original
description), Protonyms represent the ideal
linkage point to joint multiple Assertions
based on the same original name. Thus,
whereas all Assertions represent the
handle to a Taxon Concept, the subset of
Assertions constituting Protonyms repre-
sent dual-purpose handles to both Taxon
Concepts and Taxon Names.

It is worth clarifying at this point that, al-
though the handle to a taxon concept can be
thought of as an instance of an Assertion;
not all Assertions necessarily represent
implied Taxon Concepts. For example, one
form of publication is a “Type Catalog,”
wherein all type specimens in a Museum’s
collection are listed according to the Names
that they typify. In such publications, the
authors will list taxon names (generally as
unaltered Protonyms in this case), and
hence establish an intersection between a
Reference (the type catalog publication
itself) and a Protonym – but without neces-
sarily implying a Taxon Concept to go along
with that name (i.e., literally only the type
specimens are asserted in such cases,
without any implications about the scope of
non-type individual kin organisms to be
included within a Taxon Concept repre-
sented by the name). In such cases, an
instance of an Assertion exists without an
implied Taxon Concept. For this reason, an
Assertion should be regarded as represent-
ing a “Potential Taxon [Concept]” (sensu
Berendsohn, 1995). In the majority of Name-
Reference intersections (Assertions),
however, the author(s) of the Reference

Figure 5. Conceptual representation of Names, Assertions, and References. a) tradi-

tional view; b) perspective presented herein.

Name

Assertion Reference

a.

Assertion Reference

b.

Protonym

PhyloInformatics 1: 1-54 - 2004

21

had a Taxon Concept circumscription in
mind when invoking the Taxon Name, even
if the scope of that circumscription is not
defined (or even alluded to) within the
Reference itself. Thus, in the vast majority
of cases, Assertion instances can be used
as a direct “handle” to an implied taxon
concept circumscription (which, in many
cases, will be precisely identical to the
circumscriptions implied by many other
Assertions for a given Taxon Name).
Because the definition of a Reference
herein is not restricted to publications, it can
be said that all Concepts that map to taxon
names can be identified by an Assertion,
whether or not they appear in published
form.

Before describing the “Taxa” components of
the data model in detail, it is worthwhile to
outline alternative distinct “resolutions” at
which circumscription scopes are often
defined:

Name-Resolution Circumscription
Definitions
This is the coarsest, and most often-used
resolution of circumscription scope expres-
sion in published taxonomic references.
Such circumscriptions are defined merely by
treating taxon names as either valid, or as
junior synonyms of other taxon names.
Because taxon names are anchored to the
biological world via type specimens, this
method of defining circumscriptions can be
thought of in a sense as Specimen-
resolution circumscription definitions, except
limiting it to only those particular specimens
that represent primary types of taxon
names. To list Taxon Name ‘B’ as a junior
synonym of Taxon Name ‘A’, is to assert
that “the primary type specimen of Taxon
Name ‘A’ and the primary type specimen of
Taxon Name ‘B’ share close enough kinship
to each other that they should be regarded
as belonging to the same taxon circumscrip-
tion” (in this case, with the relevant Code
bestowing the name ‘A’ with nomenclatural
priority over the name ‘B’). Conversely, to
list Taxon Name ‘B’ as valid and distinct
from Taxon Name ‘A’, is to assert that “the
primary type specimen of Taxon Name ‘A’
and the primary type specimen of Taxon
Name ‘B’ are sufficiently distant in kinship to
each other that they should be regarded as

belonging to different taxon circumscrip-
tions.” In this way, the full scope of the
implied circumscription is represented by the
set of Assertions within a Reference that
include a Name that is treated as valid, plus
all Assertions of Names that are treated as
junior synonyms of that valid Name (the
handle on the Assertion being maintained
as the one represented by the Name treated
as valid).

The primary weakness of this form of
circumscription definition is as follows:

When a Reference does not treat all rele-
vant Names that are available at the time
the Reference is established (e.g., when not
all potentially valid taxa are treated, or not all
potentially relevant synonyms are assigned
to Names that are treated as valid), then the
circumscription definitions within the context
of the Reference are incomplete.

Even when a Reference does treat all
relevant Names available at the time the
Reference is established, the Reference
may be later rendered incomplete by subse-
quent descriptions of new Names for
closely-related taxa.

Using only Name-level circumscription
definitions (i.e., without elaborating the
character-based criteria used to delineate
different circumscriptions), greatly inhibits
the ability to secondarily assign individual
non-type specimens to these circumscrip-
tions.

These weaknesses notwithstanding, Name-
resolution circumscription definitions repre-
sent the bulk of documented taxonomic
information (inclusive of all References citing
taxonomic names with lists of synonyms),
and therefore serve as an ideal “core”
information content base around which the
foundation of a data model should be built.

Specimen-Resolution Circumscription
Definitions
The most fundamental (and finest) resolu-
tion at which circumscriptions are mapped is
via individual specimens (beyond the limited
scope of primary type specimens). The
source Reference for corresponding Asser-
tions can either be in the form of a publica-

PhyloInformatics 1: 1-54 - 2004

22

tion (as when a published Reference lists
museum specimen catalog numbers under a
particular Taxon Name), or in the form of an
unpublished “Determination”-type Refer-
ence (i.e., identification labels on the actual
museum specimens themselves).

Other Circumscription Definition Resolutions
It could be argued that “Character-
Resolution Circumscription Definitions”
represent a another resolution at which
circumscriptions can be defined. For rea-
sons not elaborated herein, I see this as a
fundamentally different approach to mapping
the scope of taxon circumscriptions, be-
cause it transcends the individual organism
(considered to be the basic unit of a taxon).
While this question is certainly ripe for
discussion, it goes beyond the intended
scope of this article.

Also, circumscriptions are sometimes
defined in terms of populations of organ-
isms. This resolution of circumscription
definition represents cases where a Refer-
ence ascribes specific populations to Taxon
Names, thereby extending the resolution of
circumscription boundary delineation beyond
the relatively course type-specimen anchor
points, but not as precise as specimen-
resolution definitions. This kind of circum-
scription definition usually takes the form of
biogeographic treatments (i.e., mapping
taxon names directly to geographic regions,
bypassing the more fundamental connection
between names and locations via speci-
mens).

The core “Taxa” data model represented
here, illustrated in Figure 6, is intended to
directly document “Name-Resolution”
circumscription definitions, while also
providing a tangible “handle” to a circum-
scription (i.e., an Assertion instance) that
can be more precisely defined at higher
resolution (e.g., specimen resolution) via
additional “modules” of data entities (as
described in the next section).

tbl_Assertion
The central “anchor” entity of the taxon
portion of this data model is the Assertion.
As previously stated, an Assertion is
defined as the intersection of a Protonym
and a Reference, as indicated by the

Foreign Keys, ProtonymID and Referen-
ceID. Because Protonyms themselves
represent Assertions (sensu the original
authors of the Protonym), it would be
possible to represent the relationship of
ProtonymID to AssertionID via a direct
recursive link. However, because certain
attributes apply only to Protonyms and not
all Assertions (e.g., nomenclatural attrib-
utes such as Availability in the case of
names governed by Codes, and “Type
Species” and Gender in the case of generic-
level names – described in more detail along
with other Protonym attributes below), and
also for reasons of enforcing business rules
and improving performance of certain query
operations, the table tbl_Protonym is
represented as a subtype of tbl_Assertion.
The recursive linkage between any particu-
lar Assertion instance and its associated
Protonym is made via the tbl_Protonym
subtype; first from the ProtonymID Foreign
Key field of tbl_Assertion to the Proto-
nymID Primary Key of the subtype
tbl_Protonym, and then recursively back to
the tbl_Assertion table via the One-to-One
subtype/supertype link to AssertionID. The
domain of Assertion instances that are
represented by instances in tbl_Protonym
are (by definition) those specific instances
of tbl_Assertion where AssertionID=
ProtonymID.

The ReferenceID Foreign Key of
tbl_Assertion is a straightforward linkage to
the Reference in which the Assertion is
made. A fundamental component of the
Taxonomer data model is that Taxon Name
authorship is derived directly from the
authorship of the Reference to which the
corresponding Protonym is linked. This
straightforward authorship derivation has
often been avoided in other similar data
models, because the authorship of a Taxon
Name is not necessarily identical to the
authorship of Reference in which the Taxon
Name was originally described. Rather than
establish two separate relationships be-
tween Protonyms and author Agents (one
indirectly via the link to the original descrip-
tion Reference, and one representing the
taxonomic authors of the Name itself), I
have instead established the concept of a
“Sub-Reference” (see discussion in the
previous section on References).

PhyloInformatics 1: 1-54 - 2004

23

Figure 6. Taxonomic physical data model.

tbl_Assertion

AssertionID P lng
ProtonymID F lng
ReferenceID F lng
TaxonRankID F byt

ValidAssertionID F lng
ParentAssertionID F lng
ReliabilityID F byt

Epithet txt
EpithetQualifier txt
Pages txt
IsQuestioned bool
IsNewCombination bool
IsFirstRevision bool

CheatTaxonName txt
CheatFullTaxonName txt
CheatAutonym bool
CheatStatus txt

Foreign Keys

Non-Key Attributes

Cheat Fields

Unique Keys

tbl_Reference

tbl_TaxonRank

TaxonRankID P lng
Abbreviation txt

ZoologyRank txt
BotanyRank txt
BacteriaRank txt
Prefix txt
Suffix txt

Non-Key Attributes

Unique Keys

Gender:
0=Unspecified
1=Masculine
2=Feminine
3=Neuter

ObjectiveStatusType:
0=Uncertain
1=Available
2=Not Available
3=1°Homonym
4=2°Homonym
5=Nomen Nudum
6=Hybrid
etc…?

WordType:
Noun (gen.)
Noun (appos.)
Adjective
Verb
Acronym
etc…

ReliabilityID:
0=Uncertain
1=Non-Scientific
2=Scientific
3=Taxonomic
4=Revision
5=Original/New Comb.

NomenCode:
0=Unspecified
1=ICBN
2=ICZN
3=ICNB
etc…

If ValidAssertionID?AssertionID for a given instance of Assertion, then
ValidAssertionID must point to an instance of Assertion with the same
value of ReferenceID as the instance from which the link is made.

tbl_Reliability

ReliabilityID P byt
Reliability txt
Description txt

Unique Keys

tbl_WordType

WordTypeID P byt
WordType txt

Unique Keys

tbl_NomenCode

NomenCodeID P byt
NomenCode txt

Unique Keys

tbl_ObjectiveStatusType

ObjectiveStatusTypeID P byt
ObjectiveStatusType txt

Unique Keys

Subtype

Subtype

tbl_HybridAssertion

HybridAssertionID P lng
HybridParent1ID F lng
HybridParent2ID F lng

Unique Keys

tbl_ObjectiveStatus

ObjectiveStatusID P lng
AssertionID F lng
ObjectiveStatusTypeID F byt

Unique Keys

tbl_Protonym

ProtonymID P lng

TypeProtonymID F lng
WordTypeID F byt
NomenCodeID F byt

Gender byt
IsFossil bool

CheatAvailable bool
CheatFullProtonym txt
CheatAcceptedAssertionID lng
CheatHierarchy mem
CheatGlobalSequence txt

Foreign Keys

Non-Key Attributes

Cheat Fields

Unique Keys

PhyloInformatics 1: 1-54 - 2004

24

As described above in the “References”
section, the ReferenceType “Sub-
Reference” was established and defined to
represent a sub-section of another Refer-
ence (other than more traditional cases of
Parent-Child References, such as Chapters
in a Book). A Sub-Reference has its own set
of ReferenceAuthors, and its own publica-
tion Date, which may or may not be the
same as the corresponding values of
ReferenceAuthors and/or Date for the
Parent Reference. Thus, in cases where the
authors (or Date) of a Taxon Name are not
identical to the authors (or Date) of the
Reference in which the Name was originally
described, a “Sub-Reference” is created
(linked to the appropriate Parent Reference
via ParentReferenceID) with the appropriate
set of ReferenceAuthors and Date, and the
Protonym instance for the Taxon Name is
linked to that Sub-Reference. This solution
to the “Taxon Name authorship problem” is
logically appropriate, because technically
the authors of a Taxon Name are deemed to
be the authors of the portion of the pub-
lished work that constitutes the original
description of the Name. Hence, the descrip-
tion of the Taxon Name can be seen to
represent a sub-section of a Reference unto
itself – a Reference within a Reference. It
should be noted that business rules require
that all Sub-References be established as a
child of another Reference instance (which
itself is not a Sub-Reference), via the
ParentReferenceID link.

In the vast majority of cases, the two For-
eign Keys ProtonymID and ReferenceID
would (by themselves) uniquely identify
every Assertion instance. However, in the
special case of autonyms, representing
nominotypical taxa (e.g., the subfamily
Chaetodontinae within the family Chaeto-
dontidae; or the subgenus Chaetodon
(Chaetodon); or the subspecies Chaetodon
unimaculatus unimaculatus) represent cases
where a single Protonym can be used
within a single Reference as representing
two distinct Taxon Concepts. For this
reason, the TaxonRankID Foreign Key,
which identifies the exact taxonomic rank at
which the Protonym is used within the
Reference, must also be included among
the uniquely-identifying attributes of a
particular Assertion instance.

The TaxonRankID Foreign Key establishes
a link to the tbl_TaxonRank table. Each
record of this table represents a taxonomic
rank that is in current use, or may have been
in historical use, in any of the three major
taxonomic disciplines (Botanical, Zoological,
or Microbial). The reason for including ranks
that are no longer in current use is that the
Assertion table is intended to track all
historical uses of Taxon Names, at whatever
rank they may have been assigned to.
Unfortunately, the different ranks, and the
names assigned to each rank, are not
universally established for all of biology. For
this reason, three separate attributes
(ZoologyRank, BotanyRank, and Bacte-
riaRank) are needed to record the rank label
used within each of the three corresponding
major Codes of nomenclature. The contents
of tbl_TaxonRank are shown in Table 3.
When a value for ZoologyRank, Botany-
Rank, or BacteriaRank is empty, the corre-
sponding TaxonRank is believed to have
never been used within the respective
branch of nomenclature (further investiga-
tion should allow the additional elimination of
certain ranks from certain branches; particu-
lar Bacterial). Additional attributes of this
sort could be established for other rank-
based Codes of nomenclature (e.g., LBSN,
ICVCN, ICNCP), but as yet have not been
added to the Taxonomer model. For conven-
ience, the corresponding values used in the
“rank_ID” field of the ITIS data model (ITIS,
2003), when they exist, are provided in the
left-most column of Table 3.

Unlike most surrogate Primary Key fields of
tables within the Taxonomer data model,
TaxonRankID does, in fact, contain informa-
tion. First, its value conveys the sequence of
ranks within the established hierarchy
(thereby allowing the enforcement the
business rule that prevents establishing
ParentAssertionID links to Assertions of
equal or lower rank). Second, the numbers
are assigned within clusters of ten, such that
the first digit of each two-digit TaxonRankID
represents the major rank grouping (except
in the case of TaxonRankID=0, which is
consistent with the use of 0 as “Unspecified”
elsewhere in the data model). For example,
values less than 10 are above the rank of
“Kingdom”; values 10-19 are reserved for
ranks within the “Kingdom” group; values

PhyloInformatics 1: 1-54 - 2004

25

Table 3. Contents of tbl_TaxonRank, with corresponding ITIS “rank_ID” values.

