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1. Introduction 

Since the financial crisis of 2007-2008, many central banks around the world have 
chosen to keep their nominal interest rate close to 0%. While in a few countries, rates 
on some assets have gone slightly negative, central banks are unable to push their 
target rate to the level a Taylor rule might suggest since agents always have the option 
of holding cash. In practice then, central banks face a zero lower bound (ZLB) on their 
policy rate, which limits their ability to provide stimulus in severe recessions. 
Furthermore, during the crisis, both households, firms and banks have hit their 
borrowing constraints, which has limited their ability to smooth out its effects. 
However, the theoretical results on determinacy which justify the Taylor principle do 
not apply to models with occasionally binding constraints (OBCs), such as the zero 
lower bound, or a borrowing constraint, meaning that the profession still lacks all of 
the necessary tools for understanding the behaviour of such models. 

In this paper, we develop theoretical tools for understanding the behaviour of 
otherwise linear models with occasionally binding constraints.2 Much as the seminal 
paper of Blanchard and Kahn (1980) provided necessary and sufficient conditions for 
the existence of a unique perfect foresight solution to a linear model that returns to a 
given steady-state, we will provide the first necessary and sufficient conditions for 
there to be a unique perfect foresight solution, returning to a given steady-state, in 
otherwise linear models with occasionally binding constraints. We will also provide 
both necessary conditions and sufficient conditions for there to exist any such 
solutions. When no solution returning to the given steady-state exists, this implies that 
the model must converge to some alternative steady-state. We note that while in the 
fully linear case, rational expectations and perfect-foresight solutions coincide, in the 
otherwise linear case considered here, this will not be the case. However, since under 
quite mild assumptions, there are weakly more solutions under rational expectations 
than under perfect foresight (as proven in online appendix A), our results will imply 
lower bounds on the number of solutions under rational expectations. 

As was observed by Benhabib, Schmitt-Grohé, and Uribe (2001a; 2001b), in the 
presence of OBCs, there are often multiple steady-states. For example, a model with a 
zero lower bound on nominal interest rates and Taylor rule monetary policy when 
away from the bound will have an additional “bad” deflationary steady-state in which 
nominal interest rates are zero. The presence of such multiple steady-states means that 
there can be sunspot equilibria which jump between the neighbourhoods of the two 
steady-states. Furthermore, if agents put a positive probability on being in the 
neighbourhood of the “bad” steady-state in future, then since this “bad” steady-state 

                                                 
2 A companion paper (Holden 2016), develops computational tools for understanding the same thing. 
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is indeterminate, then by a backwards induction argument, there is indeterminacy 
now. The consequences of indeterminacy of these kinds have been explored by 
Schmitt-Grohé and Uribe (2012), Mertens and Ravn (2014) and Aruoba, Cuba-Borda, 
and Schorfheide (2014), amongst others. In all cases, the key to generating 
indeterminacy is that agents’ beliefs about the point to which the economy would 
converge without future uncertainty are switching from one steady-state to the other. 

However, the central banks of most major economies have announced (positive) 
inflation targets. Thus, convergence to a deflationary steady-state would represent a 
spectacular failure to hit the target. As argued by Christiano and Eichenbaum (2012), 
a central bank may rule out the deflationary equilibria in practice by switching to a 
money growth rule following severe deflation, along the lines of Christiano and 
Rostagno (2001). Furthermore, Richter and Throckmorton (2015) and Appendix B of 
Gavin et al. (2015) present evidence that the deflationary equilibrium is unstable3 
under rational expectations if shocks are large enough, making it much harder for 
agents to coordinate upon it. This suggests that at least in the long-run, agents ought 
to believe that we will return to the vicinity of the inflation target, and they ought to 
place zero probability on paths converging to deflation. Such beliefs also appear to be 
in line with the empirical evidence of Gürkaynak, Levin, and Swanson (2010). If 
agents’ beliefs satisfy these restrictions, then the kinds of multiplicity studied by the 
authors cited in the previous paragraph are ruled out. It is an important question, 
then, whether there are still multiple equilibria even when all agents believe that in 
the long-run, the economy will return to a particular steady-state. 

It is on such equilibria that we focus on in this paper, providing necessary and 
sufficient conditions for the existence of a unique perfect-foresight path, and also 
examining whether it is actually consistent with rationality for agents to believe that 
the economy will eventually return to the given steady state. In an application, we 
show that many otherwise linear New Keynesian (NK) models featuring endogenous 
state variables (e.g. price dispersion), do not possess a unique perfect-foresight path. 

This means that even when agents’ long-run expectations are pinned down, there is 
still multiplicity of equilibria. Thus, the Taylor principle is not sufficient for 
determinacy in the presence of occasionally binding constrains. Indeed, we show that 
in these models, there are some initial states from which the economy has one return 
path that never hits the ZLB, and another that does hit it, so there may be multiplicity 
even when away from the bound. However, we show that under a price-targeting 
regime, there is a unique equilibrium path even when we impose the ZLB. Thus, if 
policy makers are convinced by the arguments for the Taylor principle, then, given 
they face the zero lower bound, they ought to consider adopting a price level target. 

                                                 
3 In particular, they show that policy function iteration is not stable in the vicinity of the deflationary equilibria. 
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Our paper also provides both necessary and sufficient conditions for the existence 
of any perfect-foresight solutions which return to the original (“good”) steady-state. 
These results include both global (non-)existence results (i.e. ones independent of the 
initial state and/or shock realisation), and particular (non-)existence results (i.e. ones 
that are conditional on the current realisations). When no perfect-foresight 
equilibrium returning to the “good” steady-state exists, agents must switch their 
beliefs to the other (“bad”) steady-state, where they will remain in the absence of any 
way for agents to coordinate back on the “good” steady-state. 

We show that for standard New Keynesian models with endogenous state variables, 
there is a positive probability of ending up in a state of the world (i.e. with certain state 
variables and shock realisations) in which there is no perfect foresight path returning 
to the “good” steady-state. Furthermore, if we suppose that in the stochastic model, 
agents deal with uncertainty by integrating over the space of possible future shock 
sequences, as in the original stochastic extended path algorithm of Adjemian and 
Juillard (2013),4 then such agents would always put positive probability on tending to 
the “bad” steady-state. Since the second steady-state is indeterminate in NK models, 
then this implies global indeterminacy by a backwards induction argument. Once 
again though, price level targeting would be sufficient to restore determinacy. 

1.1. Further related literature 
A growing literature has already looked at equilibrium non-existence or multiplicity 

in New Keynesian models subject to the ZLB, even aside from the literature started by 
Benhabib, Schmitt-Grohé, and Uribe (2001a; 2001b) and discussed previously. We will 
first discuss prior work on non-existence, before considering existing results on 
multiplicity. We conclude this section by arguing that our approach here is a 
conservative one that makes it as unlikely as possible that we should find multiplicity. 
That we still do find multiplicity in standard models is thus all the more surprising. 

Several papers have found that New Keynesian models with a zero lower bound 
might have no solution at all if the variance of shocks is too high. Mendes (2011) 
derived analytic results on existence as a function of the variance of a demand shock, 
and Basu and Bundick (2015) showed the potential quantitative relevance of such 
results.  Furthermore, conditions for the existence of an equilibrium in a simple NK 
model with discretionary monetary policy are derived in close form for a model with 
a two-state Markov shock by Nakata and Schmidt (2014). The conditions imply that 
the economy must spend a small amount of time in the bad state for the equilibrium 
to exist, which again links existence to variance. 
                                                 
4 Strictly, this is not fully rational, as it is equivalent to assuming that agents act as if the uncertainty in all future periods would 
be resolved next period. However, in practice this appears to be a close approximation to full rationality, as demonstrated by 
Holden (2016). The authors of the original stochastic path method now have a more complicated version that is fully consistent 
with rationality (Adjemian and Juillard 2016). 
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Our results will not be directly related to the variance of shocks, as we work under 
perfect foresight. Nonetheless, our theoretical results under perfect foresight may help 
explain some of the prior results in the stochastic case. We will show that whether or 
not a perfect foresight solution exists will depend on the perfect-foresight path taken 
by nominal interest rates in the absence of the bound. Throughout, we will assume 
that this path is arbitrary, as there is always some information about future shocks that 
could be revealed today to produce a given path. However, in a model with a small 
number of shocks, all of bounded support, and no information about future shocks, 
clearly not all paths are possible for nominal interest rates in the absence of the bound. 
The more shocks are added (e.g. news shocks), and the wider their support, the greater 
will be the support of the space of possible paths for nominal interest rates in the 
absence of the ZLB, and hence, the more likely will be non-existence of a solution for 
a positive measure of paths. This gives new intuition for the prior results. 

