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Abstract—Wireless Body Area Networks (WBANs)
are composed of various sensors that either monitor
and transmit real time vital signals or act as relays
that forward the received data packets to a nearby
Body Node Coordinator (BNC). The design of an
accurate and energy efficient wireless telemonitoring
system can be achieved by: i) minimizing the amount
of data that should be transmitted for an accurate
reconstruction at the BNC, and ii) increasing the ro-
bustness of the telemonitoring system to link failures
due to the nature of wireless medium. To this end,
we present a novel Compressed Sensing (CS) based
telemonitoring scheme, called Cooperative Compressed
Sensing (CCS), that exploits the benefits of Random
Linear Network Coding (RLNC) along with key char-
acteristics of the transmitted biosignals in order to
achieve an energy efficient signal reconstruction at
the BNC. Simulation studies, carried out with real
electrocardiographic (ECG) data, show the benefits of:
i) employing RLNC, compared to the case where relays
simply store and forward the original data packets, and
ii) applying the proposed CCS scheme, compared to
traditional CS recovery approaches.

I. Introduction

Wireless Body Area Networks (WBANs) are consisting
of a collection of low-power, lightweight wireless sensor
nodes, either wearable or implantable, highly specialized
to perform a specific task. More precisely, these sensors are
either employed: i) for continuously monitoring human’s
physiological activities and actions [1] or ii) as relays that
help other body sensors to transmit their information
[2], to a nearby Body Node Coordinator (BNC) (e.g.,
smartphone) via ultra-low-power short range radios (e.g.,
ZigBee, low energy (LE) Bluetooth).

Apart from the obvious advantages, wireless telemoni-
toring of vital signals (e.g., electromyography (EMG), elec-
troencephalography (EEG), electrocardiography (ECG),
etc.) requires new schemes and algorithms to be imple-
mented in order to optimize important parameters, such
as: i) the energy consumption at the body node (sen-
sor/relay) side and ii) the robustness of the telemonitoring
systems in link failures that may occur due to significant
path loss [2], effects of postural body movements relative

to sitting, walking, running [3] or interference between
multiple closely located WBANs [4]. According to [5], the
RF power amplifier of a WBAN transmitter consumes
73% of the total power, while the pervasive use of WBAN
increases the need for coexistence of multiple WBANs
(e.g., patients with attached body nodes in a medical cen-
ter). Consequently, the efficient compression, transmission
and reconstruction of the information constitutes a major
challenge in WBANs.

The compression/reconstruction efficiency of the algo-
rithms running on nodes in the network can be optimized
by proposing encoding/decoding schemes, with high Com-
pression Ratio (CR) capabilities and reduced computa-
tional requirements. To this end, Compressed Sensing (CS)
approaches for signal compression/reconstruction offer an
affordable solution. CS provides a way of reconstructing a
sparse signal from a small number of random linear combi-
nations. Several works [5], [6] assume that the compression
of the ECG or EMG signals can be efficiently implemented
at the biosensor (source) by simply performing Random
Linear Coding (RLC) of the recorded measurements, while
efficient reconstruction is achieved by applying default
CS algorithms (e.g., LASSO) that exploit sample spar-
sity at the receiver. Zhang et al. [7], first proposed a
scheme that improves the CR capabilities of the default
CS algorithms by exploiting key characteristics (e.g., block
sparse structure) of the transmitted signals. However the
main drawback of the proposed scheme was the increased
computational recovery requirements.

All the aforementioned works assume direct communi-
cation scenarios, completely ignoring the fact that body
nodes are often able to communicate with each other.
Therefore, the communication efficiency of the aforemen-
tioned telemonitoring schemes would greatly benefit from
the application of Random Linear Network Coded (RLNC)
cooperation. The main idea behind RLNC cooperation is
that intermediate relays can encode input data packets
using simple algebraic operations, before forwarding them
to the neighboring nodes. Hence, coupling RLNC and CS
can lead to significant efficiency gains in WBANs-based



telemonitoring applications. To the best of our knowledge,
this is the first work that demonstrate the benefits of cou-
pling source (RLC) and network (RLNC) coding schemes
for the efficient telemonitoring of vital signals in WBANs.
Moreover, the benefits of the proposed framework, called
Cooperative Compressed Sensing (CCS), are further en-
hanced by taking into account specific key characteristics
(e.g., high temporal correlation, block sparsity) of the
recorded measurements (e.g., ECG, EEG, EMG) during
the signal reconstruction. To that end, we also propose a
novel low complexity recovery algorithm, named Decorre-
lated Iterative reweighed Group LASSO (DIG LASSO),
that exploits the block sparsity of the decorrelated signal
to provide the network with robustness to link failures
and higher energy efficiency, compared to traditional CS
recovery schemes.