TaxonRankID ZoologyRank BotanyRank BacteriaRank Abbreviation Prefix Suffix ITIS
0 <Unspecified> <Unspecified> <Unspecified> UNK
05 Domain Domain Domain DOM
08 Superkingdom Superkingdom Superkingdom SPK
10 Kingdom Kingdom Kingdom KGD 10
13 Subkingdom Subkingdom Subkingdom SBK
18 Superphylum Superphylum Superphylum SPP
20 Phylum Division Phylum PHY 30
23 Subphylum Subdivision Subphylum SBP 40
28 Superclass Superclass Superclass SPC 50
29 Grade Grade Grade GRD
30 Class Class Class CLS 60
33 Subclass Subclass Subclass SBC 70
34 Infraclass Infraclass Infraclass INC 80
35 Division DIV
36 Subdivision SBD
37 Infradivision Infradivision Infradivision IND
38 Superorder Superorder Superorder SPO 90
40 Order Order Order ORD 100
43 Suborder Suborder Suborder SBO 110
44 Infraorder Infraorder Infraorder INO 120
47 Section[Order] Section[Order] Section[Order] SEC
48 Superfamily Superfamily Superfamily SPF 130
50 Family Family Family FAM 140
53 Subfamily Subfamily Subfamily SBF 150
55 Tribe Tribe Tribe TRB 160
56 Subtribe Subtribe Subtribe SBT 170
60 Genus Genus Genus GEN 180
61 Nothogenus NOG X
63 Subgenus Subgenus Subgenus SBG () 190
64 Division[Genus] DIG
65 Section[Genus] Section[Genus] Section[Genus] SEG sect._ 200
66 Subdivision[Genus] Subsection[Genus] Subsection[Genus] SUG 210
67 Group[Genus] Group[Genus] Group[Genus] GRG
68 Superspecies Superspecies Superspecies SPS supsp._
69 Aggregate Aggregate Aggregate AGG aggr._
70 Species Species Species SPE 220
71 Nothospecies NOS X
72 Microspecies Microspecies Microspecies MSP msp._
73 Subspecies Subspecies Subspecies SBS subsp._ 230
74 Variety Variety Variety VAR var._ 240
75 Subvariety Subvariety Subvariety SBV subvar._ 250
76 Form Form Form FRM forma_ 260
77 Subform Subform Subform SFR subforma_ 270
80 Infraspecies Infraspecies Infraspecies INF infra._
81 Natio Natio Natio NAT nation_
82 Race Race Race RAC race_
83 Group Group Group GRP gruppe_
84 Morph Morph Morph MOR morpha_
85 Type Type Type TYP type_
86 facies facies facies FAC facies_
87 Pattern Pattern Pattern PAT ptrn._
88 color color color COL col._
89 Aberrancy Aberrancy Aberrancy ABR aberr._
90 Cultivar CUL cv._
92 MSName MSName MSName MSN “ ” (MS)
95 Unnamed Unnamed Unnamed UNM “ ”

100 Hybrid Hybrid Hybrid HYB

PhyloInformatics 1: 1-54 - 2004

26

20-29 are reserved for ranks within the
“Phylum” group; 30-39 for the “Class” group;
40-49 for the “Order” group; 50-59 for the
“Family” group; 60-69 for the “Genus” group;
and 70-79 for the “Species” group. Within
these groups, the first value is used for the
over-arching Ranks (10=Kingdom, 20=
Phylum, 30=Class, 40=Order, etc.); the third
value is reserved for “Sub” ranks
(13=Subkingdom, 23=Subphylum, 33=
Subclass, 43=Suborder, etc.); and the
eighth value is reserved for “Super” ranks for
the next group (08=Superkingdom,
18=Superphylum, 28=Superclass, 38=
Superorder, etc.). Values 80-89 are re-
served for non-traditional infraspecific ranks
that are not currently used by any modern
Code of nomenclature (but are needed in
this data model in order to track historical
uses of Taxon Names). Ranks of 90 and
above are reserved for other names not
governed by traditional Codes of scientific
nomenclature, but are nevertheless needed
for complete taxonomic data management.
The three ranks within this last category that
have so-far been defined include “Cultivar”
(used for botanical cultivar names),
“MSName” (used for names intended to
eventually become formal scientific names
under an appropriate Code of nomenclature,
but have not yet been published in accor-
dance with respective Code requirements),
and “Unnamed,” which at the moment is
used very generally for informal scientific
name designations such as “sp. A,” “n.sp.
from Maui,” etc. Additional ranks in this
category may yet be defined, as need
becomes apparent. Finally, a TaxonRankID
value of 100 is used for all hybrids, other
than the botanical ranks of “Nothospecies”
and “Nothogenus” (i.e., named hybrid taxa;
see further discussion of hybrids below).

The other attributes of tbl_TaxonRank (in
its current form) include Abbreviation, Prefix,
and Suffix. These are not strictly core
attributes of each tbl_TaxonRank, but are
used by the Taxonomer application for
formatting purposes. Abbreviation is a 3-
character abbreviation of each rank used as
a delimiter within the CheatHierarchy field of
tbl_Protonym (see below). Because these
values are unique for all ranks, they repre-
sent a somewhat “natural” unique key for
tbl_TaxonRank. Prefix and Suffix are used

to format the CheatTaxonName field of
tbl_Assertion. They include characters that
immediately precede or follow a particular
Epithet (see definition later in this section),
and are used mostly for names at ranks
below “Species” (although they are used for
a few higher ranks as well). The underscore
character (“_”) included at the end of some
values of Prefix denote the requirement of a
space character (“ ”) to be inserted between
the Prefix and the Epithet.

Although TaxonRankID technically serves
as a component of the unique identifier for
each Assertion record, it only serves a
function in this capacity for those relatively
few cases involving autonyms for nomino-
typical taxa. In a broader sense, Taxon-
RankID is one of the five basic elements of
an Assertion (see further discussion
below). As emphasized above, an Asser-
tion instance serves as a handle to a Taxon
Concept. The implication is that the au-
thor(s) of the Reference linked to the
Assertion instance had in mind a Taxon
Concept, within which they included the
primary type specimen of the Taxon Name
represented by the Assertion’s linked
Protonym. Because details necessary for
ascertaining the full scope of the Taxon
Concept circumscription (i.e, beyond the
primary type specimens of the relevant
Taxon Names) are not consistently provided
in taxonomic References, Assertions are
taken to represent “Name-Resolution
Circumscription” units (described above). As
mentioned above, a minimum of five attrib-
utes are needed to establish each Assertion
as Name-Resolution Circumscription. The
first three of these five attributes have
already been defined: ProtonymID (to
indicate the Name entity), ReferenceID (to
indicate the Reference in which the Asser-
tion is made), and TaxonRankID. The last of
these is necessary to define the Name-
Resolution Circumscription because the
same Taxon Name may be used to repre-
sent different taxonomic ranks, even outside
the context of nominotypical taxa. The other
two basic elements of an Assertion include
“Validity” (i.e., whether or not the name was
treated by the Reference as a valid Taxon
Name, or as a junior synonym of another
Taxon Name), and the taxonomic hierarchi-
cal context.

PhyloInformatics 1: 1-54 - 2004

27

In the Taxonomer model, the “Validity” of a
Taxon Name as used in a Reference is
documented via the ValidAssertionID
Foreign Key, which recursively links back to
either the same or a different instance of
tbl_Assertion. All Assertion instances
must indicate a value for ValidAssertionID.
Cases where the Reference treated the
name as a valid taxon are indicated by
ValidAssertionID=AssertionID (almost by
definition, this includes all Assertions that
are included in the tbl_Protonym subtype).
In cases where the Reference treated the
Name as a junior synonym of another
Name, ValidAssertionID instead points to
the (different) Assertion instance that
represents the indicated senior synonym
(i.e., ValidAssertionID≠AssertionID). The
only other possibility is to set ValidAsser-
tionID=0. Logic dictates that such instances
imply that the Protonym was treated with
“Unspecified” validity by the Reference. By
convention, this situation is applied in those
specific cases where a Taxon Name ap-
peared in a Reference, but no Taxon
Concept was implied (e.g., Type Catalogs,
etc.). This allows the use of tbl_Assertion
to index the appearance of Taxon Names in
References, without forcing all Assertion
instances to imply a Taxon Concept.

In all cases, the ReferenceID value for the
Assertion instance indicated by ValidAsser-
tionID must be the same ReferenceID
indicated in the current Assertion. When
ValidAssertionID=AssertionID, this rule is
enforced by default. In cases where Vali-
dAssertionID≠AssertionID, the domain for
values of ValidAssertionID is restricted to
Assertion instances linked to the same
ReferenceID. Stated another way, inter-
Assertion linkages via ValidAssertionID
must be established within a single Refer-
ence. While it may be tempting to establish
inter-Reference linkages with this structure
(e.g., when a Reference explicitly bases its
concept of a taxon name on that of another
Reference), the most fundamental and
explicit Taxon Concept mapping is within a
single Reference. For example, consider the
following Assertion instances:

Protonym1 sensu ReferenceA

Protonym2 sensu ReferenceB

If “ReferenceA” explicitly states the equiva-
lent of “We regard [Protonym1] to be a junior
synonym of [Protonym2] sensu [Refer-
enceB],” one could set the ValidAssertionID
value for the Assertion representing
“Protonym1 sensu ReferenceA” to be the
AssertionID value for the Assertion in-
stance representing “Protonym2 sensu
ReferenceB.” In doing so, however, the
linkage would span disjunctions in two
separate component attributes (i.e., Proto-
nymID and ReferenceID). Given the hypo-
thetical statement quoted in the first sen-
tence of this paragraph, it is unambiguously
implied that ReferenceA regards “Proto-
nym2” to be valid. Thus, the third assertion,
“Protonym2 sensu ReferenceA” can be
safely inferred, and assigned to a new
Assertion instance. Fundamentally, this
Assertion of “Protonym2” (i.e., within
“ReferenceA”) is the one most unambigu-
ously representing what “ReferenceA”
regarded “Protonym1” to be a junior syno-
nym of. For this reason, it should be noted
that the domain for ValidAssertionID is
restricted even further to those Assertions
linked to the same ReferenceID where
ValidAssertionID=AssertionID.

Of course, intra-Reference concept map-
ping is an important component to any
robust taxonomic data model. The primary
intent of this article is to describe the “core”
components of the Taxonomer model used
for managing taxonomic information. Such
intra-Reference concept mapping is accom-
plished within a different “module” of the
Taxonomer data model, as described in the
next section under “Concept Mapping.”

The last of the five basic elements of an
Assertion is the hierarchical context. In the
Taxonomer model, this is accomplished via
the ParentAssertionID attribute of
tbl_Assertion. ParentAssertionID links an
Assertion instance to another Assertion
instance that represents the most immediate
parent taxon in which the first taxon was
placed as indicated within the Reference.
There is no restriction on rank gaps that may
occur between a parent and child Assertion
instance, but gaps that exceed one rank-
group cluster (e.g., a Genus Name linked
directly to an Order Name, or a Family
Name linked directly to a Class Name) are

PhyloInformatics 1: 1-54 - 2004

28

treated as cases of “Incertae Sedis” on
standardized output formats. As with Vali-
dAssertionID, the domain for ParentAsser-
tionID is restricted to other Assertions that
share the same ReferenceID, and where
ValidAssertionID=AssertionID (i.e., Names
treated as valid). The domain is further
restricted to those Assertion instances with
a lower value of TaxonRankID (i.e., higher
taxonomic rank) than the current instance.
Therefore, unlike the case with ValidAsser-
tionID, ParentAssertionID cannot be equal to
AssertionID for a given instance of Asser-
tion (for obvious reasons).

In addition to these restrictions, Paren-
tAssertionID must link to the most direct
parent Assertion within the Reference. For
example, if a Reference places species ‘c’
within the subgenus “B” of the genus ‘A’,
then the ParentAssertionID for the Assertion
of species ‘c’ links to the Assertion of
subgenus ‘B’ (within the same Reference).
Like ValidAssertionID, ParentAssertionID
can be set to “0” (the functional equivalent of
a Null value, as described earlier). The first
reason for this is that for Taxon Names
treated above the rank of “Species,” Refer-
ences often do not specify what parent
taxon a given Taxon Name is asserted to be
included with (indeed, very few taxonomic
References explicitly state full hierarchical
context all the way up to the rank of “King-
dom,” so at some point most References
cite a Taxon Name without placing it within a
parent taxon). Another reason is that, for
Assertions made about non-valid taxon
names (ValidAssertionID≠AssertionID),
there technically is no asserted parent taxon
(i.e., the synonymously treated name
automatically inherits the ParentAssertionID
value of the indicated ValidAssertionID).
Thus, another business rule of the Taxono-
mer data model is that all cases where
ValidAssertionID≠AssertionID, the corre-
sponding value of ParentAssertionID must
be set to zero (“Unspecified”).

Beyond the five basic elements of Asser-
tions described above, a sixth attribute is
needed to fully define the treatment of a
Taxon Name: the Name itself. Although it
may seem that the “Name” should be
treated as an attribute of tbl_Protonym,
taxonomic practice allows for variance in the

specific string of characters used to repre-
sent a name. As such, a given Protonym
may be represented by slightly different
strings of characters in different Refer-
ences. There are several reasons why this
may be. Some Names may have different
endings depending on the specific rank at
which they were treated (e.g., in Zoology,
family names end with “-idae,” whereas
subfamily names end with “-inae”). The
suffix of species and subspecies epithets
used as adjectives may change depending
on the gender of the genus in which they are
treated (“-a,” “-us,” “-um”). Finally, names
may be consistently misspelled in certain
References. Thus, the actual string of
characters representing the name itself is
best treated as an attribute of
tbl_Assertion, rather than tbl_Protonym.

I have chosen the word Epithet for the
attribute that stores the string of characters
representing a taxonomic name as it ap-
pears in an Assertion. As emphasized
elsewhere in this article, a Protonym entity
is regarded as applying only to the terminal
component of a multinomial (e.g., a species
epithet, rather a genus-species binomial),
and therefore “Epithet” seems appropriate to
emphasize this point. The main problem with
the using word “Epithet” for this purpose is
that, within a biological context, it is some-
times defined specifically as “the part of a
taxonomic name identifying a subordinate
unit within a genus” (e.g., Merriam-Webster,
1993). Because Assertions span all taxo-
nomic ranks (i.e., including those above the
rank of Genus), a strict definition of Epithet
in this sense renders it somewhat inappro-
priate. However, a more general definition of
Epithet (as it appears in Webster’s), is “a
characterizing word or phrase accompany-
ing or occurring in place of the name of a
person or a thing.”; or, “a term, phrase,
expression” (OED – Simpson & Weiner,
1989). At the risk of contrasting with broader
practice, the term Epithet is herein defined
as any monomial unit of a taxonomic name
(at any rank), or as a complete hybrid
formula (including all relevant ranks).