There has also been some prior work by Richter and Throckmorton (2015) and Gavin 
et al. (2015; Appendix B) that has related a kind of eductive stability (the convergence 
of policy function iteration) to other properties of the model. Non-convergence of 
policy function iteration is suggestive of non-existence, though not definitive evidence. 
While the procedure of the cited authors has the advantage of working with the fully 
non-linear model under rational expectations, this limitation means that it cannot 
directly address the question of existence. By contrast, our results are theoretical and 
directly address existence. Thus, both procedures should be viewed as 
complementary; while ours definitively answers the question of existence in the 
slightly limited world of perfect foresight, otherwise linear models, the Richter and 
Throckmorton results give answers on stability in a richer setting. 

Another approach to establishing the existence of an equilibrium is to produce it to 
satisfactory accuracy, by solving the model in some way. Under perfect foresight, the 
procedure outlined in this paper’s companion is a possibility (Holden 2016), and the 
method of Guerrieri and Iacoviello (2012) is a prominent alternative. Under rational 
expectations, policy function iteration methods have been used by Fernández-
Villaverde et al. (2015) and Richter and Throckmorton (2015), amongst others. 
However, this approach cannot generally establish non-existence or prove uniqueness. 
As such it is of little use to the policy maker who wants policy guidance to ensure 
existence and/or uniqueness. Furthermore, if the problem is solved globally, one 
cannot in general rule out that there is not an area of non-existence outside of the grid 
on which the model was solved. Similarly, if the model is solved under perfect 
foresight for a given initial state, then the fact that a solution exists for that initial point 
gives no guarantees that a solution should exist for other initial points. Thus it is 
essential to produce more general results on global existence, as we do here. 
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Assorted papers have also looked at multiplicity of equilibria in models containing 
a zero lower bound. This of course started with Benhabib, Schmitt-Grohé, and Uribe 
(2001a; 2001b) as already discussed, but there are several other key threads to the 
literature that are related to our work. One branch that is only tangentially related and 
so will not be extensively discussed looks at Markov switching policy rules. Key 
papers include Davig and Leeper (2007) and Farmer, Waggoner, and Zha (2010; 2011). 
While this literature has been able to derive tight theoretical results, the usually 
assumed exogeneity of the switching means that the model’s shocks cannot drive the 
model into the ZLB state, limiting its application to the present context. Some 
determinacy results with endogenous switching were derived by Marx and 
Barthelemy (2013), but unfortunately they only apply to forward looking models that 
are sufficiently close to ones with exogenous switching, and there is no reason to think 
that a standard New Keynesian model with a ZLB should satisfy this property. 

Perfect foresight equilibria of New Keynesian models with terminal conditions were 
also examined by Brendon, Paustian, and Yates (2013; 2016), henceforth abbreviated 
to BPY. In BPY (2013), the authors show analytically that in a very simple NK model, 
featuring a response to the growth rate in the Taylor rule, there are multiple perfect-
foresight equilibria when all agents believe that with probability one, in one period’s 
time, they will escape the bound and return to the neighbourhood of the “good” 
steady-state. Furthermore, in the aforementioned paper, and in BPY (2016), the 
authors show numerically that in some select other models, there are multiple perfect-
foresight equilibria when the economy begins at the steady-state, and all agents believe 
that the economy will jump to the bound, remain there for some weakly positive 
number of periods, before leaving it endogenously, after which they believe they will 
never hit the bound again. 

Relative to these authors, we will provide far more general theoretical results, and 
these will permit numerical analysis that is both more robust and less restrictive. This 
robustness and generality will prove crucial in showing multiplicity even in simple 
NK models, with entirely standard Taylor rules. For example, whereas BPY (2016) 
write that price-dispersion “does not have a strong enough impact on equilibrium 
allocations for the sort of propagation that we need”, we will show that in fact the 
presence of price dispersion is sufficient for multiplicity. Likewise, whereas BPY (2013; 
2016) find a much weaker role for multiplicity when the monetary rule does not 
include a response to the growth rate of output, our findings of multiplicity will not 
be at all dependent on such a response, implying very different policy prescriptions. 

In other related work, Armenter (2016) shows that in a simple otherwise linear New 
Keynesian model with a ZLB, if the central bank pursues Markov (discretionary) 
policy subject to an objective targeting inflation, nominal GDP or the price level, then 
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there are multiple equilibria quite generally. The existence of multiple discretionary 
equilibria in models of monetary policy without a ZLB is well established (see e.g. 
Albanesi, Chari, and Christiano (2003) and the other papers cited by Armenter (2016)), 
but Armenter shows that even in a model that would have a unique equilibrium in the 
absence of the ZLB, its introduction produces additional Markov equilibria. By 
contrast, we will find that adopting a Taylor rule including a term in the price level 
leads to there being a unique perfect-foresight path returning to the inflationary 
steady-state. This difference between our results and those of Armenter (2016) is 
driven both by our assumption of commitment to a rule, and by the fact that we rule 
out getting stuck in the neighbourhood of the deflationary steady-state by assumption. 

In further related results, Braun, Körber, and Waki (2012) show that there may be 
multiple perfect-foresight solutions to a non-linear New-Keynesian model, converging 
to the non-deflationary steady-state. However, it turns out that the linearized version 
of their model has a unique equilibrium, even when the ZLB is imposed. Thus, the 
multiplicity we find is strictly in addition to the multiplicity found by those authors. 
While the theoretical and computational methods used by Braun, Körber, and Waki 
(2012) have the great advantage that they can cope with fully non-linear models, it 
appears that they cannot cope with endogenous state variables, which limits their 
applicability. By producing tools for analysing otherwise linear models including state 
variables, our tools and results provide a complement to those of Braun, Körber, and 
Waki (2012). Evidence of their continued relevance in a non-linear setting is provided 
by the fact that the multiplicity found in a simple linearized model by Brendon, 
Paustian, and Yates (2013) (and by us in this paper) is also found in the equivalent non-
linear model by Brendon, Paustian, and Yates (2016). 

Of course, ideally we would have liked to analyse models with other nonlinearities 
apart from the occasionally binding constraint(s). Linearization can artificially exclude 
equilibria (see e.g. Bodenstein (2010)), and, as just mentioned, Braun, Körber, and Waki 
(2012) show examples of linearization excluding equilibria in the presence of the ZLB. 
Nonetheless, we maintain that studying multiplicity in otherwise linear models is still 
an important exercise. Firstly, macroeconomists have long relied on existence and 
uniqueness results based on linearization of models without occasionally binding 
constraints, despite the fact that this may produce spurious uniqueness in some 
circumstances. Secondly, it is nearly impossible to find all perfect foresight solutions 
in general non-linear models, since this is equivalent to finding all of the solutions to 
a huge system of non-linear equations, when even finding all of the solutions to large 
systems of quadratic equations is computationally intractable. At least if we have the 
full set of solutions to the otherwise linear model, we may use homotopy continuation 
methods to map these solutions into solutions of the non-linear model. Furthermore, 
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finding all solutions under uncertainty is at least as difficult in general, as the policy 
function is also defined by a large system of non-linear equations. Thirdly, Christiano 
and Eichenbaum (2012) argue that e-learnability considerations render the additional 
equilibria of Braun, Körber, and Waki (2012) as merely “mathematical curiosities”, 
suggesting that the equilibria that exist in the linearized model are of independent 
interest, whatever one’s view on this debate. Finally, our main results for New-
Keynesian models will imply non-uniqueness, so concerns of spurious uniqueness 
under linearization will not be relevant in these cases. 

From the preceding discussion, we see that our choice to focus on otherwise-linear 
models under perfect-foresight, with fixed terminal conditions, may bias our results 
in favour of uniqueness for four distinct reasons. Firstly, because there are potentially 
more solutions under rational expectations than under perfect-foresight; secondly, 
because there are potentially other solutions returning to alternate steady-states; 
thirdly, because the original fully non-linear model may possess yet more solutions; 
and fourthly because there may be further equilibria under discretionary policy. This 
means that our results on the multiplicity of solutions to New Keynesian models are 
all the more surprising, and that it is all the more likely that multiplicity of equilibria 
is an important factor in explaining actual economies’ spells at the zero lower bound. 

1.2. Intuition for the multiplicity mechanism 
The key idea behind all of our proofs is that an OBC provides a source of 

endogenous news about the future. When a shock hits, driving the economy to the 
bound in some future periods, that tells us that in those future periods, the (lower) 
bounded variable will be higher that it would be otherwise.5 Hence, any shock that 
causes the ZLB to be hit may be thought of as providing a source of endogenous news 
about future innovations to the monetary rule, of just the right magnitude needed to 
impose the ZLB. For example, if the magnitude of a productivity shock is such that in 
the absence of the ZLB, nominal interest rates would be negative a year after the 
original shock, then, in the presence of the ZLB, the shock is providing endogenous 
news that nominal interest rates will be higher than normal in one year’s time. 