The paper is outlined as follows: Section II, introduces
the concepts and terminology related with the CS theory.
Section III presents the system model and Section IV de-
scribes the operations that can be carried out at the relay
node. In Section V, we introduce the proposed recovery
algorithm (DIG LASSO). In Section VI, the proposed
scheme is evaluated and compared against the state-of-
the-art approaches.

II. Preliminaries on Compressed Sensing

CS provides a way of reconstructing a sparse signal x ∈
R

N by using only a small number of linearly combined
measurements [8], [9]. The RLC measurements y ∈ R

M ,
M < N , are generated using a random matrix A ∈ R

M×N

with i.i.d. elements as: y = Ax + w, where w is a vector
with noise samples.

A. Reconstruction by Exploiting Sample Sparsity
In the noise free case (i.e., w = 0N ), vector x may

be ideally recovered from y by solving the problem:
minx {‖x‖0 : y = Ax}, where ‖ · ‖0 denotes the �0 - norm
that equals to the number of nonzero entries of x.

In order for the signal reconstruction to be robust
in the presence of noise, the constraint of the problem
is relaxed: minx

{‖x‖0 : ‖y − Ax‖2
2 ≤ ε

}
, where ε is a

predefined error tolerance and ‖ · ‖2 is the �2 - norm
of the input vector, respectively. The above optimization
problem cannot be used for practical applications, since
it is computationally intractable. CS suggests replacing
the �0 quasi-norm by the convex �1-norm and solving the
following problem: minx

{‖x‖1 : ‖y − Ax‖2
2 ≤ ε

}
, where

the �1-norm, is defined as ‖x‖1 =
∑N

i=1 |xi|. The �1-
minimization approach is a convex optimization problem
that can be solved efficiently by linear programming tech-
niques. By employing Langrange relaxation, we are able to
efficiently approximate the solution of the aforementioned
problem by solving the �1 regularized least square problem:

x̂ := arg min
x

‖y − Ax‖2
2 + λ‖x‖1, (1)

where the parameter λ controls the balance between the
two optimization objectives: i) the noise level ‖y − Ax‖2
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and ii) the sparsity of vector x. Algorithmically, the
convex optimization problem in eq. (1), known as LASSO
problem, can be tackled by any generic second-order cone
program (SOCP) solver.

B. Reconstruction by Exploiting Block Sparsity
A block sparse signal consists of clusters of zero and

non - zero coefficients. To be more specific, vector x can
be viewed as a concatenation of R blocks of length d:

x = [ x1, . . . , xd︸ ︷︷ ︸
xT [1]

, xd+1, . . . , x2d︸ ︷︷ ︸
xT [2]

, . . . , xN−d+1, . . . , xN︸ ︷︷ ︸
xT [R]

]T , (2)

where x [i] denotes the ith block and N = Rd.
Similarly to eq. (2), we can represent matrix A as a

concatenation of sub-matrices A [i] of size M × d: A =
[ A [1] A [2] . . . A [R] ]. It has been shown that the block
sparse structure enables the signal recovery from a reduced
number of samples, compared to sparse structures. By
simply using the �1 relaxation for reconstructing x, we
ignore the fact that the signal is block-sparse, i.e., the
non-zero entries occur in consecutive positions. To exploit
block sparsity, we have to reconstruct vector x by solving:

x̂ := arg min
x

‖y −
R∑

i=1
A [i] x [i] ‖2

2 +
R∑

i=1
λi‖x [i] ‖2, (3)

which is also known as group LASSO problem [10].

