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ABSTRACT  
 
We introduce a novel approach that casts a linear inverse problem for species concentration 
tomography from spectral data such as those acquired in wavelength modulation spectroscopy or 
direct absorption spectroscopy. Under isobaric measurement conditions and known plume 
temperature, our technique leads to a linear well-posed estimation problem for an extended data set 
derived from the direct absorption spectroscopy measurements. This allows imaging the concentration 
with enhanced noise robustness and spatial resolution that is significantly higher compared to previous 
methods for the same number of optical paths. We demonstrate the performance of our approach 
through proof-of-concept simulation for a carbon dioxide tomographic measurement.   
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1 INTRODUCTION  
 
Optical diagnostics are increasingly employed to image combustion and gas plumes, enabled by 
advances in opto-electronic components and image processing algorithms. Chemical species 
tomography (CST) is one such tool, which reconstructs the distribution of scalar properties of a gas 
from measurements of light made at the periphery of the flow domain. For a recent topical review of 
methods and applications we refer the reader to Cai and Kaminski (2017). CST was initially developed 
to infer the concentration of an absorbing gas under isothermal, isobaric conditions using 
measurements of monochromatic light absorbance. Since the advent of tunable laser signals, the 
technique has been extended to include the simultaneous estimation of temperature and 
concentration. Multi-parameter estimation can be achieved by considering a non-linear inverse 
problem, in which the temperature and concentration of a target species are inferred from multispectral 
absorption data by a combined model of radiative transfer and line-by-line spectroscopy. In principle, 
such an approach can lead to the reconstruction of the absorbance spectrum over a range of 
wavenumbers, from where temperature and concentration can be estimated locally, by solving an ill-
posed inverse problem by following a Bayesian estimation algorithm or an optimization as explained in 
Daun et al. (2016) and Polydorides et al. (2016) respectively. 
 
1.1 Governing spectroscopic models  
 
We begin to describe our methodology by presenting the model equations for simulating the direct 
absorption spectroscopy (DAS) measurements, here assumed taken on a single chemical species 
such as for example carbon dioxide. Given spectroscopic information from the HITRAN database by 
Gordon et al (2017), and considering spatially varying profiles of plume temperature and 
concentration, in isobaric condition the absorbance spectrum from a single optical axis 𝐿𝐿 is ideally 
modelled as documented in Hanson et al. (2016) 
 

                                      𝛼𝛼 𝜈𝜈 = 𝑑𝑑𝑑𝑑 𝑆𝑆!! 𝑇𝑇 𝜙𝜙!! 𝑇𝑇,𝑃𝑃,𝑋𝑋 𝑃𝑃 𝑋𝑋!
!
!!!               (1)

  
where the sum runs over the 𝑁𝑁  HITRAN spectroscopy lines. In the above expression, 𝑇𝑇  is the 
temperature, 𝑃𝑃 stands for pressure and 𝑋𝑋 is the targeted species’ molar fraction. Note that 𝑇𝑇, 𝑃𝑃 and 𝑋𝑋 
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enter the definition of the line shape functions 𝜙𝜙!!while the line strength functions depend exclusively 
on the temperature. Introducing the kernel function  
 
                                                                  𝑊𝑊!! 𝑥𝑥, 𝜈𝜈 = 𝑆𝑆!!(𝑥𝑥)𝜙𝜙!!(𝑥𝑥, 𝜈𝜈)          (2) 
 
With 𝑥𝑥 and 𝜈𝜈 the spatial and spectral coordinates respectively, allows to cast the DAS measurement 
model at 𝜈𝜈 as a nonlinear integral equation  
 
                                                               𝛼𝛼 𝜈𝜈 = 𝑑𝑑𝑑𝑑 𝑊𝑊!! 𝑥𝑥, 𝜈𝜈 𝑃𝑃 𝑋𝑋!

!
!!!        (3) 

 
Typically, one measures the spectral absorbance 𝛼𝛼meas = 𝛼𝛼 𝜈𝜈! ,… ,𝛼𝛼 𝜈𝜈!  at 𝑘𝑘 wave numbers at the 
characteristic range of the targeted species, on each beam intersecting the plume. Thereafter, these 
data are usually processed by means of regression to yield, in the knowledge of 𝑇𝑇 and 𝑃𝑃, the line 
integrals  
                                                                            𝐶𝐶 = 𝑑𝑑𝑑𝑑 𝑋𝑋!         (4) 
 
When calculated on a sufficient number of beams, 𝐶𝐶 allow to estimate quantitatively the profile of 𝑋𝑋 
using conventional tomographic algorithms such as Radon transform inversion or regularised 
algebraic reconstruction methods. However, due to the intrinsic complexities of the in-situ 
measurements in harsh environments, the CST problems tend to be severely under-determined, 
leading to limited-data and sparse tomography applications, see for example Terzija et al. (2011) and 
Polydorides et al. (2016). In this work we demonstrate, by means of simulation, an alternative strategy 
where the nonlinear model (3) is linearized to form an alternative model for 𝑋𝑋, using directly the 
spectral data. In effect, this leads to having more linearly independent data for reconstructing 𝑋𝑋 and 
thus allows to utilise a least squares formulation with a minimum amount of regularisation.   
 