Thinking in terms of endogenous news shocks also helps to provide intuition for the 
presence of multiple equilibria in these models. As a first step towards such intuition, 
consider a New Keynesian model in which learning about a future positive shock to 
nominal interest rates actually leads to lower rates in the period in which the shock 
arrives. This is true, for example, in the model of Smets and Wouters (2003) at the 
posterior mode, in part since that model features a strong response to the growth rate 

                                                 
5 The idea of imposing the zero lower bound by adding news shocks is also present in Holden (2010), Hebden et al. (2011), Holden 
and Paetz (2012) and Bodenstein et al. (2013). News shocks were introduced to the literature by Beaudry and Portier (2006). 
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of output.6 The mechanism there is as follows: since output growth must eventually 
be positive following the arrival of a contractionary shock, nominal interest rates will 
be relatively high after such a shock, compared to a world in which there was no 
response to growth rates. This pushes down future output and inflation, and hence 
depresses current output and inflation due to consumption smoothing and forward 
looking price setting. If the response to growth rates is large enough, then in the period 
of the shock, nominal interest rates will actually fall, in response to the 
contemporaneous fall in output and inflation. 

Now, in such a model, there will be some magnitude of news shock to nominal 
interest rates today at which the news is of precisely the correct magnitude to bring 
the negative interest rates implied by the Taylor rule up to zero, in that period. A news 
shock of this magnitude thus becomes a self-fulfilling prophecy, as illustrated in 
Figure 1. If agents believed such a shock would occur, then Taylor rule implied interest 
rates would be negative in future, so such a shock would indeed “occur” in order to 
impose the ZLB.  

A similar channel can produce multiplicity even in models without a response to 
growth rates in the Taylor rule, and even when news about positive shocks to the 
monetary rules always results in increases in interest rates in the period in which the 
shock arrives. The requirement is that there is some combination of future periods 
such that with appropriate positive shocks anticipated to arrive in each, interest rates 
are below steady-state in each of the given periods, allowing for a similar self-fulfilling 
prophecy. Informally, what is needed is that the impulse responses to positive news 
shocks to interest rates are sufficiently negative for a sufficiently high amount of time 
that a linear combination of them could be negative in every period in which a shock 

                                                 
6 This is the mechanism stressed by Brendon, Paustian, and Yates (2013; 2016). 

 

45° 

Shock magnitude 

Taylor rule implied nominal interest rate 

Self-fulfilling shock size 

0 

Figure 1: Self-fulfilling news shocks 
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arrives. Since non-persistent shocks cannot have persistent effects without 
endogenous state variables, in practice endogenous state variables are likely to be 
necessary for multiplicity.7 

To make this clearer, compare a standard Calvo (1983)-pricing New Keynesian 
model without capital or price indexation, but with positive trend inflation, to one 
with full indexation to steady-state inflation. More precisely, the models considered 
are that of Fernández-Villaverde et al. (2015) with the ZLB removed, and a version of 
the same model with indexation. Further details are given in section 3.3. 
 

 

 

Figure 2: Impulse responses to a shock announced in period 𝟏𝟏, but hitting in period 𝟑𝟑𝟑𝟑, in basic New 
Keyenesian models with (left) and without (right) indexation to steady-state inflation. 

All variables are in logarithms. In both cases, the model and parameters are taken from Fernández-Villaverde et 
al. (2015), the only change being the addition of complete price indexation to steady-state inflation for non-

updating firms in the left hand plots. 

 
Figure 3: Difference between the impulse responses of nominal interest rates from the two models shown in 

Figure 2. 

Negative values imply that nominal interest rates are lower in the model without indexation. 

To a first order approximation, the model with full indexation never has any price 
dispersion, and thus has no endogenous state variables. In Figure 2 we plot the 
impulse responses of first order approximations to both models to a shock to nominal 

                                                 
7 Esoteric examples of multiplicity without endogenous state variables may be constructed; one is given in online appendix B. 
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interest rates that is announced in period one but that does not hit until period thirty. 
For both models, the shape is similar, however, in the model without indexation, the 
presence of price dispersion reduces inflation both before and after the shock hits. This 
is because the predicted fall in inflation compresses the price distribution, reducing 
dispersion, and thus reducing the number of firms making very large adjustments. 
The fall in price dispersion also increases output, due to lower efficiency losses from 
miss-pricing. However, the effect on interest rates is dominated by the negative 
inflation effect, as the Taylor-rule coefficient on output cannot be too high if there is to 
be determinacy.8  For reference, the difference between the IRFs of nominal interest 
rates in each model is plotted in Figure 3, which makes clear that interest rates are on 
average lower following the shock in the model without indexation. 

 
Figure 4: Construction of multiple equilibria in the basic NK model with price dispersion. 

The left-hand plot shows the impulse responses to news shocks arriving zero to sixteen quarters after becoming 
known. The middle plot shows the same impulse responses scaled appropriately. The right-hand plot shows the 

sum of the scaled impulse responses shown in the central figure, where the red line gives the ZLB’s location, 
relative to steady-state. 

Remarkably, this small difference in the impulse responses between models is 
enough that the linearized model without indexation has multiple equilibria given a 
ZLB, but the linearized model with full indexation is determinate. We illustrate how 
multiplicity emerges in the model without indexation by showing, in Figure 4, the 
construction of an additional equilibrium which jumps to the ZLB for seventeen 
quarters.9 If the economy is to be at the bound for seventeen quarters, then for those 
seventeen quarters, the nominal interest rate must be higher than it would be 
according to the Taylor rule, meaning that we need to consider seventeen endogenous 
news shocks, at horizons from zero to sixteen quarters into the future. The impulse 
responses to unit shocks of this kind are shown in the leftmost plot. Each impulse 
response has broadly the same shape as the one shown for nominal interest rates in 
the right of Figure 2. The central figure plots the same impulse responses again, but 
now each line is scaled by a constant so that their sum gives the line shown in black in 
the rightmost plot. In this rightmost plot, the red line gives the ZLB’s location, relative 

                                                 
8 One might think that the situation would be substantially different if the coefficient on output was high, so that the rise in 
output after the shock produced a rise in interest rates. However, as observed by Ascari and Ropele (2009), the determinacy region 
is much smaller in the presence of price dispersion than would be suggested by the standard Taylor criterion. Numerical 
experiments suggest that in all of the determinate region, interest rates are below steady-state following the shock.   
9 Seventeen quarters was the minimum span for which an equilibrium of this form could be found. 
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to steady-state, thus the combined impulse response spends seventeen quarters at the 
ZLB before returning to steady-state. Since there are only “news shocks” in the periods 
in which the economy is at the ZLB, this gives a perfect foresight rational expectations 
equilibrium which makes a self-fulfilling jump to the ZLB. 

In richer New Keynesian models, both real and nominal rigidities help reduce the 
average value of the impulse response to a positive news shock to the monetary rule. 
Following the shock’s arrival, they help ensure that the fall in output is persistent. 
Prior to the arrival, consumption smoothing (aided by internal habits) and capital or 
investment adjustment costs help produce a larger anticipatory recession. Given these 
mechanisms, we will see that multiplicity is the rule in NK models. Its absence in the 
basic model without price indexation is a knife-edge result, as evidenced by how small 
a change to impulse responses is sufficient to produce multiplicity. 

1.3. Outline of the following 
Our paper is structured as follows. In the following section, section 2, we present 

our key theoretical results on otherwise linear perfect foresight models. We then 
discuss the application of these results to New Keynesian models in section 3. Section 
4 concludes. All files needed for the replication of this paper’s numerical results are 
included in the “Examples” directory of the author’s DynareOBC toolkit, 10  which 
implements an algorithm for simulating models with occasionally binding constraints 
that we discuss in a companion paper (Holden 2016), as well as checking the existence 
and uniqueness conditions that we will discuss here. 

2. Theoretical results on occasionally binding constraints in 
otherwise linear models under perfect foresight 

In this section, we present our main theoretical results on existence and uniqueness 
of perfect foresight solutions to models which are linear apart from an occasionally 
binding constraint. We start by defining the problem to be solved, and examining its 
relationship both to the problem without OBCs, and to a related problem with news 
shocks to the bounded variable. Using the news shock representation, we demonstrate 
that solving the model with OBCs is equivalent to solving a linear complementarity 
problem. We then discuss some theoretical background on these problems, before 
presenting the main existence and uniqueness results. Further results are contained in 
the appendix, with section 6.1 presenting additional results on the number and 
convexity of solutions, and section 6.2 giving further propositions relating our results 
to the properties of models solvable via dynamic programming. We conclude this 
section with a practical guide to checking the existence and uniqueness conditions. 