C. Reconstruction by Exploiting Sparsity in a Transform
Domain

In many applications, although the signal x is not sparse
at the time domain, it can be sparse in some transformed
domains, such as the wavelet domain. Therefore, x can
be expressed as x = Ws, where W ∈ R

N×N is an
orthonormal basis matrix of a transformed domain and
s is the representation coefficient vector, which is sparse.
In such cases, in order to exploit either the sample or the
block sparsity of s in the transformed domain, instead of
solving problems (1) or (3), we can solve:

ŝ:=arg min
s

‖y − AWs‖2
2 + λ‖s‖1 (4)

ŝ:=arg min
s

‖y − AWs‖2
2 +

R∑
i=1

λi‖s [i] ‖2 (5)

and then reconstruct x̂ = Wŝ.

III. Wireless Telemonitoring Model

Figure 1 presents our system model, where we consider a
WBAN, with a biosensor (source node) that records a real
time vital signal (e.g., ECG or EEG), and transmits it to
the BNC (i.e. smartphone) through an intermediate relay
body node. We assume that all the sensors are attached
on the same body and the packet error probability in each
hop is denoted by pe.



Fig. 1. Wireless Telemonitoring Model of a WBAN.

A. Operations Executed at the Source
The vital signal is divided into segments of N sam-

ples and each segment is represented as a vector x =
[x1, . . . , xN ]T , where xi ∈ R. We assume that the recorded
signal to be transmitted contains noise itself and, as
a result, it may be written as u = x+ ws, where
u = [u1, . . . , uN ]T are samples of the noisy signal and
ws = [w1, . . . , wN ]T is the random noise. For each seg-
ment, the source generates M random linear combinations
(performing RLC) by using a random matrix A of di-
mension M × N , as follows: y = Au= Ax + w, where
y = [y1, . . . , yM ]T and w = Aws. The coefficients Ai,j

are selected from the Bernoulli distribution, i.e. Ai,j =
±1/

√
N with probability 0.5.

B. Communication Protocol & Network Energy Efficiency
Each RLC measurement yi, i = 1, . . . , M is included

in a packet and its transmission to the final sink node is
performed in two phases. In Phase I (PI) the communi-
cation protocol is based on a Time Division mechanism
where M time slots are assigned to the source node in
order to transmit the RLC measurements. Given that the
packet error probability is pe, the relay receives on average
Nr = (1 − pe) M correct packets, assuming that the wrong
packets are simply discarded. As a result, in Phase II (PII)
the relay node is capable either to forward the received
Nr measurements (FW policy) or to perform RLNC and
transmit M random linear combinations of the received
measurements (RLNC policy). In the next section, we
provide end-to-end expressions for both policies, with
regard to the received measurements at the BNC, given
the original uncoded signal segment x. For the evaluation
of the two policies, we adopt the energy efficiency (EE)
metric, defined as:

EE =
Reconstructed Data

T otal Energy
=

Nlm

EPI
+ EPII

bits/Joule, (6)

where EPI
, EPII

correspond to the average energy con-
sumed during the first and second phase respectively, and

lm denotes the length of each measurement in bits. For
both policies, the energy EPI

is defined as:

EPI = M∗ET + M∗ER, (7)

where ET = PT Ts, ER = PRTs are the transmit and
receive energy consumed by the network nodes in one slot
of duration Ts. With PT and PR we denote the transmit
and receive power. The number of transmitted data M∗

is the measurements required for ensuring an accurate
ECG reconstruction at the BNC and depends on both
the adopted relay policy and the reconstruction method
used at the BNC. Regarding the FW policy, the energy
consumed at Phase II is given by:

EF W
PII

= N∗
r ET + N∗

r ER, (8)

where N∗
r = (1 − pe) M∗. The respective energy consump-

tion for the RLNC policy is given by:

ERLNC
PII

= M∗ET + M∗ER. (9)

IV. Relay Policies

According to the communication protocol described
above, the received measurements at the relay after M
transmissions may be written as:

yr = Ie1y = Ie1Ax + Ie1w, (10)

where Ie1 is an Nr × M matrix that directly occurs by
selecting randomly Nr = (1−pe)M rows from the identity
matrix IM .