Epithet is populated with the exact character
string that the corresponding Reference
used when citing the associated Taxon
Name. The main purpose of this field is to

PhyloInformatics 1: 1-54 - 2004

29

document the exact spelling (including
hyphens, numbers, and other symbols,
where applicable) of the name as it ap-
peared within the Reference. Only the
“terminal” epithet is included for binomials,
trinomials, and other multinomials (including
subgenera). In the special case of hybrids,
the complete hybrid formula (including
names of genera and all other applicable
ranks) is entered, exactly as spelled, abbre-
viated, and punctuated in the Reference. In
cases where a non-hybrid Taxon Name is
spelled in different ways within a single
Reference, the Epithet can either be taken
as the most frequently used spelling within
the Reference (if one spelling is used with
much greater consistency than any other),
with the alternative misspelling(s) relegated
to a Comment; or, two or more “Sub-
Reference” instances may be defined for the
Reference, for each alternate spelling.
When a hybrid formula appears in more than
one form in a Reference, the Epithet is
taken to be the most complete version (i.e.,
fewest abbreviations).

Related to Epithet is the EpithetQualifier
attribute. This attribute stores any additional
textual information applied to the Epithet in
the Reference (e.g., “c.f.,” “sensu stricto,”
“sensu lato,” non-Reference, etc.), but that
does not strictly constitute part of the Epithet
character string itself.

The ReliabilityID Foreign Key links to the
look-up table tbl_Reliability. This attribute
is intended to be a semi-objective guide to
how reliable an interpretation may be.
Although some degree of subjectivity is
inevitable in assigning this value, the domain

of six discrete values is designed to be as
objectively-discernable as possible, while
still providing some meaningful function. The
values range from 0-5, and are described in
Table 4. A value of 5 represents the highest
reliability, and is limited to only those Refer-
ences constituting the original description of
a taxon name, or a first “New Combination”
Assertion. All Assertions representing
Protonyms would be assigned this value. A
value of 4 corresponds to other taxonomic
revisionary work that explicitly treats the
associated Taxon Name within the context
of the revision. A value of 3 indicates that
the Reference making the Assertion did so
within a taxonomic context, but not as a
revisionary work for the particular Taxon
Name. A value of 2 indicates that the
Reference was scientific in nature, though
not specifically a taxonomic work (e.g., an
ethological or ecological publication). A
value of 1 is used for popular literature and
other non-scientific References. This same
scale can be applied (more or less) to
Assertions that are not published (e.g.,
specimen determinations), based on the
nature of circumstances and qualifications of
the Agent(s) providing the determinations. A
value of 0 (default) indicates that the nature
of the Reliability has not been reliably
ascertained. It should be emphasized that
the ReliabilityID value, as an attribute of
tbl_Assertion, applies only to a particular
Protonym-Reference combination (i.e., not
to an entire Reference). For instance, a
single article might describe new species
and establish new binomial combinations
(ReliabilityID=5) as part of a taxonomic
revision that includes many previously-
described species and genera (Reliabili-

Table 4. Description of defined values of ReliabilityID, as used within tbl_Assertion.
ReliabilityID Reliability Description

0 Uncertain Nature of Reliability not known or uncertain.
1 Non-Scientific Taxon Names within non-scientific References, or Determinations

made by lay persons.
2 Scientific Taxon Names within non-taxonomic References, or Determinations

made by a scientists who do not specialize in taxonomy.
3 Taxonomic Taxon Names within taxonomic References that are not part of a

revisionary work, or Determinations made by taxonomists who
do not specialize in the particular taxonomic group.

4 Revision Taxon Names as used within the context of a taxonomic revision, or
Determinations made by taxonomists during their revisionary
work.

5 Original Description/
New Combination

Protonyms and other Assertion instances that represent new
combinations.

PhyloInformatics 1: 1-54 - 2004

30

tyID=4), and also make reference to other
Taxon Names not included within the scope
of the revisionary work (ReliabilityID=3).
However, in most cases, ReliabilityID values
of 1 and 2 will apply unilaterally for all
Assertions within an entire Reference, as
these categories tend to apply more to the
nature of the Reference, rather than the use
of Taxon Names within the Reference.

Another important attribute of an Assertion
is Pages. In the current implementation of
the model, this attribute is a simple text field
to allow entering whatever information is
necessary to designate where, within the
corresponding Reference, an Assertion
can be located. Future implementations of
the model might break this information out
into a separate table, or at the very least,
split it into two separate attributes; one for
pages, and one for illustrations (including
figures and plates).

The IsQuestioned attribute is a simple
boolean flag to indicate that the Reference
expressed uncertainty in its specific treat-
ment of a Taxon Name. Information about
what, exactly, was questioned, and why it
was deemed questionable, should be
included in linked Excerpts or Comments
(see next section). Future versions of the
Taxonomer model may provide more robust
mechanisms for characterizing the nature of
questionable Assertions.

The last two data-bearing attributes of
Assertion are provisional, and may be
rendered redundant depending on what
additional subtypes of Assertion are
created (other than Protonym). Both fields
(IsNewCombination and IsFirstRevision) are
boolean values with self-evident meaning,
intended to flag special-case Assertions
which have important taxonomic or nomen-
clatural meaning. Either of these could be
expanded to full (non-exclusive) subtypes, if
additional attributes relevant to each cate-
gory are deemed worthy of documenting.

An earlier version of tbl_Assertion included
the attribute Sequence. The purpose of this
field was to record the actual sequence in
which a series of Taxon Names were listed
in a Reference, within the context of a
single parent taxon. This information is

sometimes useful, because it may represent
an effort to provide some sort of interpreted
phylogenetic context of a taxon among
related taxa. Because the meaning of such
Sequence information is not standardized
and its application within References is
inconsistent, however, it was excluded from
this version of the model.

CheatTaxonName is formatted as the
complete Taxon Name (identical to Epithet
for ranks of genus and higher, or complete
binomial, trinomial, or other multinomial for
ranks lower than Genus). The values for
Names of infrageneric ranks are derived
from recursive concatenation of Epithets up
to the rank of Genus, and the value for
hybrids represents the complete hybrid
formula as derived from the linkages estab-
lished in the tbl_HybridAssertion table
(see below), which may differ somewhat
from the hybrid formula as actually written in
the Reference (i.e., the contents of Epithet
for hybrid Assertions). CheatFullTaxon-
Name is simply the value of CheatTaxon-
Name, expanded to include all appropri-
ately-formatted authorships. CheatNomino-
typical is simply a boolean field used to flag
those Assertions that represent autonyms
(nominotypical taxa; i.e., the ProtonymID
value of an Assertion instance equals the
ProtonymID value of the Assertion indi-
cated by the ParentAssertionID Foreign
Key). CheatStatus is a standardized “natural
language” statement representing the
combination of the core Assertion elements
(validity, hierarchical placement, rank, and
Epithet; e.g., “Valid as originally described.,”
“Junior Synonym of {OtherTaxonName},”
“Valid {TaxonRank} within {ParentTaxon-
Name},” etc.)

tbl_Protonym
As has been alluded to previously, a Proto-
nym always represents a monomial Name.
In cases of infrageneric Names (subgenera,
binomials, trinomials, and other multinomi-
als), the Protonym refers only to the termi-
nal unit of the Name. Thus, new Protonym
instances are not created for each different
combination of binomial, trinomial, or other
multinomial. This point is emphasized to
avoid confusion, as the word “Name” is often
used in reference to a full-context multino-
mial, and within the context of this data

PhyloInformatics 1: 1-54 - 2004

31

model, the concept of a Protonym is being
used to represent a Taxon Name. For
clarity, a Protonym should be thought of as
the nomenclatural basis of a monomial (or
only the terminal epithet of a multinomial), in
the context of its original creation (i.e.,
Code-compliant original description).

Also as mentioned earlier, tbl_Protonym
represents a subtype of tbl_Assertion,
indicating those special-case Assertion
instances that constitute original descrip-
tions of Taxon Names (i.e., Protonyms).
The recursive relationship between this table
and tbl_Assertion has been described
above. The other attributes of
tbl_Protonym, described here, are data
elements specifically associated with
Protonyms (not with non-Protonym Asser-
tions).

The Foreign Key TypeProtonymID is a
recursive link, and is used primarily for
names at the genus-group and family-group
ranks, to indicate which species-group or
genus-group (respectively) Protonym was
designated as the “Type Species” or “Type
Genus” for the genus-group or family-group
name. This is an attribute of tbl_Protonym,
rather than tbl_Assertion, because Taxon
Names of all ranks are ultimately typified by
the primary type specimen of the terminal
type Protonym, and thus not by a Taxon
Concept. Name-based type designations
(e.g., type species of a genus) are inter-
preted here as place-holders to establish a
complete link between a higher-rank name
and a primary type specimen. Therefore,
links to Name-based types are established
via a Protonym instance, rather than an
Assertion instance. However, this highly
simplified approach to recording type taxa
may need to be changed in future versions
to accommodate cases where the type
taxon was designated in a subsequent
Reference.

The Foreign Key WordTypeID links to the
same tbl_WordType that was described
earlier under the tbl_Glossary heading of
the “References” section of this document.
The purpose for allowing this link is to
specify what word form the Epithet of a
Protonym takes (e.g., “Noun (apposition),”
“Adjective,” etc.), which can be useful for

determining proper name spelling (e.g.,
whether the spelling of a species Epithet
changes when treated in a Genus of a
different gender).

NomenCodeID establishes a link to an
instance of tbl_NomenCode, indicating the
particular Code of Nomenclature under
which a particular Protonym is governed. In
cases of names at ranks higher than those
governed by the relevant codes, the value
indicates which Code the child taxa fall
under. This field is important for determining
specific formatting rules of authorships, etc.

The two non-key attributes of tbl_Protonym
are Gender and IsFossil. The Gender field
mirrors the field of the same name in
tbl_Person of the “Agents” section (with the
addition of “Neuter”), and is used to indicate
the gender of genus-group Protonyms.
IsFossil is a boolean flag field set to “True” if
the Protonym applies to a Taxon Name
created for a fossil taxon.

CheatFullProtonym is used to store a
standardized formatted name, including
authorship. The format is generally as
“Epithet, OriginalParent Authorship” (e.g.,
“speciesname, Genusname Author-
Name(s).” The reason this field exists
separately from CheatFullTaxonName is
that the latter is formatted as it would
generally appear in print (i.e., Genusname
speciesname AuthorName[s]), whereas the
former is formatted with the terminal unit of a
multinomial (i.e., the Epithet represented by
the Protonym instance) listed first.
CheatAcceptedAssertionID indicates which
Assertion the user of the database system
has decided to follow as representing the
“correct” current status of each Protonym.
The reason this is considered a “Cheat” field
for tbl_Protonym is that it will eventually be
derived from a different set of tables that will
track multiple “accepted” Assertions, as
designated by different institutional authori-
ties. The final design of these tables has not
yet been determined, and depends to some
extent on how various taxonomic services
document their preferred Taxon Name
statuses (see further elaboration in the
“Accepted Status” section of this article).
CheatHierarchy is a specially-formatted long
text (memo) string that includes the full-

PhyloInformatics 1: 1-54 - 2004

32

context taxonomic hierarchy for each
Protonym, as determined through a recur-
sive series of values of CheatAccepte-
dAssertionID for each name at each rank
through the hierarchy.

tbl_HybridAssertion
Hybrid names (hybrid formulae) are treated
in many respects the same way that non-
hybrid Taxon Names are treated. As dis-
cussed earlier, the Epithet of an Assertion
representing a hybrid Name is recorded just
as the hybrid formula appears in Reference
(unlike non-hybrid Epithets, which are
monomial). Protonyms are created for
hybrid names, just as they are for traditional
taxon names. Except for the botanical ranks
of “Nothospecies” and “Nothogenus,”
however, Protonyms representing hybrids
do not have formal “original descriptions” as
governed by Codes of nomenclature. By
convention, the Protonyms of such hybrids
are taken as the first appearance of the
hybrid cross in any Reference (with the first
published Reference citing the hybrid taking
priority over an earlier unpublished Refer-
ence). Also hybrids are assumed to be
symmetrical. That is, if one Reference cites
a hybrid as “SpeciesA x SpeciesB,” and
another cites it as “SpeciesB x SpeciesA,”
they are taken to represent the same
hybrids, and share a common Protonym.
Again, except for the botanical ranks of
“Nothospecies” and “Nothogenus,” all
Assertions representing hybrids are as-
signed to TaxonRankID=100.

All names constituting hybrids (including
botanical “Nothotaxa”) are represented by
instances in tbl_HybridAssertion. This
table represents another subtype of
tbl_Assertion (non-exclusive of
tbl_Protonym), that is populated with
Assertions that constitute hybrid Names. At
present, the only purpose of this subtype
table is to record the pair of Assertions that
represent the two “parent” taxa of the hybrid.
As with ValidAssertionID and ParentAsser-
tionID Foreign Keys in tbl_Assertion, all
three values in a given instance of
tbl_HybridAssertion (HybridAssertionID,
HybridParent1ID, and HybridParent2ID)
must point to three different Assertion
records, all of which share the same value of
ReferenceID. By convention, HybridPar-

ent1ID links to the alphabetically-first
member of a hybrid, and HybridParent2ID
links to the alphabetically-second member.
In cases of secondary hybrid crosses (e.g.,
“SpeciesA x [SpeciesB x SpeciesC]”),
HybridParent1ID preferentially links to the
non-hybrid “parent,” and HybridParent1ID
links to the Assertion representing the
hybrid parent (e.g., the Assertion represent-
ing the cross “SpeciesB x SpeciesC”). If
both parents are hybrids (e.g., “[SpeciesA x
SpeciesB] x [SpeciesC x SpeciesD]”), the
HybridParent1ID and HybridParent2ID are,
again, determined by alphabetical priority.
An alternative convention would be to define
HybridParent1ID as the female parent, and
HybridParent2ID as the male parent; how-
ever, a more effective approach would be to
record this information in one or more
dedicated attributes.

tbl_ObjectiveStatus
In most cases of Names treated as syno-
nyms (i.e., ValidAssertionID≠AssertionID),
the treatment of Name as such is a subjec-
tive assertion. However, there are cases of
objective synonymy and other objective
nomenclatural statuses as dictated by the
appropriate Code of nomenclature. Exam-
ples include two different Names sharing the
same primary type specimen, cases of
Homonymy (and their corresponding re-
placement names), and other forms of
objective unavailability of Names. A robust
system for managing such objective nomen-
clatural status has not yet been developed in
the Taxonomer data model. However, a
simple indexing of such is accomplished
using tbl_ObjectiveStatus, linked to
Assertion. This table is linked to
tbl_Assertion, rather than tbl_Protonym,
because different References might have
different interpretations of what the correct
ObjectiveStatus of a Name should be. The
relationship is one-to-many because a
Reference might acknowledge more than
one ObjectiveStatus for any given Name.
Each instance of ObjectiveStatus is classi-
fied by type, indicated by the value of
ObjectiveStatusType in the corresponding
instance of the tbl_ObjectiveStatusType,
table, linked via ObjectiveStatusTypeID
(examples shown in blue text in Figure 6). A
more robust management scheme for this
sort of information would cross-link to tables

PhyloInformatics 1: 1-54 - 2004

33

describing individual Articles as they appear
in the respective Codes of Nomenclature,
and would likely include other attributes to
qualify the nature of the ObjectiveStatus in
greater detail.

One important point that should be clarified
about tbl_ObjectiveStatus is that each
objective status instance applies only to the
Taxon Name; not the Taxon Concept. As
mentioned above, the linkages to the
Assertion table (rather than the Protonym
table) are established only as a convenient
way to document each ObjectiveStatus
instance in the context of a particular
Reference.