                                                 
10 These files may be viewed online at https://github.com/tholden/dynareOBC/tree/master/Examples.  

https://github.com/tholden/dynareOBC/tree/master/Examples
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2.1. Problem set-ups 
We start by describing the problem set-up without bounds. Suppose that for 𝑡𝑡 ∈ ℕ+, 

(i.e. 𝑡𝑡 ∈ ℕ, 𝑡𝑡 > 0), the first order conditions of some model may be represented as: 
�𝐴𝐴̂ + �̂�𝐵 + 𝐶𝐶�̂�̂�𝜇 = 𝐴𝐴�̂�𝑥�̂�𝑡−1 + �̂�𝐵𝑥𝑥�̂�𝑡 + 𝐶𝐶�̂�𝔼𝑡𝑡𝑥𝑥�̂�𝑡+1 + 𝐷𝐷� 𝜀𝜀𝑡𝑡, 

where �̂�𝜇 ∈ ℝ�̂�𝑛 and 𝑥𝑥�̂�𝑡 ∈ ℝ�̂�𝑛, 𝜀𝜀𝑡𝑡 ∈ ℝ𝑚𝑚, 𝔼𝔼𝑡𝑡−1𝜀𝜀𝑡𝑡 = 0 for all 𝑡𝑡 ∈ ℕ+, and suppose that 𝑥𝑥0̂ is 
given as an initial condition. Throughout this paper, we will refer to first order 
conditions such as these as “the model”, conflating them with the optimisation 
problem(s) which gave rise to them. 

Furthermore, suppose that 𝜀𝜀𝑡𝑡 = 0  for 𝑡𝑡 > 1 , as in an impulse response or perfect 
foresight simulation exercise. Additionally, we assume the existence of a terminal 
condition of the form 𝑥𝑥�̂�𝑡 → �̂�𝜇 as 𝑡𝑡 → ∞, coming, for example, from the source model’s 
transversality constraints. 

For 𝑡𝑡 ∈ ℕ+, define 𝑥𝑥𝑡𝑡 ≔ � 𝑥𝑥�̂�𝑡
𝜀𝜀𝑡𝑡+1

�, 𝜇𝜇 ≔ ��̂�𝜇
0

�, 𝐴𝐴 ≔ �𝐴𝐴̂ 𝐷𝐷�
0 0

�, 𝐵𝐵 ≔ ��̂�𝐵 0
0 𝐼𝐼

�, 𝐶𝐶 ≔ �𝐶𝐶̂ 0
0 0

�, 

then, for 𝑡𝑡 ∈ ℕ+: 
(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶)𝜇𝜇 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝐵𝐵𝑥𝑥𝑡𝑡 + 𝐶𝐶𝑥𝑥𝑡𝑡+1, (1) 

and we have the extended initial condition 𝑥𝑥0 = �𝑥𝑥0̂
𝜀𝜀1

� , and the extended terminal 

condition 𝑥𝑥𝑡𝑡 → 𝜇𝜇  as 𝑡𝑡 → ∞ . Expectations have disappeared since there is no 
uncertainty after period 0. Thus, the problem of solving the original model has the 
same form as that given in: 

Problem 1 Suppose that 𝑥𝑥0 ∈ ℝ𝑛𝑛 is given. Find 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛 for 𝑡𝑡 ∈ ℕ+ such that 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 
𝑡𝑡 → ∞, and such that for all 𝑡𝑡 ∈ ℕ+, equation (1) holds. 

We make the following assumption in all of the following: 

Assumption 1 For any given 𝑥𝑥0 ∈ ℝ𝑛𝑛, Problem 1 has a unique solution, which takes 
the form 𝑥𝑥𝑡𝑡 = (𝐼𝐼 − 𝐹𝐹)𝜇𝜇 + 𝐹𝐹𝑥𝑥𝑡𝑡−1, for 𝑡𝑡 ∈ ℕ+, where 𝐹𝐹 = −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐴𝐴, and where all of 
the eigenvalues of 𝐹𝐹 are weakly inside the unit circle. 

Sims’s (2002) generalisation of the standard Blanchard-Kahn (1980) conditions is 
necessary and sufficient for this. Further, to avoid dealing specially with the knife-
edge case of exact unit eigenvalues (even if they are constrained to the part of the 
model that is solved forward), in the following we rule it out with the subsequent 
assumption, which is, in any case, a necessary condition for perturbation to produce a 
consistent approximation to a source non-linear model, and which is also necessary 
for the linear model to have a unique steady-state: 

Assumption 2 det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) ≠ 0. 

The combination of Assumption 1 and Assumption 2 imply that all of the eigenvalues 
of 𝐹𝐹 are strictly inside the unit circle. 
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We are interested in models featuring occasionally binding constraints. We will 
concentrate on models featuring a single zero lower bound type constraint in their first 
equation, which we treat as defining the first element of 𝑥𝑥𝑡𝑡. Generalising from this 
special case to models with one or more fully general bounds is straightforward, and 
is discussed in the companion paper (Holden 2016). All of the results below go 
through in the more general case with minimal effort. 

First, let us write 𝑥𝑥1,𝑡𝑡, 𝐼𝐼1,⋅, 𝐴𝐴1,⋅, 𝐵𝐵1,⋅, 𝐶𝐶1,⋅ for the first row of 𝑥𝑥𝑡𝑡, 𝐼𝐼, 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 (respectively) 
and 𝑥𝑥−1,𝑡𝑡, 𝐼𝐼−1,⋅, 𝐴𝐴−1,⋅, 𝐵𝐵−1,⋅, 𝐶𝐶−1,⋅ for the remainders. Likewise, we write 𝐼𝐼⋅,1 for the first 
column of 𝐼𝐼, and so on. Then, we are interested in the solution to: 

Problem 2 Suppose that 𝑥𝑥0 ∈ ℝ𝑛𝑛  is given. Find 𝑇𝑇 ∈ ℕ  and 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛  for 𝑡𝑡 ∈ ℕ+  such 
that 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞, and such that for all 𝑡𝑡 ∈ ℕ+: 

𝑥𝑥1,𝑡𝑡 = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇��, 
�𝐴𝐴−1,⋅ + 𝐵𝐵−1,⋅ + 𝐶𝐶−1,⋅�𝜇𝜇 = 𝐴𝐴−1,⋅𝑥𝑥𝑡𝑡−1 + 𝐵𝐵−1,⋅𝑥𝑥𝑡𝑡 + 𝐶𝐶−1,⋅𝑥𝑥𝑡𝑡+1, 

and such that 𝑥𝑥1,𝑡𝑡 > 0 for 𝑡𝑡 > 𝑇𝑇. 

Note that in this problem we are implicitly ruling out any solutions which get 
permanently stuck at an alternative steady-state, by assuming that the terminal 
condition remains as before. In the monetary policy context, this amounts to assuming 
that the central banks’ inflation target is credible. Since 𝑥𝑥1,𝑡𝑡 → 𝜇𝜇1  as 𝑡𝑡 → ∞ , it is 
without loss of generality to assume the existence of a 𝑇𝑇 ∈ ℕ such that 𝑥𝑥1,𝑡𝑡 > 0 for 𝑡𝑡 >
𝑇𝑇 , but this 𝑇𝑇  will play an important role in the below, so we introduce it now. We 
continue to assume that there is no uncertainty after period 0, so, in this non-linear 
model, the path of the endogenous variables will not necessarily match up with the 
path of their expectation in a richer model in which there was uncertainty. 

In many models, the occasionally binding constraint comes from the KKT conditions 
of an optimisation problem, which take the form 𝑦𝑦 ≥ 0, 𝜆𝜆 ≥ 0 and 𝑦𝑦𝜆𝜆 = 0. These may 
be converted into the max/min form since they are equivalent to the single equation 
0 = min�𝑦𝑦, 𝜆𝜆�, which holds if and only if 𝑦𝑦 = max�0, 𝑦𝑦 − 𝜆𝜆�, which is in the form of 
that of Problem 2. Additionally, in the appendix, section 6.2, we give a more natural, 
alternative procedure for converting KKT conditions into a problem in the form of that 
Problem 2. The intuition is that one can use the model’s equations to find the value 
the (lower) constrained variable would take were there no constraint and were the 
Lagrange multiplier on the constraint equal to zero today. This gives a “shadow” value 
of the constrained variable, and the actual value it takes will be the maximum of the 
bound and this shadow value. 
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We will analyse Problem 2 with the help of solutions to the auxiliary problem: 

Problem 3 Suppose that 𝑇𝑇 ∈ ℕ, 𝑥𝑥0 ∈ ℝ𝑛𝑛 and 𝑦𝑦0 ∈ ℝ𝑇𝑇 is given. Find 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛, 𝑦𝑦𝑡𝑡 ∈ ℝ𝑇𝑇 
for 𝑡𝑡 ∈ ℕ+ such that 𝑥𝑥𝑡𝑡 → 𝜇𝜇, 𝑦𝑦𝑡𝑡 → 0, as 𝑡𝑡 → ∞, and such that for all 𝑡𝑡 ∈ ℕ+: 

(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶)𝜇𝜇 = 𝐴𝐴𝑥𝑥𝑡𝑡−1 + 𝐵𝐵𝑥𝑥𝑡𝑡 + 𝐶𝐶𝑥𝑥𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦1,𝑡𝑡−1, 
𝑦𝑦𝑇𝑇,𝑡𝑡 = 0, ∀𝑖𝑖 ∈ {1, … , 𝑇𝑇 − 1}, 𝑦𝑦𝑖𝑖,𝑡𝑡 = 𝑦𝑦𝑖𝑖+1,𝑡𝑡−1. 