A. Forwarding (FW) Policy
In this case, the relay forwards Nr received packets :

xFWr
= yr = Ie1Ax + wr, (11)

where wr = Ie1w. The received measurements at th
destination may be written as in eq. (10):

yF W d
=Ie2xFWr

= Ie2Ie1Ax + wF W d

=AF W x + wF W d
, (12)

where AF W = Ie2Ie1A and wF W d
= Ie2Ie1w. Similarly

to Ie1 , Ie2 is an (1 − pe) Nr×Nr matrix that directly occurs
by selecting randomly (1 − pe) Nr rows from the identity
matrix INr

B. Random Linear Network Coding (RLNC) Policy
In this case, the relay performs RLNC to the received

measurements and forwards the packets:

xRLNCr
= Aryr = ArIe1Ax + Arw̃, (13)

where Ar is an M × Nr matrix with Bernouli i.i.d.
corefficients Ari,j ±1/

√
Nr with probability 0.5. Thus, the

received packets at the destination are given by:

yRLNCd
=Ie3xRLNCr

= Ie3ArIe1Ax + wRLNCd
(14)

=ARLNCx + wRLNCd
, (15)



with ARLNC = Ie3ArIe1A and wRLNCd
= Ie3ArIe1w.

Note that Ie3 is constructed in a similar way as Ie1 , from
the identity matrix IM after removing peM randomly
selected rows.

V. Efficient Recovery of the Original Signal

In real time sensing applications, the sensor obser-
vations are temporally correlated to a certain degree.
In the following section, we propose a novel recovery
algorithm that efficiently exploits the temporal signal
correlations, enabling the original signal reconstruction
by less received measurements. The proposed recovery
algorithm, named decorelated iterative reweighted group
LASSO (DIG LASSO) algorithm, will be derived in the
two following subsections.

A. Temporal Correlation-Aware Block Sparse Recovery

Initially, we describe a novel efficient way of exploiting
any possible temporal correlations between the elements
of a signal block x [i], during block sparse recovery of the
original signal. Let us assume that: i) the matrix Ri ∈
R

d×d captures the correlation structure of the i-th block
of sensor measurements, and ii) the correlation between
elements of different signal blocks is zero, i.e.,

E
[
x [i] xT [j]

]
=

{
Ri if i = j
0 if i �= j

(16)

Each block correlation matrix Ri can be approximated
by a Toeplitz symmetric matrix, given by:

Ri =

⎡
⎢⎢⎢⎣

r0 r1 . . . rd−1
r1 r0 . . . rd−2
...

. . . . . .
...

rd−1 . . . r1 r0

⎤
⎥⎥⎥⎦ . (17)

The values of rk, k = 0, . . . , d − 1, can be estimated at the
source by using an exponentially decaying sample window:

rk = ark + (1 − a)
1
R

R∑
i=1

d−k∑
j=1

x [i] (j) x [i] (j + k)
|x [i] (j)|2 (18)

where a is the selected forgetting factor and x [i] (j) =
x(i−1)d+j , j = 1, . . . , d, i = 1, . . . , R denotes the j-th
element of the i-th block. Alternatively, we can assume
that intra-block correlation follows an exponential corre-
lation model by making the approximation rk = rk, k =
0, . . . , d − 1 and selecting specific values for r that capture
the degree of correlation between adjacent samples.

Based on the fact that the group LASSO schemes
become more efficient when the difference between the
norms of non-zero blocks is small, we propose a practical
way to achieve this (especially in highly correlated cases)
by simply performing block sparse reconstruction of the

decorrelated sensor segment x, that is written as:

s = R−1/2x, (19)

R−1/2 =

⎡
⎢⎢⎣

R−1/2
1 0d . . . 0d

. . .
. . . . . . . . .

0d . . . . . . R−1/2
R

⎤
⎥⎥⎦ (20)

Consequently, by solving the problem defined in eq. (5)
after selecting W = R1/2:

ŝ:= arg min
s

‖y − AR1/2s‖2
2 +

R∑
i=1

λi‖s [i] ‖2, (21)

allows us to recover the original vector at the receiver, by
controling the block sparsity of the decorrelated segment
s that occurs from the original vector x, by eliminating
any temporal correlations within signal blocks (intra-block
correlation).