Limitations
• The “Taxa” components of the Taxono-

mer data model described above do not
allow for the mapping of Taxon Concepts
to other Concepts. Rather, these com-
ponents track nomenclatural information,
and provide a basic unit of Name-
Resolution Circumscriptions (Asser-
tions) which in most cases represent
“Potential Taxa” (sensu Berendsohn,
1995). The correlation of Assertions to
other intra-Reference Assertions is de-
scribed below, under the “Mapping Con-
cepts” section.

• Another limitation imposed by the
present structure is that typification of
taxon names by other taxon names (e.g.,
type-species of Genus names) is as-
sumed to be straightforward and objec-
tive. In reality, this relationship is not al-
ways so clear. The process of typifica-
tion varies among the different Codes of
nomenclature, and can sometimes be
quite complex. A more advanced model
would break TypeProtonymID out from
tbl_Protonym, and would instead in-
clude a more robust structure to accom-
modate nomenclatural typification.

• Another limitation of the Taxonomer
model in its current implementation is
that there is no direct means to address
misapplication of Taxon Names. Ulti-
mately, a misapplication of a Taxon
Name is defined as a case where a Ref-
erence applies a Name to a Taxon Con-

cept from which the Reference would
exclude the Primary Type specimen of
the Name. Stated more simply, the Ref-
erence applied a Name based on a mis-
understanding of the correct typification
of a name. Such misidentifications can
only be revealed through the context of a
subsequent Reference, and as such can
be mapped via a tbl_AssertionRelation
instance of RelationType “excludes.”
However, a more direct approach to
misapplied names may be more appro-
priate, and will be considered for future
versions of the Taxonomer data model.

• Although not a ‘limitation’ per se, it is
worth discussing further the connection
between the word “Protonym” and the
word “Basionym.” “Basonym” (without
the “i”) is defined in Merriam-Webster's
Third New International Dictionary as:

“The earliest validly published name of a
taxon, being in the case of a binomial or
trinomial the source of the valid specific
or subspecific epithet when the taxon is
transferred to a new combination and in
technical usage always accompanied by
the name of the original author.
(Crataegus spicata Lamark:Amelanchier
spicata)”

Following this definition, the use herein
in place of Protonym would seem ap-
propriate. Although “Basionym” is used
primarily in botanical contexts, it could
easily be extended to represent the
same meaning in Zoological contexts (as
is already being done in some zoological
contexts). However, “Basionym,” strictly
defined, includes the genus-species[-
subspecific] combination of names (bi-
nomial, trinomial, etc.); but only the ter-
minal epithet is implied by the Proto-
nym, as defined herein. Moreover, the
term “Basionym” is usually used only in
the context of lower-level taxonomic
ranks (genus, species, subspecies, etc.),
but Protonym is here extended to apply
to all taxonomic ranks. Another problem
with the word “Basionym” is that it im-
plies that a name has achieved legiti-
macy within the relevant nomenclatural
Code. Strictly speaking, this would ap-
pear to restrict its use to include only

PhyloInformatics 1: 1-54 - 2004

34

“formal” scientific names after they have
been published in accordance with the
relevant nomenclatural Code. However,
there are many applications that need to
cite a Taxon Concept before it has re-
ceived a formal Code-compliant Name,
and there is also a need to refer to hy-
brid formulae, which are not represented
by Code-compliant original descriptions.
Finally, whereas the word “Basionym”
typically refers to the actual name only,
Protonym is here extended to imply the
authorship (or more directly, the Refer-
ence association) that was involved with
the original establishment of the Basio-
nym. In this sense, a Protonym includes
components of both a Basionym and a
botanical “Protologue,” making the term
“Protonym” (which could be interpreted
as an amalgamation of “Protologue” and
“Basionym”) somewhat appropriate.

The term “Protonym” is defined by the
OED (Simpson & Weiner, 1989) as:

“The first person or thing of the name;
that from which another is named.”

In this case, the “thing” is the Code-
compliant original description of a taxo-
nomic name, and subsequent uses of
that name in different contexts to repre-
sent potentially different Taxon Concepts
constitute examples of how “another is
named.” Although this term is still bound
by the “nym” suffix to apply strictly to a
“Name” (rather than a Name-Reference
intersection, as would be a subtype of
tbl_Assertion), it seems to be a more
appropriate term than “Basionym” in this
context. Its implied meaning as a “name”
per se is not entirely inappropriate, be-
cause even if it represents a subtype of
an Assertion, it is intended to represent
only the original name component of that
Assertion.

Interface With Other Relevant Information
The previous three sections (“Agents,”
“References,” and “Taxa”) describe what I
consider to be the “core” components to a
taxonomic data management model. With
only these components, one can develop a
comprehensive index of taxonomic nomen-
clature and how individual Names have
been used in both published and unpub-

lished form, throughout the history of taxon-
omy. This, by itself, would constitute a very
powerful tool for modern taxonomists
needing to research the history of Taxon
Names. However, the Taxonomer data
model does not stop there. Described below
are examples of how these “core” compo-
nents of the model can be used and applied
in versatile ways to accommodate broader
information management needs. The first
five sub-sections (“Accepted Status,”
“Mapping Concepts,” “Specimen Determina-
tions,” “Taxon Excerpts,” and “Common
Names,”) describes ways in which Asser-
tions can serve a variety of roles for broader
data management. The last sub-section
(“General Data Management”) describes
how certain general data management
needs (Code Numbers, Comments, and the
logging of data edits) are met within the
Taxonomer model. These components have
been lumped together in this section partly
because they represent secondary applica-
tions of the data, and in some cases, partly
because the associated tables and their
attributes have not yet been robustly devel-
oped.

Accepted Status
A common criticism (e.g., Pullan et al., 2000;
Raguenaud, 2002) of simple taxonomic data
models is that many of them accommodate
only a single taxonomic “view.” While this
may be seen as a limitation of these simpler
models in a broader context, several of
these models are specifically intended to
represent a single taxonomic view. For
example, the primary objective of the
Integrated Taxonomic Information System
(ITIS, 2003) is to provide a single taxonomic
view of available nomenclature, to facilitate
conformance of various U.S. federal agen-
cies to a common taxonomic standard.
Indeed, many potential users of taxonomic
data do not want or need to be presented
with multiple taxonomic views, but rather
would implicitly accept the view as deter-
mined by some taxonomic authority.

While a well-populated Assertion table as
described above serves a valuable function
to practicing taxonomists in documenting the
historical treatment of Taxon Names, there
is nothing within tbl_Assertion itself that
identifies the “correct” or “accepted” status

PhyloInformatics 1: 1-54 - 2004

35

of any particular Name. A simple algorithm
could be developed to assume that the most
recent Assertion (according to the Date of
the linked Reference) flagged by a minimum
Reliability value (e.g., ReliabilityID>=3)
automatically represents the “accepted”
status of the associated Protonym. While
such an algorithm would be reasonably
objective, it would probably be deemed by
most to be inadequate. In most cases, the
designation of an “accepted” status of a
name requires careful assessment by a
qualified taxonomist.

One approach would be to identify certain
“meta”-authorities for Taxon Names. Such
meta-authorities could have restricted
taxonomic scope (e.g., the online version of
the Catalog of Fishes for fish taxa; the
Mammal Networked Information System
[MaNIS] for mammal taxa; etc.); restricted
geographic scope (e.g., ITIS for North
America; Hawaii Biological Survey [HBS] for
the Hawaiian Archipelago; etc.); or all-
encompassing (e.g., Species2000; BIOSIS;
etc.). These meta-authorities could serve as
authors to References, to which Assertions
are linked for every Protonym that falls
within the taxonomic or geographic scope of
each respective meta-authority. Once a
database is populated with such Assertions
linked to References authored by estab-
lished meta-authorities, the database user
could define a priority scale among several
of these meta-authorities. The database
application could automatically establish the
current status of each Name based on the
most recent Assertion by the meta-authority

with the highest-defined priority (among
those meta-authorities that provide an
Assertion for a given Name). In cases
where a particular Name has not been
treated by any of the established meta-
authorities (i.e., Names with no Assertions
linked to References authored by meta-
authorities), the database application could
resort to some default method of determin-
ing current status (e.g., the most recent
Assertion of a defined minimum rank, as
described above).

Though this solution would likely be effec-
tive, it requires a potentially vast number of
additional Assertion instances to be created
– at least one for each Name multiplied by
the number of meta-authorities that treat
them (more if treatments by any particular
meta-authority change over time). This, in
itself, is not necessarily a major problem;
however, in most cases it is not reflective of
the actual information structure. In most
cases, these meta-authorities do not them-
selves provide true taxonomic assertions
about each name they treat, but instead
generally select one pre-existing status,
from among various recent and relevant
publications and other expert opinion, that
they chose to follow. Based on this perspec-
tive, one possible data structure is repre-
sented in Figure 7.

By this structure, rather than create new
Assertion instances for each name as
treated by each meta-authority,
tbl_AcceptedAssertion allows for meta-
authorities to identify specific pre-existing

Figure 7. Possible table structure to determine Assertions that represent “accepted”

status, according to defined “meta-authorities.”

tbl_MetaAuthority

MetaAuthorityID P lng

Priority byt

Non-Key Attributes

Unique Keys

tbl_Agent

AgentID P lng
etc…

Unique Keys

Subtype

tbl_AcceptedAssertion

AcceptedAssertionID P lng
AssertionID F lng
MetaAuthorityID F lng

Date date

Non-Key Attributes

Unique Keys

tbl_Assertion

AssertionID P lng
etc…

PhyloInformatics 1: 1-54 - 2004

36

Assertions (which in most cases would be
contained in major published taxonomic
works, with ReliabilityID values of 3 or
higher) as representing the current “ac-
cepted” status for the corresponding Proto-
nym. tbl_MetaAuthority would represent a
non-exclusive subtype of tbl_Agent, con-
taining links to those Agents deemed by the
database user to be meta-authorities for
determining current status of Protonyms.
The Priority attribute would be a simple
priority-ranking value for each MetaAuthor-
ity instance, used in establishing the pre-
ferred “accepted” status of any particular
Protonym treated by more than one
MetaAuthority. Each instance of
tbl_AcceptedAssertion would link to one
Assertion instance and one MetaAuthority
instance (via Foreign Keys AssertionID and
MetaAuthorityID), and would be time-
stamped via the Date attribute of
tbl_AcceptedAssertion. Because MetaAu-
thorityID constitutes an AgentID, one could
technically be replaced by a Reference
instance (i.e., MetaAuthorityID and Date
together comprise a date-stamped Agent).
With sets of tbl_MetaAuthority and
tbl_AcceptedAssertion that are well-
populated, a straight-forward algorithm could
be implemented within a database applica-
tion using the Priority attribute (along with
some method of establishing a default
accepted Assertions for Protonyms not
treated by any MetaAuthority) to automati-
cally derive values of CheatAcceptedAsser-
tionID for each Protonym instance.

The method described above for obtaining
sets of AcceptedAssertion values for each
Protonym would only be practical if some
sort of standard were to be adopted by each
designated MetaAuthority to automatically
provide and update such values electroni-
cally. If no such standard existed (as it does
not currently exist), and database users
were forced to manually assign each in-
stance of tbl_AcceptedAssertion, then the
structure described above would serve little
more than the function of logging how the
database user arrived at each value of
CheatAcceptedAssertionID. There are, of
course, other ways to derive some sort of
“AcceptedAssertionID” for each Protonym.
A final solution within the context of the
Taxonomer data model has yet to be

determined; however, it will almost certainly
take the form of a method to identify one
specific Assertion for each Protonym to
represent its “accepted” status.

Mapping Concepts
As mentioned earlier, the data model
components described in the “Taxa” section
above do not include a mechanism for
recording relationships among intra-
Reference Taxon Concepts. Geoffroy and
Berendsohn (2003) provide a description of
how taxonomic concepts can potentially
relate to each other (summarized in their
Table 3). In many cases, two Concepts may
be identical to each other (i.e., they are
congruent). In other cases, one Concept
may entirely contain another Concept. For
instance, suppose “Protonym1” is created by
“Reference1” to represent a broad popula-
tion of organisms, and “Reference2” later
divides the broad population into two sub-
populations, retaining “Protonym1” for one of
the sub-populations (i.e., that which included
the Primary Type specimen of “Protonym1”),
and establishing the new “Protonym2” for
the other sub-population. In this case,
Protonym1 sensu Reference1 includes
both Protonym1 sensu Reference2 and
Protonym2 sensu Reference2. Con-
versely, both Protonym1 sensu Refer-
ence2 and Protonym2 sensu Reference2
are included in Protonym1 sensu Refer-
ence1. Other, less-frequently encountered
kinds of relationships that may exist be-
tween two Assertions include cases where
one Assertion overlaps with another
Assertion, and where one Assertion
excludes another Assertion. In the latter
case, the assumption is that the respective
Protonyms for each Assertion are identi-
cal. In all other cases, relationships may be
defined between Assertions linked to either
identical or different Protonyms.

The table structure used to establish these
relationships between inter-Reference
Assertions (i.e., Concept Mapping) is
shown in Figure 8. The main table,
tbl_AssertionRelation, includes two
Foreign Keys to tbl_Assertion (AssertionID,
and RelatedAssertionID), representing the
two Assertions for which a relationship is
established. AssertionID links to the more
recent of the two Assertions (i.e., the one

PhyloInformatics 1: 1-54 - 2004

37

whose corresponding Reference was dated
most recently), and RelatedAssertionID links
to the older of the two Assertion. This
chronology is established by convention
because a more recent Reference can
establish relationships between its own
Assertions and Assertions of a previous
Reference, but not the other way around.

SourceReferenceID establishes a link to the
Reference that determined the relationship
between the two Assertions. This may be
the same value as ReferenceID of the
Assertion instance linked to AssertionID of
tbl_AssertionRelation (in the case where a
Reference explicitly states how its Concept
of a Protonym relates to a Concept in
another Reference), or it may be an entirely
different Reference (either published, or
created as an unpublished Reference
specifically for the purpose of establishing a
relationship between two Assertions; but in
either case dated more recently than the
more recent of the two related Assertions).
Because of the imposed direction of chro-
nology with respect to the Assertions linked
by AssertionID and RelatedAssertionID,
SourceReferenceID cannot be the Refer-
ence of the Assertion linked by the
RelatedAssertionID.

RelationTypeID links to the surrogate
Primary Key of tbl_RelationType, which
includes the five types of relationships
defined above (“Congruent,” “Included In,”

“Includes,” “Overlaps,” and “Excludes”; see
first paragraph of this section above).

Specimen Determinations
As described in the “Introduction” section of
this article, the Taxonomer data model
began as a way to establish a taxonomic
authority for specimen databases. This
purpose has been retained, and is accom-
plished by way of the tbl_Determination
table. This table establishes links between
tbl_Assertion and tbl_Specimen, and is
the only way by which Taxon Names are
assigned to Specimens.