This may be thought of as a version of Problem 1 with news shocks up to horizon 𝑇𝑇 
added to the first equation. The value of 𝑦𝑦𝑡𝑡,0 gives the news shock that hits in period 
𝑡𝑡, i.e. 𝑦𝑦1,𝑡𝑡−1 = 𝑦𝑦𝑡𝑡,0 for 𝑡𝑡 ≤ 𝑇𝑇, and 𝑦𝑦1,𝑡𝑡−1 = 0 for 𝑡𝑡 > 𝑇𝑇. 

2.2. Relationships between the problems 
Since 𝑦𝑦1,𝑡𝑡−1 = 0 for 𝑡𝑡 > 𝑇𝑇, and using Assumption 1, �𝑥𝑥𝑇𝑇+1 − 𝜇𝜇� = 𝐹𝐹�𝑥𝑥𝑇𝑇 − 𝜇𝜇�, so with 

𝑡𝑡 = 𝑇𝑇, defining 𝑠𝑠𝑇𝑇+1 ≔ 0, �𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� = 𝑠𝑠𝑡𝑡+1 + 𝐹𝐹�𝑥𝑥𝑡𝑡 − 𝜇𝜇�. Proceeding now by backwards 
induction on 𝑡𝑡 , note that 0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶𝐹𝐹�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0 , 
so: 

�𝑥𝑥𝑡𝑡 − 𝜇𝜇� = −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐴𝐴�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0� 
= 𝐹𝐹�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� − (𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0�, 

i.e., if we define: 𝑠𝑠𝑡𝑡 ≔ −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠𝑡𝑡+1 + 𝐼𝐼⋅,1𝑦𝑦𝑡𝑡,0� , then �𝑥𝑥𝑡𝑡 − 𝜇𝜇� = 𝑠𝑠𝑡𝑡 + 𝐹𝐹�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� . 
By induction then, this holds for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇} . 11  Hence, we have proved the 
following lemma: 

Lemma 1 There is a unique solution to Problem 3 that is linear in 𝑥𝑥0 and 𝑦𝑦0. 

For future reference, let 𝑥𝑥𝑡𝑡
(3,𝑘𝑘) be the solution to Problem 3 when 𝑥𝑥0 = 𝜇𝜇, 𝑦𝑦0 = 𝐼𝐼⋅,𝑘𝑘 (i.e. a 

vector which is all zeros apart from a 1 in position 𝑘𝑘). Then, by linearity, for arbitrary 
𝑦𝑦0 the solution to Problem 3 when 𝑥𝑥0 = 𝜇𝜇 is given by: 

𝑥𝑥𝑡𝑡 − 𝜇𝜇 = � 𝑦𝑦𝑘𝑘,0�𝑥𝑥𝑡𝑡
(3,𝑘𝑘) − 𝜇𝜇�

𝑇𝑇

𝑘𝑘=1
. 

Let 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 satisfy: 
𝑀𝑀𝑡𝑡,𝑘𝑘 = 𝑥𝑥1,𝑡𝑡

(3,𝑘𝑘) − 𝜇𝜇1, ∀𝑡𝑡, 𝑘𝑘 ∈ {1, . . , 𝑇𝑇}, (2) 
i.e. 𝑀𝑀 horizontally stacks the (column-vector) relative impulse responses to the news 
shocks. Then this result implies that for arbitrary 𝑦𝑦0, the path of the first variable in 
the solution to Problem 3 when 𝑥𝑥0 = 𝜇𝜇 is given by: �𝑥𝑥1,1:𝑇𝑇�′ = 𝜇𝜇1 + 𝑀𝑀𝑦𝑦0, where 𝑥𝑥1,1:𝑇𝑇 
is the row vector of the first 𝑇𝑇 values of the first component of 𝑥𝑥𝑡𝑡. Furthermore, for 
both arbitrary 𝑥𝑥0 and 𝑦𝑦0, the path of the first variable in the solution to Problem 3 is 
given by: �𝑥𝑥1,1:𝑇𝑇�′ = 𝑞𝑞 + 𝑀𝑀𝑦𝑦0 , where 𝑞𝑞 ≔ �𝑥𝑥1,1:𝑇𝑇

(1) �
′
  and 𝑥𝑥𝑡𝑡

(1)  is the unique solution to 
Problem 1, for the given 𝑥𝑥0.12  

                                                 
11 This representation of the solution to Problem 3 was inspired by that of Anderson (2015). 
12 This representation was also exploited by Holden (2010) and Holden and Paetz (2012). 
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Now let 𝑥𝑥𝑡𝑡
(2) be a solution to Problem 2 given an arbitrary 𝑥𝑥0. Since 𝑥𝑥𝑡𝑡

(2) → 𝜇𝜇 as 𝑡𝑡 →
∞ , there exists 𝑇𝑇′ ∈ ℕ  such that for all 𝑡𝑡 > 𝑇𝑇′ , 𝑥𝑥1,𝑡𝑡

(2) > 0 . We assume without loss of 
generality that 𝑇𝑇′ ≤ 𝑇𝑇. We seek to relate the solution to Problem 2 with the solution to 
Problem 3 for an appropriate choice of 𝑦𝑦0. First, for all 𝑡𝑡 ∈ ℕ+, let: 

𝑒𝑒𝑡𝑡 ≔
⎩�
⎨
�⎧−�𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1

(2) − 𝜇𝜇�� if 𝑥𝑥1,𝑡𝑡
(2) = 0

0 if 𝑥𝑥1,𝑡𝑡
(2) > 0

, (3) 

i.e. 𝑒𝑒𝑡𝑡 is the shock that would need to hit the first equation for the positivity constraint 
on 𝑥𝑥1,𝑡𝑡

(2) to be enforced. Note for future reference that by the definition of Problem 2, 
𝑒𝑒𝑡𝑡 ≥ 0 and 𝑥𝑥1,𝑡𝑡

(2)𝑒𝑒𝑡𝑡 = 0, for all 𝑡𝑡 ∈ ℕ+. From this definition, we also have that for all 𝑡𝑡 ∈
ℕ+ , 0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� + 𝐶𝐶�𝑥𝑥𝑡𝑡+1

(2) − 𝜇𝜇� + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡 . Furthermore, if 𝑡𝑡 > 𝑇𝑇 , then 
𝑡𝑡 > 𝑇𝑇′ , and hence 𝑒𝑒𝑡𝑡 = 0 . Hence, by Assumption 1, �𝑥𝑥𝑇𝑇+1

(2) − 𝜇𝜇� = 𝐹𝐹�𝑥𝑥𝑇𝑇
(2) − 𝜇𝜇� . Thus, 

much as before, with 𝑡𝑡 = 𝑇𝑇 , defining 𝑠𝑠�̃�𝑇+1 ≔ 0 , �𝑥𝑥𝑡𝑡+1
(2) − 𝜇𝜇� = 𝑠𝑠�̃�𝑡+1 + 𝐹𝐹�𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇� . 
Consequently, 0 = 𝐴𝐴�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇� + 𝐵𝐵�𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� + 𝐶𝐶𝐹𝐹�𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇� + 𝐶𝐶𝑠𝑠�̃�𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡 , so 
�𝑥𝑥𝑡𝑡

(2) − 𝜇𝜇� = 𝐹𝐹�𝑥𝑥𝑡𝑡−1
(2) − 𝜇𝜇� − (𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠�̃�𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡� , i.e., if we define: 𝑠𝑠�̃�𝑡 ≔ −(𝐵𝐵 +

𝐶𝐶𝐹𝐹)−1�𝐶𝐶𝑠𝑠�̃�𝑡+1 + 𝐼𝐼⋅,1𝑒𝑒𝑡𝑡�, then �𝑥𝑥𝑡𝑡
(2) − 𝜇𝜇� = 𝑠𝑠�̃�𝑡 + 𝐹𝐹�𝑥𝑥𝑡𝑡−1

(2) − 𝜇𝜇�. As before, by induction this 
must hold for all 𝑡𝑡 ∈ {1, … , 𝑇𝑇}. By comparing the definitions of 𝑠𝑠𝑡𝑡 and 𝑠𝑠�̃�𝑡, and the laws 
of motion of 𝑥𝑥𝑡𝑡 under both problems, we then immediately have that if Problem 3 is 
started with 𝑥𝑥0 = 𝑥𝑥0