B. Enhancing Recovery Efficiency by Iterative Reweighting
In the previous subsection we described a transform

domain group LASSO scheme that exploits temporal cor-
relation of the recorded signal at the source to achieve
more accurate reconstruction at the sink node. In this
subsection, we will describe techniques that will allow
to further enhance the recovery efficiency, leading to sig-
nificant improvement in the network lifetime and higher
robustness to wireless link failures.

To further promote block sparsity of s, the ‖s [i] ‖2 terms
in eq. (21) can be replaced by log (‖s [i] ‖2 + ε) for a small
positive ε, ending up to the non convex problem:

ŝ:= arg min
s

‖y−AR1/2s‖2
2+

R∑
i=1

λi log (‖s [i] ‖2 + ε) , (22)

where matrix R defined by eqs. (17), (20) captures the per
block temporal correlations and ε prevents the cost from
tending to −∞. The function in eq. (22) is concave, but
since it is smooth w.r.t. s, iterative linearization may be
utilized to obtain a local minimum [11]. Specifically, let
s(l) denote a tentative solution in the l-th iteration. The
first order approximation of log (‖s [i] ‖2 + ε) yields:

log (‖s [i] ‖2 + ε) ≤ log
(

‖s(0) [i] ‖2 + ε
)

+
‖s [i] ‖2 − ‖s(0) [i] ‖2

‖s(0) [i] ‖2 + ε
. (23)

Following the majorization-minimization approach pre-
sented in [11], instead of minimizing the function that
depends on the left-hand side, we can minimize the ma-
jorizing function that depends on the right-hand side of
(23) and iterate. Then, the problem in eq. (22) can be
driven to a stationary point by executing the iterations:

s(l) := arg min
s

‖y − AR1/2s‖2
2 +

R∑
i=1

λiw
(l)
i ‖s [i] ‖2(24)

w
(l)
i :=

(
‖s(l−1) [i] ‖2 + ε

)−1
, i = 1, . . . , R. (25)
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Fig. 2. Evaluation of different telemonitoring schemes in terms of
the average PRD assuming a pe : 0.4 error probability.

The optimization per iteration of eq. (24) is a weighted
version of eq. (5), where W = R−1/2 and, thus, can
be efficiently solved by standard software packages. The
iterations can be initialized with the solution of eq. (5),
which corresponds to setting all weights to unity. The
resulting iterative algorithm, so called as decorrelated
iterative reweighted group LASSO (DIG LASSO), is ter-
minated as soon as the relative error ‖s(l)−s(l−1)‖2/‖s(l)‖2
becomes smaller than some predefined ε (e.g., 10−6). The
original signal after K required iterations is reconstructed
as x̂ = R1/2s(K).

VI. Performance Evaluation

The focus of this section is to identify the benefits
of jointly applying the DIG LASSO and the two relay
policies, in terms of both energy efficiency and robustness
in link failures.

A. ECG Dataset and Performance metrics
For the evaluation of the proposed schemes we use

the MIT-BIH Normal Sinus Rhythm Database [12]. We
assume that the ECG signal is divided into segments
of N = 256 samples that correspond to a 2 sec ECG
signal. Each segment is encoded at the biosensor side and
the M encoded RLC measurements are transmitted to
a nearby relay body node. The relay is able either to
simply forward (FW policy) or to perform RLNC and
forward (RLNC policy) the re-encoded measurements to
the destination. The BNC can reconstruct the original
signal by performing either the default LASSO approach
or our proposed algorithm (DIG LASSO). Therefore, we
consider four different telemonitoring schemes denoted
as: (a) DIG LASSO-RLNC, (b) LASSO-RLNC, (c) DIG
LASSO-FW and (d) LASSO-FW. In each experiment,
the aforementioned schemes are evaluated by using the
same sensing matrices (A,Ar) either to compress the
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segments of the ECG recording at the biosensor (RLC)
or to perform RLNC of the received measurement at the
relay. In order to evaluate the diagnostic quality of the
compressed ECG recordings, we employ the Percentage
Root-mean-square Difference (PRD) [13] that is defined
as: PRD = ‖x − (x̃)‖2 / ‖x‖2 × 100, where x, x̃ denote
the original and the reconstructed signal, respectively. In
our scenarios, we assume that a reconstructed signal is
acceptable at the BNC if and only if PRD < 9% [13]. Our
goal is to evaluate the schemes (a) - (d) in terms of the
network energy efficiency defined by eqs. (6) - (9).