A full description of the entire structure for
“Specimen” components of the Taxonomer
data model is beyond the scope of this
article. In summary, an instance in
tbl_Specimen may be one of three types:
“Vouchered” (physical specimens collected
and preserved in a Natural History collec-
tion), “Unvouchered” (specific living organ-
isms that were only observed or photo-
graphed in the environment, but not physi-
cally collected and deposited in any Natural
History museum collection), and “Virtual.”
The latter is a special-case type, represent-
ing an abstract Specimen or Specimens
that may or may not have actually existed
physically. It is used primarily as a place-
holder to establish necessary links between
Taxon Names and certain kinds information
contained within References, but not
associated directly with specific vouchered

Figure 8. Table structure for mapping Assertions to other Assertions (i.e., Taxon

Concept Mapping).

tbl_RelationType

RelationTypeID P byt
RelationType tyt

Unique Keys

tbl_Assertion

AssertionID P lng
etc…

Unique Keys

tbl_Assertion

AssertionID P lng
etc…

Unique Keys

tbl_AssertionRelation

AssertionRelationID P lng
AssertionID F lng
RelatedAssertionID F lng
SourceReferenceID F lng

RelationTypeID F byt

Unique Keys

Foreign Keys

tbl_Reference

ReferenceID P lng
etc…

Unique Keys

RelationTypeID:
0=Unspecified
1=congruent
2=included in
3=includes
4=overlaps
5=excludes

PhyloInformatics 1: 1-54 - 2004

38

or unvouchered Specimens (e.g., character
states and geographic distributions). The
fundamental intent of this method of catego-
rizing Specimen data is to provide a unified
approach to organizing “occurance” data
(see Morris, 1998).

Traditionally, databases of Specimens
record not only a Taxon Name assigned to
the Specimen, but also the name of one or
more individuals who determined the
Specimen(s) to be identifiable to that Taxon
Name, as well as some form of date indicat-
ing when the determination was made. In
the vocabulary of this data model, this
relationship could be stated as:
Specimen determined to be a representative of

Protonym by Agents on Date

This can be further simplified in two addi-
tional steps:
Specimen determined to be a representative of

Protonym by Reference

and
Specimen determined to be a representative of

Assertion

This reduction in data structure is consistent
with the true nature of information estab-
lished when a specimen is determined to be
identifiable to a Taxon Name. As empha-
sized earlier, an Assertion represents a
Taxon Concept. The informational content of
a Specimen Determination is that the

Specimen is a member of a taxonomic
circumscription as represented by the
determined Taxon Name. More specifically,
the Specimen has been determined to
belong to the Taxon Concept envisioned by
the determiners themselves, on the date
when the Determination was made. Thus,
the determiners can be represented as
authors to a Reference, which established
an Assertion about a Protonym, to which
the Specimen belongs.

As illustrated in Figure 9, tbl_Determination
establishes a many-to-many relationship
between Assertions and Specimens, via
the Foreign Keys AssertionID and Speci-
menID. As indicated in the diagram, all
Specimens must be qualified by at least
one Determination (even if only to King-
dom). The critical point about this approach
to Specimen Determinations is that it
establishes the “determiner(s)” as author(s)
of a Reference, which provided an Asser-
tion with reference to a Protonym. When
cited in publications, specimens are assign-
able to the corresponding Assertion for the
identified Taxon Name within the publica-
tion. When specimens are determined
directly (i.e., not in the context of a published
Reference), then the Determiner(s) serve as
author(s) to a Reference of type “Determi-
nation” (with a Date value corresponding to
the date on which the Determination was
made). By allowing a broad interpretation of
a Reference as fundamentally an instance

Figure 9. Physical data model for Determinations of Specimens.

tbl_SpecimenType

SpecimenTypeID P byt
SpecimenType txt

Unique Keys

tbl_Assertion

AssertionID P lng
etc…

Unique Keystbl_Determination

DeterminationID P lng
AssertionID F lng
SpecimenID F lng

TypificationID F lng

Unique Keys

Foreign Keys
tbl_Typification

TypificationID P lng
Typification

Unique Keys

TypificationID:
0=Unspecified
1=Type
2=Syntype
3=Holotype
4=Lectotype
5=Neotype
6=Paratype
etc…

tbl_Specimen

SpecimenID P lng

SpecimenTypeID F byt
etc…

Unique Keys

Foreign Keys

PhyloInformatics 1: 1-54 - 2004

39

of date-stamped Agent(s), the Taxonomer
data structure allows citations of specimens
in publications and direct specimen Deter-
minations to be handled identically: via
Assertions. In both cases, the logic of the
data model is consistent with the true
informational content: Specimens are
determined by Agents to belong to a Taxon
Concept (as represented by a Taxon Name),
at a particular point in time.

The Determination data model also includes
a very simple way of representing Speci-
mens as Types of Taxon Names, via the
TypificationID Foreign Key to
tbl_Typification. This link is established
only when the Reference of the linked
Assertion formally establishes the linked
Specimen as a nomenclatural Type of the
Protonym represented by the linked Asser-
tion.

It should be underscored that all linkages
between taxa and information content linked
to Specimens (e.g., Character data, geo-
graphic distributions, images, etc.) occur via
the tbl_Determination relationships (see
Figure 2).

Taxon Excerpts
One of the components related to both
References and Assertions not shown in
Figures 4 or 6 is tbl_Excerpt. The function

of this table is to record quoted excerpts
from References. As indicated in Figure 10,
the table has six attributes in addition to its
surrogate Primary Key. Three of these
attributes are Foreign Keys. ReferenceID
links to the Reference in which the Excerpt
appeared. LanguageID indicates what
Language the Excerpt was originally
written in. TranslatorID links to the Agent
who served the role of translator, if the
Excerpt was translated to a different Lan-
guage from its original. The three non-key
attributes include ExcerptType (a general
category of the Excerpt content or type;
examples shown in blue text), Excerpt (the
actual quoted text), and Pages (the specific
Page[s] on which the Excerpt occurred
within the Reference).

Although tbl_Excerpt is intended for very
general application, a specific link to
tbl_Assertion is established via
tbl_AssertionExcerpt.. There are no other
attributes of this table, other than the re-
spective Foreign Keys AssertionID and
ExcerptID. The purpose of this table is to
establish a link between any specific Proto-
nym and a free-form text quote related to
the Protonym as it appears in the Refer-
ence. The domain of AssertionID within
tbl_AssertionExcerpt is restricted to those
Assertion instances that link to the same
ReferenceID that the corresponding Excerpt

Figure 10. Excerpts of References, and their relations to Assertions.

tbl_Language

LanguageID P lng
Language txt

Unique Keys

tbl_Assertion

AssertionID P lng
etc…

Unique Keystbl_AssertionExcerpt

AssertionExcerptID P lng
AssertionID F lng
ExcerptID F lng

Unique Keys

tbl_Reference

ReferenceID P lng
etc…

Unique Keys

tbl_Agent

AgentID P lng
etc…

Unique Keys

tbl_Excerpt

ExcerptID P lng

ReferenceID F lng
LanguageID F lng
TranslatorID F lng

ExcerptType txt
Excerpt mem
Pages txt

Unique Keys

Foreign Keys

Non-Key Attributes
ExcerptType:

General
Diagnosis
Description
Etymology
etc…

PhyloInformatics 1: 1-54 - 2004

40

instance links to. This general structure is
extremely useful for a wide variety of taxo-
nomic purposes, such as quoting entire
sections of a taxon account as it appears
within a reference (e.g., Diagnosis, Etymol-
ogy, etc.), quotes that describe relationships
among several taxa, or other textual infor-
mation that appears in a Reference.

Common Names
Although TaxonRank values within the
range of 90-99 are reserved for informal
taxon name designations not governed by
Codes of nomenclature, these are not
intended for “Common” or “Vernacular”
names of organisms. It would be technically
possible to treat such common names as yet
another subtype of Protonyms, but this
would require the cumbersome task of
designating a single instance of each unique
common name as the “original” instance
(i.e., Protonym). Moreover, extensive
homonymy and a lack of a consistent
hierarchy structure of common names
justifies their treatment in a different way
from more rigid taxonomic nomenclature.

Although not serving as the basis of Asser-
tions themselves, the link between common
names and scientific names is established
via Assertions. Figure 11 illustrates that
tbl_CommonName has two Foreign Keys:
AssertionID, and LanguageID. By linking a
CommonName to an Assertion, the
Reference in which that CommonName
appeared is automatically included (as
linked to the Assertion). LanguageID
specifies what Language the Common-
Name is representative of. The actual text
string is stored in CommonName, and the
Pages attribute is provided to indicate what
page(s) the CommonName appears on
within the associated Reference.

General Data Management
Several core components of the Taxonomer
data model apply more or less equally to the
entire model as a whole. These components
manage general information that may have
relevance to a wide variety of data entities,
including those described herein. Three
such general components are described
here, and illustrated in Figure 12.

One of general components is
tbl_CodeNumber and associated tables.
Many core entities have numbers or other
codes associated with them. Vouchered
Specimen objects are assigned to various
Catalog Numbers, Collector Numbers,
Accession Numbers, and other codes.
References may have Call Numbers,
Reprint Numbers, or Accession Numbers.
Agents are sometimes referred to by some
sort of code or number (e.g., Social Security
Numbers, Employee Numbers, etc.). Even
Taxon Names can have Code Numbers
assigned to them (e.g., the Taxonomic
Serial Number [TSN] assigned to Taxon
Names by ITIS). Many of these entities have
multiple versions of a number that can
change over time (e.g., vouchered Speci-
mens transferred from one natural history
collection to another). Rather than sprinkle
CodeNumber and CodeNumberSeries
attributes across many of the core tables in
the Taxonomer data model, a generalized
CodeNumber documentation system has
been implemented.

As shown in Figure 12, tbl_CodeNumber is
linked to tbl_CodeNumberType and
tbl_CodeNumberSeries via the two Foreign
Keys, CodeNumberTypeID and CodeNum-
berSeriesID. tbl_CodeNumberType classi-
fies the CodeNumber according to its
general type (as shown in the blue text list).

Figure 11. Physical data model for CommonNames.

tbl_Language

LanguageID P lng
Language txt

Unique Keys

tbl_Assertion

AssertionID P lng
etc…

Unique Keys

tbl_CommonName

CommonNameID P lng

AssertionID F lng
LanguageID F lng

CommonName txt
Pages txt

Unique Keys

Foreign Keys

Non-Key Attributes

PhyloInformatics 1: 1-54 - 2004

41

tbl_CodeNumberSeries identifies the
specific series of CodeNumbers (e.g., a
particular catalog number series in a
Specimen collection). The CodeNum-
berSeries attribute is intended for the short,
unique identifier of a number series, such as
an institutional acronym for a Specimen
collection (e.g., “BPBM” for B. P. Bishop
Museum; “CAS” for the California Academy
of Sciences; etc.). The recursive Foreign
Key ValidCodeNumberSeriesID is used
primarily to track the changes in CodeNum-
berSeries values for a given number series
(e.g., when the British Museum of Natural
History [BM(NH)] changed to The Natural
History Museum [NHM]). The AgentID
Foreign Key links to the Person or Organi-
zation that owns or created the CodeNum-
berSeries. CodeNumberSeriesName is the
full-text name of the number series. Code-
NumberSeriesType categorizes the Code-
NumberSeries according to the core
element that it refers to. In some cases, a
CodeNumberSeries may apply to more
than one core element (e.g., “Call Numbers”

can apply to both References and Refer-
enceSeries), in which case both values are
entered in the CodeNumberSeriesType field,
separated by a semicolon. The Description
attribute allows for a longer text explanation
of what the CodeNumberSeries is used for,
and what its constraints and informational
content are (if any).

The first two non-key attributes of
tbl_CodeNumber are TableName and
PKID. These generalized attributes are used
in this table and in the two tables described
below (tbl_Comment and tbl_EditLog),
and serve the function of providing basic
context to the values in other attributes of
the table. TableName is entered as the
name of the table in which the numbered
instance appears (but without the “tbl_”
prefix). For example, if the CodeNumber is
a catalog number of a specimen, the value
of TableName would be “Specimen.” If a
Social Security Number, the value would be
“Person”; although it could also be “Agent,”
in this case, because tbl_Person is a

Figure 12. General data management tables.

tbl_CodeNumberType

CodeNumberTypeID P lng
CodeNumberType txt

Unique Keys

tbl_Agent

AgentID P lng
etc…

Unique Keys

tbl_Comment

CommentID P lng

AuthorID F lng

TableName txt
PKID lng
CommentType txt
Comment mem
Date date

Unique Keys

Foreign Keys

Non-Key Attributes

tbl_EditLog

EditLogID P lng

EditorID F lng

TableName txt
FieldName txt
PKID lng
PreviousValue txt
Date date

Unique Keys

Foreign Keys

Non-Key Attributes

tbl_CodeNumber

CodeNumberID P lng

CodeNumberTypeID F lng
CodeNumberSeriesID F lng

TableName txt
PKID lng
CodeNumber txt

Unique Keys

Foreign Keys

Non-Key Attributes
tbl_CodeNumberSeries

CodeNumberSeriesID P lng
CodeNumberSeries txt

ValidCodeNumberSeriesID F lng
AgentID F lng

CodeNumberSeriesName txt
CodeNumberSeriesType txt
Description mem

Non-Key Attributes

Foreign Keys

Unique Keys

CodeNumberType:
Accession Number
Call Number
Catalog Number
Station Number
Taxon Name Code
etc…

CodeNumberSeriesType:
Protonym
Reference
ReferenceSeries
Specimen
Transaction
etc…

CommentType:
General
Collection
Type Designation
Verification
etc…

PhyloInformatics 1: 1-54 - 2004

42

subtype of tbl_Agent with identical corre-
sponding surrogate Primary Key values. The
PKID attribute is used to record the surro-
gate Primary Key value of the instance in
the table indicated by TableName to which
the CodeNumber applies. Together, Table-
Name and PKID effectively represent a
Foreign Key (of sorts) to any instance of any
Table in the Taxonomer application data-
base.

The final attribute of tbl_CodeNumber is
CodeNumber, which stores the actual value
of the CodeNumber itself. This attribute is a
text field, rather than a numeric field, to
allow for textual or alphanumeric CodeNum-
ber values.

The second general data management
component shown in Figure 12 is
tbl_Comment. This table stores any sort of
free-form textual comment that can, as with
CodeNumbers, be applied to any instance
of any table in the Taxonomer application.
Comments differ from Excerpts in that they
are usually created by the database user to
record meta-information regarding the
nature of the data as contained in the
database itself, whereas Excerpts generally
exist outside the context of the database. As
with CodeNumbers, this generalized ap-
proach was taken to consolidate Comments
into a single table, rather than sprinkle
various “Comments” and “Remarks” attrib-
utes throughout the various tables. AuthorID
is a Foreign Key to tbl_Agent, indicating the
Person or Organization who authored the
Comment. TableName and PKID serve the
same function they do for
tbl_CodeNumber. CommentType allows
general categorization of Comments.
Although examples are shown in the blue
text list in Figure 12, values for this field are
defined within the context of the TableName
to which they apply, and other database
user needs. Comment is a long-text field
that stores the text of the Comment itself.
The final attribute of tbl_Comment is Date,
which records the date and time at which the
Comment was created. Although technically
the combined attributes of AgentID and Date
within tbl_Comment could be treated
instead as a Reference, Comments are
taken to be more ad-hoc annotations to the
database, not really acquiring the status of a

Reference. The model could, of course, be
modified to have a single Foreign Key link to
tbl_Reference instead of the AgentID and
Date attributes, but this would not only
create potentially enormous numbers of
additional References, but would also
obscure the distinction between Comments
and Excerpts.