(2)  and  𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′  , then 𝑥𝑥𝑡𝑡

(2)  solves Problem 3. Conversely, if 𝑥𝑥𝑡𝑡
(2) 

solves Problem 3 for some 𝑦𝑦0, then from the laws of motion of 𝑥𝑥𝑡𝑡 under both problems 
it must be the case that 𝑠𝑠�̃�𝑡 = 𝑠𝑠𝑡𝑡 for all 𝑡𝑡 ∈ ℕ, and hence from the definitions of 𝑠𝑠𝑡𝑡 and 
𝑠𝑠�̃�𝑡, we have that 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇

′ . This has established the following result: 

Lemma 2 For any solution, 𝑥𝑥𝑡𝑡
(2) to Problem 2: 

1) With 𝑒𝑒1:𝑇𝑇 as defined in equation (3), 𝑒𝑒1:𝑇𝑇 ≥ 0, 𝑥𝑥1,1:𝑇𝑇
(2) ≥ 0 and 𝑥𝑥1,1:𝑇𝑇

(2) ∘ 𝑒𝑒1:𝑇𝑇 = 0, where 
∘ denotes the Hadamard (entry-wise) product. 

2) 𝑥𝑥𝑡𝑡
(2) is also the unique solution to Problem 3 with 𝑥𝑥0 = 𝑥𝑥0

(2) and 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′ . 

3) If 𝑥𝑥𝑡𝑡
(2) solves Problem 3 with 𝑥𝑥0 = 𝑥𝑥0

(2) and with some 𝑦𝑦0, then 𝑦𝑦0 = 𝑒𝑒1:𝑇𝑇
′ . 

However, to use the easy solution to Problem 3 to assist us in solving Problem 2 
requires a slightly stronger result. Suppose that 𝑦𝑦0 ∈ ℝ𝑇𝑇 is such that 𝑦𝑦0 ≥ 0, 𝑥𝑥1,1:𝑇𝑇

(3) ∘
𝑦𝑦0

′ = 0 and 𝑥𝑥1,𝑡𝑡
(3) ≥ 0 for all 𝑡𝑡 ∈ ℕ, where 𝑥𝑥𝑡𝑡

(3) is the unique solution to Problem 3 when 
started at 𝑥𝑥0, 𝑦𝑦0. We would like to prove that in this case 𝑥𝑥𝑡𝑡

(3) must also be a solution to 
Problem 2. I.e., we must prove that for all 𝑡𝑡 ∈ ℕ+: 

𝑥𝑥1,𝑡𝑡
(3) = max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1

(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡
(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1

(3) − 𝜇𝜇�� , (4) 
�𝐴𝐴−1,⋅ + 𝐵𝐵−1,⋅ + 𝐶𝐶−1,⋅�𝜇𝜇 = 𝐴𝐴−1,⋅𝑥𝑥𝑡𝑡−1

(3) + 𝐵𝐵−1,⋅𝑥𝑥𝑡𝑡
(3) + 𝐶𝐶−1,⋅𝑥𝑥𝑡𝑡+1

(3) . 
By the definition of Problem 3, the latter equation must hold with equality, so there is 
nothing to prove there. Hence we just need to prove that equation (4) holds for all 𝑡𝑡 ∈
ℕ+. So let 𝑡𝑡 ∈ ℕ+. Now, if 𝑥𝑥1,𝑡𝑡

(3) > 0, then 𝑦𝑦𝑡𝑡,0 = 0, by the complementary slackness type 
condition (𝑥𝑥1,1:𝑇𝑇

(3) ∘ 𝑦𝑦0
′ = 0). Thus, from the definition of Problem 3: 
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𝑥𝑥1,𝑡𝑡
(3) = 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1

(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡
(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1

(3) − 𝜇𝜇� 
= max�0, 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1

(3) − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡
(3) − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1

(3) − 𝜇𝜇��, 
as required. The only remaining case is that 𝑥𝑥1,𝑡𝑡

(3) = 0 (since 𝑥𝑥1,𝑡𝑡
(3) ≥ 0 for all 𝑡𝑡 ∈ ℕ, by 

assumption), which implies that: 
𝑥𝑥1,𝑡𝑡

(3) = 0 = 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝐵𝐵1,⋅�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + 𝑦𝑦𝑡𝑡,0 
= 𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + 𝑦𝑦𝑡𝑡,0, 

by the definition of Problem 3. Thus: 
𝐼𝐼1,⋅𝜇𝜇 + 𝐴𝐴1,⋅�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + �𝐵𝐵1,⋅ + 𝐼𝐼1,⋅��𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝐶𝐶1,⋅�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� = −𝑦𝑦𝑡𝑡,0 ≤ 0, 

where the inequality is an immediate consequence of another of our assumptions. 
Consequently, equation (4) holds in this case too. Together with Lemma 1, Lemma 2, 
and our representation of the solution of Problem 3, this completes the proof of the 
following proposition: 

Proposition 1 The following hold: 
1) Let 𝑥𝑥𝑡𝑡

(3)  be the unique solution to Problem 3 when initialized with some 𝑥𝑥0, 𝑦𝑦0 . 
Then 𝑥𝑥𝑡𝑡

(3) is a solution to Problem 2 when initialized with 𝑥𝑥0 if and only if 𝑦𝑦0 ≥ 0, 
𝑦𝑦0 ∘ �𝑞𝑞 + 𝑀𝑀𝑦𝑦0� = 0, 𝑞𝑞 + 𝑀𝑀𝑦𝑦0 ≥ 0 and 𝑥𝑥1,𝑡𝑡

(3) ≥ 0 for all 𝑡𝑡 ∈ ℕ with 𝑡𝑡 > 𝑇𝑇. 
2) Let 𝑥𝑥𝑡𝑡

(2) be any solution to Problem 2 when initialized with 𝑥𝑥0. Then there exists a 
𝑦𝑦0 ∈ ℝ𝑇𝑇   such that 𝑦𝑦0 ≥ 0 , 𝑦𝑦0 ∘ �𝑞𝑞 + 𝑀𝑀𝑦𝑦0� = 0 , 𝑞𝑞 + 𝑀𝑀𝑦𝑦0 ≥ 0 , such that 𝑥𝑥𝑡𝑡

(2)  is the 
unique solution to Problem 3 when initialized with 𝑥𝑥0, 𝑦𝑦0. 

2.3. The linear complementarity representation 
Proposition 1 establishes that providing we initially choose 𝑇𝑇 sufficiently high, to 

find a solution to Problem 2, it is sufficient to solve the following problem instead: 

Problem 4 Suppose 𝑞𝑞 ∈ ℝ𝑇𝑇  and 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  are given. Find 𝑦𝑦 ∈ ℝ𝑇𝑇  such that 𝑦𝑦 ≥ 0 , 
𝑦𝑦 ∘ �𝑞𝑞 + 𝑀𝑀𝑦𝑦� = 0 and 𝑞𝑞 + 𝑀𝑀𝑦𝑦 ≥ 0. We call this the linear complementarity problem 
(LCP) �𝑞𝑞, 𝑀𝑀�. (Cottle 2009) 

These problems have been extensively studied, and so we can import results on the 
properties of LCPs to derive results on the properties of models with OBCs.  

All of the results in the mathematical literature rest on properties of the matrix 𝑀𝑀, 
thus we would like to establish if the structure of our particular 𝑀𝑀 implies it has any 
special properties. Unfortunately, we prove the following result in this paper’s 
companion paper (Holden 2016), which implies that 𝑀𝑀 has no general properties: 

Proposition 2 For any matrix ℳ ∈ ℝ𝑇𝑇×𝑇𝑇, there exists a model in the form of Problem 
2 with a number of state variables given by a quadratic in 𝑇𝑇, such that 𝑀𝑀 = ℳ  for that 
model, where 𝑀𝑀  is defined as in equation (2) , and such that for all 𝓆𝓆 ∈ ℝ𝑇𝑇 , there 
exists an initial state for which 𝑞𝑞 = 𝓆𝓆 , where 𝑞𝑞 is the path of the bounded variable when 
constraints are ignored. (Holden 2016) 
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We now introduce some definitions of matrix properties that are necessary for the 
statement of our key existence and uniqueness results. The ultimate properties of the 
solutions to the OBC model are determined by which of these matrix properties 𝑀𝑀 
possesses. In each case, we give the definitions in a constructive form which makes 
clear both how the property might be verified computationally, and the links between 
definitions. These are not necessarily in the form which is standard in the original 
literature, however. For both the original definitions, and the proofs of equivalence 
between the ones below and the originals, see Cottle, Pang, and Stone (2009a) and Xu 
(1993) (for the characterisation of sufficient matrices). 