1.2 Inverse problem 
 
Our approach to the image reconstruction inverse problem exploits the weak dependence of the 
lineshape function on the targeted concentration. In fact, when knowing an average value of the molar 
fraction 𝑋𝑋, for a constant pressure 𝑃𝑃 we can approximate  
 
                                              !(!)

!
= 𝑑𝑑𝑑𝑑  𝑊𝑊!! 𝑥𝑥, 𝜈𝜈;𝑋𝑋,𝑇𝑇 𝑋𝑋 𝑥𝑥 ≈ 𝑑𝑑𝑑𝑑  𝑊𝑊!! 𝑥𝑥, 𝜈𝜈;𝑋𝑋,𝑇𝑇 𝑋𝑋 𝑥𝑥 .     (5) 

 
Discretising on a finite dimensional grid with 𝑛𝑛 elements, the DAS model for the measurement at 𝜈𝜈 
becomes  
                                                                    !(!)

!
= ℓ! diag 𝑤𝑤!! 𝑋𝑋.        (6) 

where ℓ!  is the discretised line integral operator along the jth optical trajectory, the vector 𝑤𝑤!! has 
entries  
                                                                    𝑤𝑤!! = 𝑊𝑊!! 𝑥𝑥, 𝜈𝜈;𝑋𝑋,𝑇𝑇

!
!!!       (7) 

and 𝑋𝑋  is the discretised sought concentration vector. Populating the above for 𝑘𝑘  different wave 
numbers yields a system for the spectral measurements 𝛼𝛼meas as 
                                                                   𝑃𝑃!!𝛼𝛼meas = 𝑊𝑊!diag(ℓ!)𝑋𝑋       (8) 
While applying the same model for all 𝑚𝑚 optical paths in the measurement system we eventually arrive 
at 

                                                 𝛼𝛼 = 𝐵𝐵𝐵𝐵 =  
𝐵𝐵!
…
𝐵𝐵!

𝑋𝑋 , where 𝐵𝐵! = 𝑃𝑃𝑊𝑊!diag(ℓ!)     (9) 

is 𝑘𝑘 × 𝑛𝑛  and 𝐵𝐵  is 𝑚𝑚𝑚𝑚×𝑛𝑛 . Note that contrary to the conventional approach in (4) we now have 
substantially more equations for the same unknown. To be precise the number of equations we get 
from this model is equal to the numerical rank of the matrix 𝐵𝐵, which in turn depends on that of 𝑊𝑊and 
the sum of the vectors 𝑤𝑤!!. It can be shown that if 𝑇𝑇 is not constant over the field of view then the rank 
of 𝐵𝐵 is much greater than 𝑚𝑚. Thus upon choosing the grid dimension appropriately the image of 𝑋𝑋 can 
be traced iteratively, beginning with 𝑋𝑋 by solving an unregularized least squares problem. We find that 
this result is exceptionally useful, as it takes advantage of the richness of the spectral information and 
at the same time it alleviates the need for regularisation.  
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1.3 Numerical example 
 
We demonstrate the proposed method by means of a simulated example. Assuming the FLITES 
measurement system described in Polydorides et al. (2016) and Polydorides et al. (2018) which 
consists of 126 straight optical beams from 6 projection angles and we discretise the domain into a 30 
x 30 square pixels grid. Notice that in the conventional approach one has a heavily underdetermined 
problem with 126 data points and 900 unknowns. Moreover we assume inhomogeneous concentration 
and temperature profiles as shown in figure 1, at a constant pressure of 1.5 atm. In this setup we take 
500 spectral absorbance measurements on wave numbers equally spaced between 5005 cm-1 and 
5008 cm-1, as shown in figure 2, based on 34 HITRAN spectroscopy lines. 

 
Figure 1. Left, the targeted CO2 concentration profile and right the temperature distribution over the same area.  

 

 
 

Figure 2. The spectral absorbance DAS measurements on 126 optical channels corresponding to the concentration 
and temperature profiles shown in figure 1.  

 
In these circumstances, the matrix 𝐵𝐵 has dimensions 63000×900, while the unknown vector 𝑋𝑋 also 
has dimension 900. For a small level of synthetic noise in this data we solve the least square problem 
for an initial guess 𝑋𝑋 = 0.027 , leading to a matrix 𝐵𝐵 with rank 881 and a first iteration image shown to 
the left of figure 3 with relative error of 4.5%. Reiterating based on this estimate for the concentration 
yields a full rank matrix 𝐵𝐵 and a 0.0008% relative error, as it is evident from the resemblance of the 
image in the right of the figure 3 to the original target shown in figure 1.  
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Figure 3. The first and second iterations of the image reconstruction without any regularisation. The one to the left is 

based on an initial homogeneous guess of the concentration and the one to the right uses the one to the left as an 
initial guess.  

 
1.4 Conclusions 
 
In this short paper we outlined a new approach which leads to posing a linear inverse problem for the 
concentration of a chemical species directly on direct spectroscopy data without the need to resolve 
path concentration integrals beforehand. Using numerical simulation, we have showed that when the 
temperature profile of the plume is inhomogeneous it is possible to deduce a large number of linearly 
independent equations for the concentration even from a small number of optical channels. In turn, 
this implies that in knowing the temperature of the plume we can image its concentration with higher 
spatial resolution.  
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