The Taxonomer application incorporates a
very simple table called tbl_EditLog to
record data edit history for all values of all
attributes of all tables (except “Cheat”
fields). It includes the following seven
attributes: EditLogID (long-integer surrogate
Primary Key field); EditorID (Foreign Key to
tbl_Agent indicating the database user who
made the edit); TableName (same function
as in tbl_CodeNumber and tbl_Comment);
FieldName (analogous to TableName,
except identifies the field within a table for
which the data were modified); PKID (same
function as in tbl_CodeNumber and
tbl_Comment); PreviousValue (the value of
the specified field in the instance indicated
by PKID before it was edited or deleted);
and Date (a date and time-stamp for when
the addition, edit, or deletion occurred).
Whenever a new record is added to any
table, an instance of tbl_EditLog is created
with the appropriate values of TableName,
PKID, EditorID, and Date; an asterisk (“*”) is
entered in FieldName (indicating all fields in
the table), and the text “ADDED” is entered
into PreviousValue. When a record is edited,
the appropriate values of TableName,
FieldName, PKID, EditorID, and Date are
entered, and PreviousValue is set to the
value of the edited field as it was before
being edited. When a record is deleted, all
non-null field values are recorded as they
would be for a data edit, and an additional
instance of tbl_EditLog is created with
appropriate values of TableName, PKID,
EditorID, and Date; an asterisk (“*”) in
FieldName, and the text “DELETED” in
PreviousValue.

Consolidating all data edit history informa-
tion into a single table eliminates the need to
sprinkle attributes such as “CreatedBy,”
“CreateDate,” “EditedBy,” and “EditDate”
across many different tables. In a sense,
tbl_EditLog serves the same function as a
the transaction log incorporated into many

PhyloInformatics 1: 1-54 - 2004

43

more sophisticated relational database
applications.

Discussion
A fundamentally important characteristic of
the relational data model proposed herein is
that major subsets of the data are modular-
ized somewhat hierarchically, such that
“lower” modules are entirely independent of
“higher” modues. For example, the entities
clustered together in Figure 3 that accom-
modate Agent data serve their function of
storing and organizing relational data about
Agents independently of the “higher-
module” data subsets that link to Agents in
some way (e.g., as authors of References,
collectors of specimens, etc.). References,
representing a slightly higher module,
depend on the existence of Agents (to
represent Authors), but are entirely inde-
pendent of still higher modules (e.g., Asser-
tions).

This article describes in detail the aforemen-
tioned three modules (Agents, References,
and Assertions), and provides examples of
how Assertions can serve as a handle to a
Taxon Concept, which can be utilized in a
variety of ways via additional data modules
(e.g., AssertionRelations, Determinations,
etc.). The main emphasis of this article is to
demonstrate how, with a broad interpretation
of a Reference as any documented informa-
tion provided by Agent(s) at a particular
point in time (i.e., date-stamped Agents),
the concept of a Protonym as a subtype of
Assertion can provide a self-contained and
highly generalized approach to representing
Taxon Names and Taxon Concepts.

Indeed, the Assertion is here regarded as a
fundamental unit of taxonomy, and the
general “currency” of information manage-
ment concerning taxonomic entities. Al-
though Assertions generally represent
subjective treatments of Taxon Names in
relation to the scope of living organisms
circumscribed by those Names, the Asser-
tion instances themselves are objective
entities. While one may disagree with
“AuthorX” that “SpeciesA” should be treated
as a junior synonym of “SpeciesB,” there is
usually no ambiguity in the fact that “Au-
thorX” did indeed assert that “SpeciesA”

should be treated as such (within the context
of a Reference). An Assertion instance
constitutes the documentation of that fact,
and can be seen as a representation of the
Taxon Concept explicitly stated or indirectly
implied within the corresponding Reference.

Although many of the ideas and concepts
presented here are not new, the basic
approach to modeling information as it
applies to Taxon Names and Taxon Con-
cepts differs from other taxonomic data
models. Comparisons with specific data
models are made below.

Comparison with the HICLAS model
The HICLAS (HIerarchical CLAssification
System) data model (Zhong et al., 1996;
1999) was among the earliest efforts to
distinguish taxon names from taxon con-
cepts and provide for multiple taxonomic
views. Their definition of “Classification” was
somewhat similar to an Assertion (in that
both represent the treatment of a taxon or
taxa, as would be the case for the full set of
Assertions linked to a particular Refer-
ence). However, they restricted the scope of
References that can provide Classifications
to exclude checklists and certain other
scientific or non-scientific citations of Taxon
Names, even though such References likely
represent a Taxon Concept (though gener-
ally less explicitly defined within the Refer-
ence itself). The Taxonomer model can
enforce similar restrictions (and much more
flexibly) by filtering on ReliabilityID of
tbl_Assertion.

Closer to the essence of an Assertion is
what Zhong et al. (1996; 1999) defined as a
“Taxon View.” Taxon Views are represented
by four elements: Taxon Name, Author or
Authority, Year, and Publication Number.
Taxon Name is comparable to a Protonym,
and the other three elements are all attrib-
utes of a Reference as linked to an Asser-
tion (Author in the case where an Assertion
is also the Protonym, and Authority in the
cases of subsequent citations of a Proto-
nym). Thus, these four elements are con-
tained within the combined values of Proto-
nymID and ReferenceID as attributes of
tbl_Assertion. It should be noted that
whereas the “Publication Number” of HI-
CLAS uniquely identifies the associated

PhyloInformatics 1: 1-54 - 2004

44

Reference, the “Taxon Name” is somewhat
more ambiguous, given both problems of
homonymy and alternate spellings of what
otherwise constitutes the same Name.

The equivalent of “Taxon-View Groups” of
HICLAS are easily obtained from the Tax-
onomer model described here by filtering
tbl_Assertion by a single ProtonymID
value. The “Primary” and “Secondary” taxon
views of HICLAS are identifiable by the
conditions of ProtonymID=AssertionID and
ProtonymID≠AssertionID (respectively)
within tbl_Assertion. The Parent/Child
Taxon View of HICLAS is represented by
the recursive series of ParentAssertionID
within tbl_Assertion, for a given Referen-
ceID. In the Taxonomer model, such links
are generally only applied in cases of explicit
referral. However, the word “explicit” as
used here is somewhat liberal, requiring only
the appearance of both parent and child
names within the Reference, and some
form of unambiguous representation of a
hierarchical relationship between the two.
Absent the explicit occurrence of a text-
string name within a Reference, however,
no implied parent/child relationships can be
assumed. For example, if a Reference
discusses a family of fishes, it is generally
implied that the author regarded the Family
to belong to at least the Kingdom “Animalia,”
if not something more specific. However,
unless the Reference explicitly includes
“Animalia” in its text, no Assertion instance
should be created for that Reference linked
to the Protonym of Animalia (leaving
nothing for a ParentAssertionID to link to).

The HICLAS model defines seven “opera-
tions” to establish Lineages among Taxon
Views: “Origination,” “More,” “Merge,”
“Partition,” “Promotion,” “Demotion,” and
“Recognition.” Origination is represented in
the Taxonomer model by a Protonym. The
“Move” operation represents a lateral
transfer of a taxon within the same rank, but
under a different parent. Certainly treat-
ments of a given Protonym by different
References as belonging to different
“Parent” taxa are adequately accommodated
by the structure of tbl_Assertion (specifi-
cally via ParentAssertionID), and as such
the “movement” of a Protonym among
different Parent taxa over time can be easily

documented. However, this notion of a
“Move” operation is not treated as a mean-
ingful informational entity within the Tax-
onomer model, for two reasons. First, the
“movement” of a taxon concept from one
Parent to another implies that some sort of
tangible and universal entity changes its
nature upon the publication of a new taxo-
nomic treatment. From the perspective of
the Taxonomer model, no real entity
“moved”; rather, a common entity (a Proto-
nym) was represented in a different hierar-
chical context. Secondly, the circumscription
of a taxon involved with a “Move” operation
doesn’t actually change: it still is implied to
contain exactly the same scope of living
organisms that it did before the “Move.” As
such, this operation only involves change in
perceived taxonomic affinities, not a change
in the scope or definition of the Concept
itself. Nevertheless, the Taxonomer model
does accommodate tracking of the direc-
tionality of such lateral “Move” operations,
through an instance of
tbl_AssertionRelation joining a later
Assertion (with one Parent) to an earlier
Assertion (with a different Parent), via a
RelationType of “congruent.”

The “Merge” operation is also supported by
sets of tbl_AssertionRelation instances. A
single value of AssertionID in this table may
be represented by multiple instances with
different values of RelatedAssertionID, each
indicated as being of RelationType “in-
cludes.” The same applies for a “Partition”
operation, except in that case the Relation-
Type would be “included in.”

The “Promotion” and “Demotion” operations
are dealt with in Taxonomer in the same
way that the “Move” operation is; that is,
within tbl_Assertion (via different values if
TaxonRankID). As with the other operations,
the directionality and scope of these
changes can be represented via
tbl_AssertionRelation. Similarly, the
“Recognition” operation is easily accommo-
dated by an instance in
tbl_AssertionRelation, established with a
RelationType of “congruent.”

Zhong et al. (1999) discussed the differ-
ences between hierarchies based on
nomenclature, and hierarchies based on

PhyloInformatics 1: 1-54 - 2004

45

phylogenetic analysis. The revised (1999)
HICLAS model endeavored to accommo-
date both kinds of hierarchies. Although the
Taxonomer model could likely accommodate
phylogenetic representations with relatively
minor modifications, its intended purpose at
the present time is focused on nomenclatu-
ral classifications.

Comparison with the Berlin (IOPI) model
Berendsohn (1997) described the “IOPI”
(International Organization for Plant Informa-
tion) taxonomic data model, and Berend-
sohn et al. (2002) and Berendsohn et al.
(2003) updated it and referred to it as the
“Berlin” model. There are many fundamental
similarities between the Berlin model and
the Taxonomer model. Indeed, the virtually
independent convergence on such similar
data management solutions suggests that
some level of optimality may be approached,
especially when considering that the Berlin
model was developed primarily around the
needs of botanical taxonomy, whereas
Taxonomer was driven more directly by
zoological taxonomy.

Berendsohn et al. (2003:15) wrote: “The
taxonomic model has to incorporate nomen-
clatural rules and the traditional taxonomic
relationships (synonymy, taxonomic hierar-
chy, etc.). In addition, it has to be capable of
representing different taxonomic views in
order to enable the system to express
arbitrary relationships between potential
taxa.” The Taxonomer model achieves the
former through tbl_Assertion and its related
tables, and achieves the latter through
tbl_AssertionRelation.

Perhaps the biggest difference between the
two models is how Taxon Name entities are
treated. As described in detail above, in
Taxonomer information concerning original
descriptions of taxon names is embedded
within the Assertion and Protonym tables.
In the Berlin model, Name data are stored in
an entirely different set of tables, as ex-
plained in Berendsohn et al. (2003), to more
strictly separate nomenclatural data from
potential taxon data. This separation is
accommodated in the Taxonomer model in
that links to Taxon Concepts (potential taxa)
are made to tbl_Assertion, whereas links
intended to only represent the nomenclatural

components are made to tbl_Protonym.
Although the specific approach to managing
various aspects of Name information (e.g.,
unnamed taxa, cultivars, nothotaxa and
hybrids formulae, etc.) are quite different in
the two models, both are capable of manag-
ing very similar informational content (with
the Taxonomer model being somewhat
more normalized, relying instead on various
“Cheat” fields to improve concatenation
performance of multinomials, and relying
more heavily on business rules embedded
within the application tier to manage differ-
ent information elements applied differently
to Names of different taxonomic rank). The
functions of the Berlin model’s table “Rel-
Name” (the relationships among names) are
accommodated in several ways. Relation-
ships between subsequent treatments of a
Name and its basionym are accommodated
by the ProtonymID attribute of
tbl_Assertion. Other such relationships
(e.g., ‘is later homonym of’) can be accom-
modated in tbl_ObjectiveStatus (in the
context of other relationships included within
the corresponding Assertion). Still others are
accommodated by tbl_HybridAssertion
and TypeProtonymID of tbl_Protonym. The
Berlin model also includes the “NomStatus-
Rel” table which serves essentially the same
function as tbl_ObjectiveStatus as de-
scribed herein. Both tables are used to
categorize the nature of a Code-mandated
relationship between Taxon Names, as
asserted by a Reference. Many of the
nomenclatural tables in the Berlin model
include “…RefFK” and “…RefDetailFK”
linkages to “Reference” and “RefDetail”
tables. By using Assertions as the unit of
nomenclatural information management, the
Taxonomer model consolidates those
linkages into a single link (i.e., via the
ReferenceID attribute of tbl_Assertion).

Another difference between the Berlin model
and the Taxonomer model is how nomencla-
tural authors are tracked. The Berlin model
explicitly defines “teams” of authors, which
are linked directly to Name entities. The
Taxonomer model derives authors of Taxon
Names via the associated ReferenceID of a
Protonym’s corresponding Assertion. This
eliminates the need for additional relation-
ships between Agents and Names, and
between References and Names (see

PhyloInformatics 1: 1-54 - 2004

46

earlier discussion under the “References”
section describing the use of the “Ex”
AuthorType and the use Sub-References
for delineating original descriptions from
their containing References, when neces-
sary). The Taxonomer model does not
establish an entity to represent an “Author
Team,” but one could easily be derived from
the set of Agents linked to any particular
Reference via tbl_ReferenceAuthor.
However, the need to establish this some-
what artificial entity (which seems to be
based solely on the desire to establish direct
relationships between each Name and its
individual authors) is obviated by the way in
which Taxon Names derive their authorships
within the Taxonomer model. Standard
botanical abbreviations for authors are
accommodated in the Taxonomer model via
the CodeNumber components, described
earlier (which can accommodate any
number of abbreviations based on any
number of defined abbreviation standards).
The function of the “RelAuthor” table in the
Berlin model is essentially duplicated by
ValidAgentID in the Taxonomer model.

The bibliographic components of the Berlin
model are functionally similar to the Refer-
ence components described herein. The
“Reference” table of the Berlin model is
analogous to tbl_Reference described
herein; and the “RefCategory” table of the
Berlin model is analogous to
tbl_ReferenceType. Most differences
between the two approaches are in detail
only, and largely stem from the adherence of
the Taxonomer model to the structure used
by EndNote® 7 software. One aspect of the
Berlin model that is more robust that the
Taxonomer model is the “RefDetail” table,
which pinpoints positions within References
in a more normalized way than the “Pages”
attributes of several Taxonomer tables. As
discussed earlier, future versions of Tax-
onomer may include a more robust man-
agement scheme analogous to “RefDetail.”