Definition 1 (Principal sub-matrix, Principal minor) For a matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 , the 
principal sub-matrices of 𝑀𝑀 are the matrices: 

��𝑀𝑀𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆
�𝑆𝑆, 𝑘𝑘1, … , 𝑘𝑘𝑆𝑆 ∈ {1, … , 𝑇𝑇}, 𝑘𝑘1 < 𝑘𝑘2 < ⋯ < 𝑘𝑘𝑆𝑆�, 

i.e. the principal sub-matrices of 𝑀𝑀  are formed by deleting the same rows and 
columns. The principal minors of 𝑀𝑀 are the collection of values: 

�det ��𝑀𝑀𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆
� �𝑆𝑆, 𝑘𝑘1, … , 𝑘𝑘𝑆𝑆 ∈ {1, … , 𝑇𝑇}, 𝑘𝑘1 < 𝑘𝑘2 < ⋯ < 𝑘𝑘𝑆𝑆�, 

i.e. the principal minors of 𝑀𝑀 are the determinants of 𝑀𝑀’s principal sub-matrices. 

Definition 2 (P(0)-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called a P-matrix (P0-matrix) if the 
principal minors of 𝑀𝑀 are all strictly (weakly) positive. Note: for symmetric 𝑀𝑀, 𝑀𝑀 is a 
P(0)-matrix if and only if it is positive (semi-)definite. 

Definition 3 (General positive (semi-)definite) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called general 
positive (semi-)definite if 𝑀𝑀 + 𝑀𝑀′  is a P-matrix (P0-matrix). Note: if 𝑀𝑀  is symmetric, 
then, 𝑀𝑀 is general positive (semi-)definite if and only if it is positive (semi-)definite. 

For intuition on the relevance of these properties, recall that the definition of a linear 
complementarity problem (Problem 4) contained the complementary slackness type 
condition, 𝑦𝑦 ∘ �𝑞𝑞 + 𝑀𝑀𝑦𝑦� = 0. Equivalently then, 0 = 𝑦𝑦′�𝑞𝑞 + 𝑀𝑀𝑦𝑦� = 𝑦𝑦′𝑞𝑞 + 𝑦𝑦′𝑀𝑀𝑦𝑦. Now, if 
there is no multiplicity, 𝑦𝑦′𝑞𝑞 is likely to be negative as the bound usually binds when 𝑞𝑞 
(the path in the absence of the bound) is negative. Thus, for the equation to be satisfied, 
𝑦𝑦′𝑀𝑀𝑦𝑦 = 1

2 𝑦𝑦′(𝑀𝑀 + 𝑀𝑀′)𝑦𝑦  should be positive, which certainly holds when 𝑀𝑀  is general 
positive definite (so 𝑀𝑀 + 𝑀𝑀′ is positive definite). More generally, 𝑦𝑦 will usually have 
many zeros, since 𝑦𝑦  is zero whenever the model is away from the bound. The 
remaining non-zero elements of 𝑦𝑦 select a principal sub-matrix of 𝑀𝑀, which will be a 
P-matrix if 𝑀𝑀 is a P-matrix. Since being a P-matrix is an alternative generalisation of 
positive-definiteness to non-symmetric matrices, this turns out to be sufficient for 
there to be a solution to the original equation. 

We now return to further definitions. 
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Definition 4 (Sufficient matrices) Let 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇. 𝑀𝑀 is called column sufficient if 𝑀𝑀 
is a P0-matrix, and for each principal sub-matrix 𝑊𝑊 ≔ �𝑀𝑀𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗=𝑘𝑘1,…,𝑘𝑘𝑆𝑆

 of 𝑀𝑀, with zero 

determinant, and for each proper principal sub-matrix �𝑊𝑊𝑖𝑖,𝑗𝑗�𝑖𝑖,𝑗𝑗=𝑙𝑙1,…,𝑙𝑙𝑅𝑅
  of 𝑊𝑊  (𝑅𝑅 < 𝑆𝑆 ), 

with zero determinant, the columns of �𝑊𝑊𝑖𝑖,𝑗𝑗� 𝑖𝑖=1,…,𝑆𝑆
𝑗𝑗=𝑙𝑙1,…,𝑙𝑙𝑅𝑅

  do not form a basis for the 

column space of 𝑊𝑊.13 𝑀𝑀 is called row sufficient if 𝑀𝑀′ is column sufficient. 𝑀𝑀 is called 
sufficient if it is column sufficient and row sufficient.  

Definition 5 (S(0)-matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called an S-matrix (S0-matrix) if 
there exists 𝑦𝑦 ∈ ℝ𝑇𝑇 such that 𝑦𝑦 > 0 and 𝑀𝑀𝑦𝑦 ≫ 0 (𝑀𝑀𝑦𝑦 ≥ 0). 14 

Definition 6 ((Strictly) Semi-monotone) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called (strictly) semi-
monotone if each of its principal sub-matrices is an S0-matrix (S-matrix).  

Definition 7 ((Strictly) Copositive) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇 is called (strictly) copositive 
if 𝑀𝑀 + 𝑀𝑀′ is (strictly) semi-monotone.15 

Cottle, Pang, and Stone (2009a) note the following relationships between these classes 
(amongst others): 

Lemma 3 The following hold: 
1) All general positive semi-definite matrices are copositive and sufficient. 
2) P0 includes skew-symmetric matrices, general positive semi-definite matrices, 

sufficient matrices and P-matrices. 
3) All P0-matrices, and all copositive matrices are semi-monotone, and all P-matrices, 

and all strictly copositive matrices are strictly semi-monotone (and hence also S-
matrices). 

Additionally, from considering the 1 × 1  principal sub-matrices of 𝑀𝑀 , we have the 
following restrictions on the diagonal of 𝑀𝑀: 

Lemma 4 All general positive semi-definite, semi-monotone, sufficient, P0 and 
copositive matrices have non-negative diagonals, and all general positive definite, 
strictly semi-monotone, P and strictly copositive matrices have positive diagonals. 

For many macroeconomic models, this simple condition is sufficient to rule out 
membership of these matrix classes, as medium-scale DSGE models16  with a ZLB 
frequently have negative elements on the diagonal of their 𝑀𝑀 matrix, when 𝑇𝑇 is large 

                                                 
13 This may be checked via the singular value decomposition. 
14  These condition may be rewritten as sup�𝜍𝜍 ∈ ℝ�∃𝑦𝑦 ≥ 0 s.t. ∀𝑡𝑡 ∈ {1, … , 𝑇𝑇}, �𝑀𝑀𝑦𝑦�𝑡𝑡 ≥ 𝜍𝜍 ∧ 𝑦𝑦𝑡𝑡 ≤ 1� > 0 , and 
sup�∑ 𝑦𝑦𝑡𝑡

𝑇𝑇
𝑡𝑡=1 �𝑦𝑦 ≥ 0, 𝑀𝑀𝑦𝑦 ≥ 0 ∧ ∀𝑡𝑡 ∈ {1, … , 𝑇𝑇}, 𝑦𝑦𝑡𝑡 ≤ 1� > 0, respectively. As linear-programming problems, these may be verified in 

time polynomial in 𝑇𝑇  using the methods described in e.g. Roos, Terlaky, and Vial (2006). Alternatively, by Ville’s theorem of the 
alternative (Cottle, Pang, and Stone 2009b), 𝑀𝑀 is not an S0-matrix if and only if −𝑀𝑀′ is an S-matrix. 
15 Väliaho (1986) contains an alternative characterisation which avoids solving any linear programming problems. 
16 This applies, for example, to the Smets and Wouters (2003) model, as we will show in section 3.5. 
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enough. Thus, following the intuition of Figure 1, such models will satisfy the 
conditions to have multiple equilibria, though they will not be the only such models. 

A common “intuition” is that in models without state variables, 𝑀𝑀 must be both a P 
matrix, and an S matrix. In fact, this is not true. Indeed, there are even purely static 
models for which 𝑀𝑀 is not in either of these classes. For example, in online appendix 
B, we construct a purely static model for which 𝑀𝑀1:∞,1:∞ = −𝐼𝐼∞×∞, which is neither a 
P-matrix, nor an S-matrix, for any 𝑇𝑇. 