B. Performance Results
In Fig.2, the obtained PRD, averaged over 1h of 18 dif-

ferent ECG segments, is plotted against the M transmit-
ted RLC data by the biosensor. We assume a packet error
rate equal to pe = 0.4. A block length d = 16 was selected
and the scaling rules for the parameter λ in the problems



TABLE I
ENERGY EFFICIENCY (104

bits/Joule) OF WIRELESS

TELEMONITORING SCHEMES, CASE STUDY: ECG

DIG LASSO LASSO DIG LASSO LASSO
RLNC RLNC FW FW

pe : 0.20 2.84 1.65 2.18 1.58
pe : 0.40 2.28 1.14 1.77 1.07

(1) and (22) follow the results of [14]. By inspecting the
figure, it is clear that the application of the DIG-LASSO
algorithm reduces the number of the transmitted samples
M required for the efficient reconstruction of the signal
x, with respect to the reference schemes. Moreover, the
application of RLNC at the intermediate node can further
reduce the required number of transmissions.

Similar conclusions are drawn from fig. 3, where we plot
the success rate as a function of the samples transmitted
by the biosensor M . In particular, it is shown that the
application of DIG LASSO-RLNC (case a) can lead to
accurate reconstruction by transmitting only M∗

a = 225
packets, whereas DIG LASSO-FW (case c) requires M∗

c =
360 packets. The required number of packets for the
reference schemes is significantly increased. In particular,
LASSO-RLNC (case b) requires M∗

b = 450, whereas at
least M∗

d = 600 packets are needed by LASSO-FW (case
d). Thus, the application of RLNC at the relay results
in a 22% reduction of the total packets required to be
transmitted in the network 1, while the application of
the DIG-LASSO-RLNC, as compared to LASSO-RLNC,
reduces the number of packet transmissions by 50%. In
Fig. 4, we plot the reconstructed ECG signal segments,
that correspond to a 2 sec ECG recording. The number
of samples transmitted by the biosensor was equal to
M = 120, and a packet error rate of pe = 0.4 was consid-
ered. Note that the DIG LASSO with RLNC at the relay
provides the only accurate ECG signal reconstruction.

Finally, in Table I we provide the energy efficiency values
according to eqs. (6) - (9) for different values for pe. We
have assumed that the transmit and receive power is equal
to 3.8 mW , 4.6 mW respectively, while the duration of a
packet transmission is equal to 0.44 m s [15] 2. Again, the
exploitation of temporal correlation during reconstruction
and the application of RLNC at the relay body nodes
result in significant energy efficiency gains, especially in
cases with high link failures.

VII. Concluding Remarks

Real time telemonitoring of vital signals in WBANs
introduces several challenges, such as: i) minimizing the
amount of data that should be transmitted in the WBAN

1In cases (a), (b) the total packet transmitted in the two phases
(PI , PII) are 2M∗

a and 2M∗
b respectively. whereas in case (c), (d) the

total pakcet are (2 − pe) M∗
c and (2 − pe) M∗

d .
2We have assumed packets of length 14 bytes, with 2 bytes payload

and a data rate equal to 256 kbps [3], while lm=16 bits/measurement.

ii) increasing the robustness of the telemonitoring sys-
tem to link failures. To this end, we proposed a novel
Cooperative Compressed Sensing (CCS) framework that
offers significant gains in terms of both energy efficiency
of the nodes in the network and robustness to link failures,
by exploiting the benefits of RLNC cooperation and the
block sparse structure of the decorrelated biosignals during
reconstruction. Although we focused on wireless ECG
telemonitoring, the proposed schemes can be also applied
to other telemedicine applications, such as telemonitoring
of EEG [16] and EMG [5]. The presented schemes will be
implemented in a real WSN testbed.
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