At the heart of the Berlin model is the
“Potential Taxon” (Berendsohn, 1995; 1997;
Geoffroy & Berendsohn, 2003), which is
almost identical to the Assertion as defined
herein (more specifically referred to in
Berendsohn et al., 2003, as a “Taxonym”).
Both approaches establish the intersection

of a Reference and a Taxon Name as the
handle to a taxon concept. Both approaches
also use this intersection instance as the
basis through which other factual informa-
tion is linked to taxa. The main difference
between the two structures is that the Berlin
establishes a unique set of “Status” alterna-
tives for each name, whereas the Taxono-
mer embeds this information into the same
Assertion instance (see further discussion
below). One apparent limitation of the
Taxonomer model is that only one “kind” of
synonym (i.e., a direct nomenclatural
synonym) can be defined within
tbl_Assertion. As pointed out by Berend-
sohn et al. (2003), other “kinds” of synonyms
(‘partial synonym” and ‘pro parte synonym’)
“…are actually cases of concept synon-
omy…” (p.37), but explicitly stated within the
“taxonym”/Assertion Reference itself. Such
“Assertion mapping” is accommodated by
the Taxonomer model via
tbl_AssertionRelation. In such cases
where the Reference contributing the
Assertion explicitly states such concept
synonyms, the SourceReferenceID attribute
of tbl_AssertionRelation links to the same
Reference as indicated by the correspond-
ing ReferenceID value in the associated
Assertion instance. In this way, the Tax-
onomer model clearly separates nomencla-
tural synonymies from concept synonymies.
The “RelPTaxon” table of the Berlin model
serves three functions, that are accommo-
dated by the Taxonomer model by (respec-
tively), ValidAssertionID of tbl_Assertion
(for traditional synonymy); ParentAsser-
tionID of tbl_Assertion (for hierarchical
classification), and tbl_AssertionRelation
and its associated tbl_RelationType (for
concept synonymy). The reason that the
different functions are handled differently in
the Taxonomer model is that the former two
are best addressed on an intra-Reference
basis; whereas the latter involves inter-
Reference relationships of taxon concepts
(note that intra-Reference linkages via
ValidAssertionID and ParentAssetrtionID
simultaneously reflect nomenclatural rela-
tionships and concept relationships, as they
necessarily are the same within a single
Reference; but even these can be further
qualified via an instance in
tbl_AssertionRelation). The main weak-
ness of the Taxonomer model in this regard

PhyloInformatics 1: 1-54 - 2004

47

is that it does not have a robust structure for
accommodating misapplied names. As
discussed in the “Limitations” sub-section of
the “Taxa” section of this article, such
information can be accommodated indi-
rectly, and may be more directly addressed
in future versions via a more robust dedi-
cated table structure.

 “Cheat” fields defined herein are somewhat
analogous to “Cache fields” of Berendsohn
et al. (2003:17) in that they enhance per-
formance, but differ in that they can only be
created by the application from the atomized
components (i.e., they are strictly derived
fields). By contrast, “Cache fields” in the
Berlin model are also used to store imported
concatenated data prior to parsing into more
atomized fields. These differences only
affect application-tier issues, and data
importing protocol; they have essentially no
bearing on the core data structure.

Finally, Kusber et al. (2003) describe an
extension of the Berlin model to robustly
model taxonomic typification. The Taxono-
mer model, by contrast, includes only
rudimentary typification documentation (via
TypeProtonymID of tbl_Protonym, and
TypificationID of tbl_Determination). A
more robust approach to managing typifica-
tion is planned for a future version of the
Taxonomer model, but it is worth noting that
such an enhancement would primarily be in
the form of additional “modules,” without
substantial modification to the core Tax-
onomer data structure described herein.

Comparison with the Prometheus model
The Prometheus taxonomic data model
(Pullan et al., 2000; Raguenaud, 2002) is
intended to provide a mechanism for objec-
tively defining the scope and extent of
taxonomic circumscriptions, by way of
Specimens as reference points. Like the
previous two discussed models (HICLAS
and the Berlin model), it has botanical
origins. Like the Taxonomer model, the
Prometheus model attempts to structure
data according to how it is actually used for
taxonomic activities.

As emphasized by the Prometheus model,
specimens are the only objective means to
establish congruency (or lack thereof)

between any given pair of Taxon Concepts
(see earlier discussion under “Specimen-
Resolution Circumscriptions”). The Taxono-
mer data model supports such Specimen-
Resolution circumscription definitions by
virtue of the fact that Determinations are
linked to Assertions. This linkage allows
direct indexing of specific Specimens as
definitive markers to the biological (i.e., real-
world) scope of the taxon circumscription
represented by the Assertion instance.
When more than one Reference includes
Determination instances for the same pool
of Specimens, the respective scope of the
corresponding sets of Assertions for each
Reference can be objectively compared.

Because of the complexity of mapping
instances of “Potential Taxa” to the physical
specimens upon which they were based, the
“Potential Taxon” is portrayed by Berend-
sohn (1997) and Pullan et al. (2000) as a
“compromise” method for managing taxon
concepts. In contrast, I do not see Asser-
tions as representing any form of “compro-
mise” at all, but rather as a different basis of
information indexing. That some Refer-
ences fail to explicitly “anchor” their implied
Taxon Concepts to biological reality in the
form of Specimen citations does not negate
the fact that the authors of the Reference
had a clear Taxon Concept in mind when
they represented it by a Taxon Name.
Assertions of such References should not,
therefore, be excluded from the pool of
potential taxonomic concepts, simply
because their concepts cannot be objec-
tively scoped or cross-referenced to other
Assertions. Indeed, it could be safely
argued that many (a majority?) of Refer-
ences that do cite specific Specimens, do
not draw from a sufficiently large and
overlapping pool of Specimens as cited in
other References establishing Assertions
for the same set of Protonyms. The Tax-
onomer model was intentionally designed to
exploit Specimen citations when they exist
(via the use of Assertions as the taxonomic
link to Determinations), but not to exclude
other Assertions (that lack extensive
specimen citations) from the overall pool of
managed taxonomic information.

Comparisons between the Prometheus
model and the Taxonomer model are

PhyloInformatics 1: 1-54 - 2004

48

necessarily limited, given the difference in
fundamental data structure, and to some
extent, the different intended purposes of
each. Nevertheless, some comparisons can
be drawn. Like the Berlin model, the Prome-
theus model goes to great lengths to distin-
guish nomenclatural information from
‘classification’ (circumscription) information.
The Taxonomer model rigorously (but
subtly) maintains a distinction between
Name entities and Concept (circumscription)
entities, without extensive de-normalization
or duplication of the data structure. This is
accomplished simply by the implied rule that
links established via AssertionID values
apply to both circumscriptions and nomen-
clature (the latter provided automatically and
simultaneously), whereas links established
via ProtonymID are exclusively nomenclatu-
ral (even though Protonyms are subtypes
of Assertions, which contain an implied
circumscription). The Prometheus model
defines the two separate entities of “Nomen-
clatural Taxa” and “Circumscribed Taxa”;
each with its own set of links to ranks,
publications (and associated authors, either
by extension or directly), specimens, and
hierarchical recursion. These roughly
correspond to the Protonym and Assertion
entities in the Taxonomer model. Separate
links to “Rank” and “Publication”
(=Reference) entities in the Prometheus
model are consolidated in the Taxonomer
model. The link between Circumscribed
Taxa and Specimens in Prometheus are
comparable to Determination instances of
Taxonomer, but the direct link between
Nomenclatural Taxa and Specimens (via
typification) in Prometheus does not exist in
Taxonomer (instead, Protonyms are
connected to their type Specimens via
Determinations by the corresponding
Assertion instance that established the
typification). The Rejection/Conservation
Status of Nomenclatural Taxa (and associ-
ated entities) in Prometheus is most closely
emulated by ObjectiveStatus components
of Taxonomer. Like the Prometheus model,
the Taxonomer model does not treat the
relationship between a Name and its homo-
typic Basionym (Protonym) by the same
mechanisms that synonyms are established.

Pullan et al. (2000) cautioned against the
use specimen determination labels for

delineating circumscriptions, due to the fact
that the determination is limited in temporal
scope to the date on which it was applied to
the specimen. However, this only potentially
limits the extent to which such determina-
tions can be objectively cross-referenced to
published circumscriptions. By treating
Specimen Determinations as a defined
ReferenceType, the Taxonomer model
allows such Determinations to stand on
their own as representing Taxon Concepts,
independent of published works citing the
same specimens. In most cases, Speci-
mens cited in publications will also have
Determination labels associated with them,
by the same or similar authors as the
publication. This allows objective cross-
verification of congruency among Determi-
nation-based circumscriptions and their
published counterparts. While it is true that
Determinations are technically dated on the
day on which the Determination was
applied to the Specimen, there are many
cases when clusters of Determinations
spanning a series of consecutive or near-
consecutive dates can be logically consoli-
dated. One example is when a taxonomist
visits a Museum and establishes a series of
Determinations within a span of several
days or weeks. Another example is when a
taxonomist borrows a series of Specimens,
and returns them as a batch with new
Determinations. Such sets of Assertions
can be reliably cross-referenced as congru-
ent using tbl_AssertionRelation.

The Taxonomer model differs from the
Prometheus model in the way that “auxillary
data” or “factual data” are joined to taxo-
nomic components in that Taxonomer
establishes such links via tbl_Assertion,
whereas Prometheus links such data to
Nomenclatural Taxa. This distinction is
merely a result of the way Taxonomer
establishes Assertion instances associated
with the Reference instances that provide
the auxiliary data (and establishes the link
between the auxiliary data and the taxon-
omy via these Assertions).

Comparison with the Nomencurator
model

The most recent of the published data
models for managing multiple taxonomic
views is Nomencurator (Ytow et al., 2001;

PhyloInformatics 1: 1-54 - 2004

49

2002). Conceptually, there are many simi-
larities between the Nomencurator model
and the Taxonomer model. The “Publication”
entity of Nomencurator is functionally
equivalent (though more restrictive) to the
Reference entity of Taxonomer. Ytow et al.
(2001) describe two types of links within
Publications: internal and external. These
correspond to what are referred to in this
article as “intra-Reference” links, and “inter-
Reference” links, respectively. The term
“taxonomic opinion” as used in Ytow et al.
(2001) is conceptually identical to the
Assertion described herein (i.e., “…the term
‘taxonomic opinion’ will be used to describe
the taxon concept as it existed for an author
at the time of publication. A taxonomic
opinion can be identified without ambiguity
by specifying a pair of tangible objects; the
name as printed and the publication in which
it appeared.” p.84).

The Nomencurator model is fundamentally
based on a three-layered approach to
defining informational units. The “instance”
layer is defined by Ytow et al. (2001:84-85)
to represent “specimens or lower taxa,” the
“taxon layer” refers to Taxon Concepts, and
the “name layer” refers to Taxon Names.
The “name” layer in Nomencurator is directly
comparable to the Protonym entity of
Taxonomer, and the “taxon” layer in No-
mencurator is directly comparable to the
Assertion entity of Taxonomer. In Nomen-
curator, names are portrayed as “tags”
linked to Taxon Concepts within the context
of a publication. Similarly in Taxonomer,
Protonym “tags” are linked to Assertions
(via the ProtonymID Foreign Key of
tbl_Assertion), in the context of the Refer-
ence linked to the same Assertion in-
stances.

Of the “instance” layer, Ytow et al. (2001:84)
write: “…an instance is a conceptual object,
not a physical specimen.” Ultimately, how-
ever, “lower taxa” are merely abstracted
representations of implied sets of speci-
mens, so specimens are the true conceptual
foundation of the “instance” layer, even if
abstracted conceptual entities (i.e., “lower
taxa”) are used as surrogate instances for
higher taxa. The distinction is important
when examining how the Taxonomer model

represents instances. In the case of taxa at
super-specific ranks (and Species that are
further divided into infra-specific ranks), the
equivalent “instances” of a given “Asser-
tionX” are the set of lower-rank intra-
Reference (i.e., internally linked) Asser-
tions that themselves link back to “Asser-
tionX” via ParentAssertionID. This relation-
ship is recursive through all taxonomic ranks
down to (but not including) the terminal infra-
generic rank (i.e., species or infra-specific
rank). In such cases of “terminal” species
and infra-specific taxa, the “instances” are
derived from links to Specimens via
tbl_Determination. The dichotomy between
the structural treatment of instances for
higher-rank Taxon Concepts and lower-rank
Taxon Concepts is justified by virtue of the
fact that Specimen entities are fundamen-
tally distinct from lower-rank Taxon Concept
entities. Indeed, when one considers (as
described above) that lower-rank taxa, when
treated as instances of higher-rank taxa, are
merely infra-Reference surrogate abstrac-
tions of sets of physical Specimens
(vouchered or not), the structure of the
Taxonomer is logically consistent.

At the physical implementation level, some
additional similarities between Nomencura-
tor and Taxonomer are evident. In particular,
the relationships between “Publications” and
“Authors,” and between “Authors” and
“Affiliations,” is nearly identical to the corre-
sponding relationships in Taxonomer
between References, Agents, and affilia-
tions among agents (via
tbl_AgentAssociation). Pursuing the
physical implementation further, however,
reveals that the two models diverge. Al-
though the “NameRecord” entity of Nomen-
curator roughly corresponds with an Asser-
tion (“…in essence the potential taxon
concept…the data structure combination of
the name and its publication…” p.89), the
entity relationships are somewhat different.
For instance, NameRecords link to Publica-
tions via “Appearances.” Thus, Assertions
represent a combination of NameRecords
and Appearances. Annotations in the
Nomencurator model serve functions
addressed by tbl_AssertionRelation and
tbl_ObjectiveStatus of the Taxonomer
model.

PhyloInformatics 1: 1-54 - 2004

50

Another difference between the Nomencura-
tor model and the Taxonomer model worth
mentioning is in how each model defines the
scope of allowable References. The No-
mencurator model, through its use of the
term “Publication” restricts such instances to
published References. Presumably, this
would exclude, for example, an unpublished
manuscript that is “in press,” even though
such a manuscript contains precisely the
same information as it would after it is
actually published. While this example can
be (correctly) seen as “nit-picking,” the
problem is the existence of an essentially
unbroken continuum from such a “mature”
manuscript, downward through chapters in
theses, rough drafts of manuscripts, corre-
spondence among taxonomists expressing
taxonomic opinions, researchers’ notebooks,
specimen determination labels, spoken
words, and even (taken to the extreme)
undocumented thoughts. Selecting a point
along this continuum to limit the scope of a
Reference is somewhat subjective and
arbitrary, and does not necessarily correlate
with taxonomic “reliability.” One possible
point of delineation would be the peer-
review process of most scientific publica-
tions. However, this criterion would exclude
many valuable forms of taxonomic informa-
tion that are not subjected to peer review
(e.g., many published books). It would also
exclude a wealth of potentially important and
insightful unpublished information. Within
the context of the Taxonomer model, I have
chosen to delineate the scope of a Refer-
ence to include any “documented” instance
of information as presented by one or more
authors (including, but not limited to, publi-
cations). “Documented” in this context, can
be roughly defined as any medium that can
be represented in a broadly interpretable
way via a standard digital format (e.g., text,

digital manuscripts in various formats,
databases and spreadsheets, images, and
potentially even audio and video re-
cordings). The reason for using the “digitiz-
able” standard in this context is that the topic
here discussed relates to electronic (digital)
databases, and in its ultimate incarnation
would directly interface with digital represen-
tations of Reference sources. In any case,
by defining the data model in such a broad
way as to be more inclusive of different
information sources, the user is always left
with the option of filtering data output
according to more restrictive criteria (e.g.,
only those Assertions linked to References
of ReferenceTypes flagged as IsPublished.)
Conversely, restricting the scope of sources
at the data model layer disallows the elec-
tronic capture of potentially useful informa-
tion. Thus, the broader scope of Reference
defined herein is seen as providing a more
generalized approach to taxonomic data
management.

Acknowledgements
I wish to thank Stan Blum for his willingness
to engage in seemingly endless discussions
about a wide range of topics related to
bioinformatics, and for exposing me to the
larger universe of biological database
activities. Thanks are also due to Nozomi
“James” Ytow and Jim Croft, who have
generously provided general insights. The
conversion of data from Cowie et al. (1995)
into the Taxonomer data structure was
funded in part by a grant from the Pacific
Basin Information Node (PBIN), of the U.S.
National Biological Information Infrastructure
(NBII).Microsoft Access® and Microsoft
SQLServer® are a registered trademark of
Microsoft Corporation. EndNote® is a
registered trademark of ISI ResearchSoft.

Literature Cited
ABRS [Australian Biological Resources Study]. 2003. Platypus: A database package for taxono-

mists. http://www.deh.gov.au/biodiversity/abrs/online-resources/software/platypus/index.html
(3 September 2003).

Anonymous. 2002. VegBank taxonomic data models. Ecological Society of America.
http://vegbank.nceas.ucsb.edu/vegbank/design/planttaxaoverview.html (23 July 2003).

Anonymous. 2003. EndNote 7…bibliographies & more made easy™. Thompson ISI Research-
soft, Carlsbad. 589 pp.

PhyloInformatics 1: 1-54 - 2004

51

ASC [Association of Systematics Collections]. 1993. An information model for biological collec-
tions. Report of the Biological Collections Data Standards Workshop, August 18-24, 1992.
http://www.nscalliance.org/bioinformatics/resources.asp (14 January 2004).

Berendsohn, W.G. 1995. The concept of “potential taxa” in databases. Taxon 44: 207-212.

Berendsohn, W.G. 1997. A taxonomic information model for botanical databases: the IOPI
Model. Taxon 46: 283-309.

Berendsohn, W.G. (ed.) 2003. MoReTax: Handling factual information linked to taxonomic
concepts in biology. Schriftenreihe für Vegetationskunde, Vol. 39. Federal Agency for Nature
Conservation, Bonn, Germany. 113+xvii pp.

Berendsohn, W.G., M. Geoffroy, A. Güntsch and J.-L.Li 2002. The Berlin taxonomic information
model. http://www.bgbm.org/biodivinf/docs/bgbm-model/ (8 July 2003).

Berendsohn W.G., M. Döring, M. Geoffroy, K. Glück, A. Güntsch, A.Hahn, W.-H. Kusber, J.-L. Li,
D. Röpert and F. Specht. 2003. The Berlin model: a concept-based taxonomic information
model. In: MoReTax: Handling factual information linked to taxonomic concepts in biology (ed.
W.G. Berendsohn). pp. 15-42. Schriftenreihe für Vegetationskunde, Vol. 39. Federal Agency
for Nature Conservation, Bonn, Germany. 113+xvii pp.

Bio-Tools.Net. 2003 TAXIS – Taxonomic information system. http://www.bio-tools.net/ (3 Febru-
ary 2003).

BIOGIS Consulting. 2003. BioOffice - Datenbank und geographisches Informationssystem.
http://www.biooffice.at/ (23 September 2003).

Bisby, F. 2002. The quiet revolution: biodiversity informatics and the Internet. Science 289: 2309-
2312.

Blum, S.D. 1996. The MVZ Collections Information Model. Conceptual and Logical Models.
University of California at Berkeley, Museum of Vertebrate Zoology. (see
http://www.mip.berkeley.edu/mvz/cis/)

Colwell, R.K. 2002. Biota: The biodiversity database manager. http://viceroy.eeb.uconn.edu/biota
(26 May 2002).

CONABIO. 2003. Biótica Information System© Version 4.0.
http://www.conabio.gob.mx/informacion/biotica_ingles/doctos/distribu_v4.0.html (31 March
2003).

Cowie, R.H., N.L. Evenhuis and C.C. Christensen. 1995. Catalog of the Native Land and Fresh-
water Molluscs of the Hawaiian Islands. Backhuys Publishers, Leiden. 248 pp.

Creighton, R.A. and J.J. Crockett. 1971. SELGEM: A system for collection management. Smith-
sonian Inst. Information Systems Innovations, 2(3):1-26.

Dessein, S. and P. Schols. 2003. MacTaxon. http://www.kuleuven.ac.be/bio/sys/ (23 September
2003).

Eschmeyer, W.N. 1990. Catalog of the genera of recent fishes. California Academy of Sciences,
San Francisco: i-v + 1-697.

Eschmeyer, W.N. 1995. The role of taxonomic databases, with special emphasis on fishes.
Chapter 19. In: Marine and Coastal Biodiversity in the Tropical Island Pacific Region. Volume
1. Species Systematics and Information Management Priorities (eds. J.E. Maragos, M.N.A.
Peterson, L.G. Eldredge, J.E. Bardach, H.F. Takeuchi). pp. 333-338. Program on Environment,
East-West Center, Honolulu, Hawaii. 424 pp.

Eschmeyer, W.N. 1998. The catalog of fishes. California Academy of Sciences, San Francisco.
Vol. 3: 1821-2905.

PhyloInformatics 1: 1-54 - 2004

52

ETI [Expert Center for Taxonomic Identification]. 2003. Linnaeus II 2.x.
http://www.eti.uva.nl/Products/Linnaeus.html (23 September 2003).

Euzéby, J.P. 1997. List of bacterial names with standing in nomenclature: a folder available on
the Internet (http://www.bacterio.cict.fr/). Int. J. Syst. Bacteriol., 47: 590-592.

Filer, D.L. 2001. BRAHMS -- Botanical research and herbarium management system. BioNET
News 8: 6-7. (see: http://www.bionet-intl.org/html/whatsnew/newsletters/newsletters.htm)

Francki, R.I.B., C.M. Fauquet, D.L. Knudson and F. Brown. 1990. Classification and nomencla-
ture of viruses. Archives of Virology Supplement 2:1-445.

Geoffroy, M. and W.G. Berendsohn. 2003. The concept problem in taxonomy: importance,
components, approaches. In: MoReTax: Handling factual information linked to taxonomic con-
cepts in biology (ed. W.G. Berendsohn). pp. 5-14. Schriftenreihe für Vegetationskunde, Vol. 39.
Federal Agency for Nature Conservation, Bonn, Germany. 113+xvii pp.

Gewin, V., 2002. Taxonomy: All living things, online. Nature 418: 362-363.

Godfray, H.C.J. 2002. Challenges for taxonomy. Nature 417: 17-19.

Gradstein, S.R., M. Sauer, M. Braun, M. Koperski and G. Ludiwig. 2001. TaxLink, a program for
computer-assisted documentation of different circumscriptions of biological taxa. Taxon 50:
1075-1084.

Greuter, W., J. McNeill, R. Barrie, H.-M. Burdet, V. Demoulin, T.S. Filguerias, D.H. Nicolson,
P.C. Silva, J.E. Skog, P. Threhane, N.J. Turland And D.L. Hawksworth (eds. & compilers).
2000. International Code of Botanical Nomenclature (Saint Louis Code) adopted by the Six-
teenth International Botanical Congress, St. Louis, Missouri, July-August 1999. Regnum Vege-
tabile 138. Koeltz Scientific Books, Königstein. 474 pp.

Hoppe, J.R., E. Boos and G. Gottsberger. 1996. The database system SysTax - an aid for
systematics and taxonomy and the management of botanical gardens and herbaria. Albertoa
4(9): 107-108.

Hoppe J.R. and T. Ludwig. 2003. SysTax - a database system for systematics and taxonomy.
http://www.biologie.uni-ulm.de/systax/index-e.html (23 September 2003).

Humphries, J.M. 1994. MUSE: A tutorial and reference manual. Cornell University, Ithaca, New
York. 80 pp. [Privately distributed document, PDF file available online at:
http://www.biodiversity.uno.edu/muse/manual.pdf]

IBRC [Informatics Biodiversity Research Center, University of Kansas]. 2003. Specify: biodiver-
sity collections management. http://usobi.org/specify/ (10 September 2003).

ICZN (ed.). 1999. International Code of Zoological Nomenclature. Fourth Edition. The Interna-
tional Trust for Zoological Nomenclature, 306 pp.

ITIS [Integrated Taxonomic Information System]. 2003. Standards and Database Documenta-
tion. http://www.itis.usda.gov/standard.html (19 April 2003).

KESoftware. 2003. KE Emu™ Electronic Museum. http://www.kesoftware.com/emu/index.html
(23 September 2003).

Koperski M., M. Sauer, W. Braun and S.R. Gradstein. 2000. Referenzliste der Moose Deutsch-
lands. Schriftenreihe für Vegetationskunde 34: 1-519.

Kusber, W.-H., K. Glück, M. Geoffroy and R. Jahn. 2003. Typification – an extension of the Berlin
model. In: MoReTax: Handling factual information linked to taxonomic concepts in biology (ed.
W.G. Berendsohn). pp. 57-70. Schriftenreihe für Vegetationskunde, Vol. 39. Federal Agency
for Nature Conservation, Bonn, Germany. 113+xvii pp.

Lapage, S.P., E.F. Lessel, S.P. Oapage and P.H.A. Sneath. (eds.). 1992. International Code of
Nomenclature of Bacteria and Statutes of the International Committee on Systematic Bacteri-

PhyloInformatics 1: 1-54 - 2004

53

ology and Statutes of the Bacteriolog: Bacteriological Code, Revised edition. American Society
for Microbiology. 189 pp.

Le Renard, J. 2000. TAXIS: a taxonomic information system for managing large biological
collections. In: Abstracts. TDWG 2000: Digitizing Biological Collections. p. 18. Taxonomic
Databases Working Group, 16th Annual Meeting, Frankfurt, 10-12 November 2000.

Lee, M.S.Y. 2000. A worrying systematic decline. Trends Ecol. & Evol. 15(8): 346.

Merriam-Webster. 1993. Webster's Ninth New Collegiate Dictionary. Merriam-Webster, Inc.,
Springfield. 1557 pp.

Mims, C. 2003. Endangered species, endangered science. Zoogoer. 32(4): 18-28.

Minelli, A. 2003. The status of taxonomic literature. Trends Ecol. & Evol. 18(2): 75-76.

Minnigerode, M.D. 1998. Tracy: a Herbarium Management System.
http://www.csdl.tamu.edu/FLORA/input/inputsys.html (August 1998).

Moretzsohn, F. 2002. TaxonBank, proposal for a new online database for taxonomic research on
type specimens. Proceedings of 2nd International Workshop of Species 2000 (1999), National
Institute for Environmental Studies, Japan. pp. 142-147.

Morris, P.J. 1998. A data model for paleontological species level specimen based information.
http://www.athro.com/general/ip/datamodel.html (16 Apr 1998).

Murphy, F.A., C.M. Fauquet, M.A. Mayo, A.W. Jarvis, S.A. Ghabriel, M.D. Summers, G.P.
Martelli and D.H.L. Bishop. 1995 Sixth Report on the International Committee on Taxonomy of
Viruses. Springer Verlag, Wien & New York. 586 pp.

Naskrecki, P. 2003. MANTIS: A manager of taxonomic information and specimens.
http://140.247.119.145/Mantis/ (26 August 2003).

NCBI [National Centre for Biodiversity Informatics]. 2002. SAMPADA.
http://www.ncbi.org.in/sampada/index.html (1 May 2002).

Nishida, G.M. (Ed.) 2002. Hawaiian Terrestrial Arthropod Checklist, Fourth Edition. Bishop
Museum Technical Report No. 22. Hawaii Biological Survey, Bishop Museum, Honolulu, HI.
313 pp.

Simpson, J.A. and E.S. Weiner (eds.). 1989. The Oxford English Dictionary, Second Edition.
Oxford University Press. 22,000 pp.

Pando, F. 2001. A Primer for BIBMASTER: A database application for nomenclature, literature
and specimen management, Version 1.0. Real Jardín Botánico – CSIC, Madrid. 24 pp.

Pando, F. and Anonymous 2003. Herbar: una aplicación en MS-Access para la gestión de
herbarios. http://www.rjb.csic.es/herbario/herbar.htm (19 September 2003).

Pullan, M.R., M.F. Watson, J.B. Kennedy, C. Raguenaud and R. Hyam. 2000. The Prometheus
Taxonomic Model: a practical approach to representing multiple classifications. Taxon 49: 55-
75.

Raguenaud, C. 2002. Managing complex taxonomic data in an object-oriented database. [Un-
published manuscript representing partial PhD thesis, Napier University.]
http://www.soc.napier.ac.uk/publication/op/getpublication/publicationid/1845313.

Saarenmaa, H., S. Leppäjärvi, J. Perttunen and J. Saarikko. 1995. Object-oriented taxonomic
biodiversity databases on the World Wide Web, Internet Applications and Electronic Informa-
tion Resources in Forestry and Environmental Sciences, Workshop at the European Forest
Institute, EFI Proceedings 3, Joensuu, Finland, pp 121-128.

Shattuck, S.O. and N.J. Fitzsimmons. 2000. BioLink, the biodiversity information management
system. CSIRO Publishing, Collingwood, Australia. (http://www.biolink.csiro.au/)

PhyloInformatics 1: 1-54 - 2004

54

Taswell, S. and R. Peet. 2000. FGDC Biological Data Working Group Biological Nomencla-
ture/Taxonomy Meeting Summary. Smithsonian National Museum of Natural History, 2-3 No-
vember 2000. http://biology.usgs.gov/fgdc.bio/FGDC_TaxNom.doc (19 September 2003).

Trehane, P., C.D. Brickell, B.R. Baum, W.L.A. Hetterscheid, A.C. Leslie, J. McNeill, S.A. Spong-
berg And F. Vrugtman. 1996. International Code of Nomenclature for cultivated plants.
Regnum Vegetabile Ser. Vol. 133. Balogh Scientific Books, Champaign, IL. 175 pp.

van Regenmortel, M.C. Fauquet, D. Bishop, E. Carsten, M. Estes, S. Lemon, J. Maniloff, M.
Mayo, D. McGeoch, C. Pringle and R. Wickner. 2000. Virus taxonomy: classification and no-
menclature of viruses: seventh report of the International Committee on Taxonomy of Viruses,
1st edition. Academic Press, San Diego, London. 1162 pp.

Vernon Systems. 2003. Vernon: User Manual, Version 4.0. Vernon Systems Ltd., Aukland. 378
pp. http://www.vernonsystems.com/downloads/VernonManual.pdf (24 March 2003).

Winston, J.E. 1999. Describing species: practical taxonomic procedure for biologists. Columbia
University Press, New York. 518 pp.

Ytow, N., D.R. Morse and D.M. Roberts. 2001. Nomencurator: a nomenclatural history model to
handle multiple taxonomic views. Biol. J. Linnean Soc. 73(1): 81-98.

Ytow, N., D.M. Roberts and D.R. Morse. 2002. A data structure shared by databases supporting
multiple taxonomic views developed for different taxa: a comparative analysis.
http://www.nomencurator.org/TDWG.html (19 September 2003).

Zhong, Y., S. Jung, S. Pramanik and J.H. Beaman. 1996. Data model and comparison and query
methods for interacting classifications in a taxonomic database. Taxon 45: 223-241.

Zhong, Y., Y. Luo, S. Pramanik and J.H. Beaman. 1999. HICLAS: a taxonomic database system
for displaying and comparing biological classification and phylogenetic trees. Bioinformatics
15(2): 149-156.