2.4. Existence results 
We start by considering necessary or sufficient conditions for the existence of a 

solution to a model with occasionally binding constraints. Ideally, we would like the 
solution to exist for any possible path the bounded variable might have taken in the 
future were there no OBC, i.e. for any possible 𝑞𝑞. To see this, note that under a perfect 
foresight exercise we are ignoring the fact that shocks might hit the economy in future. 
More properly, we ought to take future uncertainty into account. One way to do this 
would be to follow the original stochastic extended path approach of Adjemian and 
Juillard (2013) by drawing lots of samples of future shocks for periods 1, … , 𝑆𝑆, and 
averaging over these draws. 17  However, in a linear model with shocks with 
unbounded support, providing at least one shock has an impact on a given variable, 
the distribution of future paths of that variable has positive support over the entirety 
of ℝ𝑆𝑆 . Thus, ideally we would like 𝑀𝑀  to be such that for any 𝑞𝑞 , the linear 
complementarity problem �𝑞𝑞, 𝑀𝑀� has a solution. 

Definition 8 (Feasible LCP) Suppose 𝑞𝑞 ∈ ℝ𝑇𝑇  and 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  are given. The LCP 
�𝑞𝑞, 𝑀𝑀� is called feasible if there exists 𝑦𝑦 ∈ ℝ𝑇𝑇 such that 𝑦𝑦 ≥ 0 and 𝑞𝑞 + 𝑀𝑀𝑦𝑦 ≥ 0. 

By construction, if an LCP �𝑞𝑞, 𝑀𝑀� has a solution, then it is feasible, i.e. being feasible 
is a necessary condition for existence. Checking feasibility is straightforward for any 
particular �𝑞𝑞, 𝑀𝑀� , since to find a feasible solution we just need to solve a standard 
linear programming problem, which is possible in an amount of time that is 
polynomial in 𝑇𝑇. 

Note that if the LCP �𝑞𝑞, 𝑀𝑀� is not feasible, then for any 𝑞𝑞 ̂ ≤ 𝑞𝑞, if 𝑦𝑦 ≥ 0, then 𝑞𝑞 ̂+ 𝑀𝑀𝑦𝑦 ≤
𝑞𝑞 + 𝑀𝑀𝑦𝑦 < 0  since �𝑞𝑞, 𝑀𝑀�  is not feasible, so the LCP �𝑞𝑞,̂ 𝑀𝑀�  is also not feasible. 
Consequently, if there are any 𝑞𝑞  for which the LCP is non-feasible, then there is a 
positive measure of such 𝑞𝑞. Thus, in a model in which 𝑞𝑞 is uncertain, if there are some 
𝑞𝑞 for which the model has no solution satisfying the terminal condition, even with 
arbitrarily large 𝑇𝑇 , then the model will have no solution satisfying the terminal 
condition with positive probability. Hence it is not consistent with rationality for 

                                                 
17 See footnote 4 for caveats to this procedure. 
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agents to believe that our terminal condition is satisfied with certainty, so they would 
have to place some positive probability on getting stuck in an alternative steady-state. 

The following proposition gives an easily verified necessary condition for the global 
existence of a solution to the model with occasionally binding constraints, given some 
fixed horizon 𝑇𝑇: 

Proposition 3 The LCP �𝑞𝑞, 𝑀𝑀� is feasible for all 𝑞𝑞 ∈ ℝ𝑇𝑇 if and only if 𝑀𝑀 is an S-matrix. 
(Cottle, Pang, and Stone 2009a) 18 

Of course, it may be the case that the 𝑀𝑀 matrix is only an S-matrix when 𝑇𝑇 is very 
large, so we must be careful in using this condition to imply non-existence of a 
solution. Furthermore, it may be the case that although there exists some 𝑦𝑦 ∈ ℝ𝑇𝑇 with 
𝑦𝑦 ≥ 0  such that 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇𝑦𝑦 ≫ 0  (indexing the 𝑀𝑀  matrix by its size for clarity), for any 
such 𝑦𝑦 , inf

𝑡𝑡∈ℕ+
𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 < 0 , so for some 𝑞𝑞 ∈ ℝℕ+ , the infinite LCP �𝑞𝑞, 𝑀𝑀1:∞,1:∞�  is not 

feasible under the additional restriction that 𝑦𝑦𝑡𝑡 = 0 for 𝑡𝑡 > 𝑇𝑇. Strictly, it is this infinite 
LCP which we ought to be solving, subject to the additional constraint that 𝑦𝑦 has only 
finitely many non-zero elements, as implied by our terminal condition. 

From Proposition 3, we immediately have the following result on feasibility of the 
infinite problem: 

Corollary 1 The infinite LCP �𝑞𝑞, 𝑀𝑀1:∞,1:∞� is feasible if and only if: 
𝜍𝜍 ≔ sup

𝑦𝑦∈[0,1]ℕ+

∃𝑇𝑇∈ℕ s.t. ∀𝑡𝑡>𝑇𝑇,𝑦𝑦𝑡𝑡=0

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 > 0. 

Consequently, if 𝜍𝜍 > 0  then for every 𝑞𝑞 ∈ ℝℕ+ , for sufficiently large 𝑇𝑇 , the finite 
problem �𝑞𝑞1:𝑇𝑇, 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇� will be feasible, which is a sufficient condition for solvability. 
In order to evaluate this limit, we first need to derive constructive bounds on the 𝑀𝑀 
matrix for large 𝑇𝑇. We do this in the online appendix C, where we prove that the rows 
and columns of 𝑀𝑀  are converging to 0  (with constructive bounds), and that the 𝑘𝑘 th 
diagonal of the 𝑀𝑀  matrix is converging to the value 𝑑𝑑1,𝑘𝑘 , to be defined (again with 
constructive bounds), where diagonals are indexed such that the principal diagonal is 
index 0, and indices increase as one moves up and to the right in the 𝑀𝑀 matrix. To 
explain the origins of 𝑑𝑑1,𝑘𝑘 we note the following lemma proved in online appendix C: 

Lemma 5 The (time-reversed) difference equation 𝐴𝐴𝑑𝑑�̂�𝑘+1 + 𝐵𝐵𝑑𝑑�̂�𝑘 + 𝐶𝐶𝑑𝑑�̂�𝑘−1 = 0 for all 𝑘𝑘 ∈
ℕ+ has a unique solution satisfying the terminal condition 𝑑𝑑�̂�𝑘 → 0 as 𝑘𝑘 → ∞, given by 
𝑑𝑑�̂�𝑘 = 𝐻𝐻𝑑𝑑�̂�𝑘−1, for all 𝑘𝑘 ∈ ℕ+, for some 𝐻𝐻 with eigenvalues in the unit circle. 

                                                 
18 Most of the results on LCPs in both this and the following section are restatements of (assorted) results contained in Cottle, 
Pang, and Stone (2009a) and Väliaho (1986) (for the characterisation of “copositive-plus” matrices), and the reader is referred to 
those works for proofs and further references. 
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Then, we define 𝑑𝑑0 ≔ −(𝐴𝐴𝐻𝐻 + 𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐼𝐼⋅,1 , 𝑑𝑑𝑘𝑘 = 𝐻𝐻𝑑𝑑𝑘𝑘−1 , for all 𝑘𝑘 ∈ ℕ+ , and 𝑑𝑑−𝑡𝑡 =
𝐹𝐹𝑑𝑑−(𝑡𝑡−1), for all 𝑡𝑡 ∈ ℕ+, so 𝑑𝑑𝑘𝑘 follows the time reversed difference equation for positive 
indices, and the original difference equation for negative indices. This is opposite to 
what one might perhaps expect since time is increasing as one descends the rows of 
𝑀𝑀, but diagonal indices are decreasing as one descends in 𝑀𝑀. 

Using the resulting bounds on 𝑀𝑀, we can construct upper and lower bounds on 𝜍𝜍, 
which are described in the following propositions, also proven in online appendix C: 

Proposition 4 There exists 𝜍𝜍𝑇𝑇, 𝜍𝜍𝑇𝑇 ≥ 0, defined in the online appendix C, computable 
in time polynomial in 𝑇𝑇, such that 𝜍𝜍𝑇𝑇 ≤ 𝜍𝜍 ≤ 𝜍𝜍𝑇𝑇, and �𝜍𝜍𝑇𝑇 − 𝜍𝜍𝑇𝑇� → 0 as 𝑇𝑇 → ∞. 

This condition gives a simple test for feasibility with sufficiently large 𝑇𝑇 . It also 
provides a test giving strong numerical evidence of non-feasibility, since if 𝜍𝜍𝑇𝑇 = 0 +
numerical error, then 𝜍𝜍 = 0 is likely. 

 We now turn to sufficient conditions for existence of a solution for some finite 𝑇𝑇. 

Proposition 5 The LCP �𝑞𝑞, 𝑀𝑀� is solvable if it is feasible and, either: 
1. 𝑀𝑀 is row-sufficient, or, 
2. 𝑀𝑀 is copositive and for all non-singular principal sub-matrices 𝑊𝑊 of 𝑀𝑀, all non-

negative columns of 𝑊𝑊−1 possess a non-zero diagonal element. 
(Cottle, Pang, and Stone 2009a; Väliaho 1986) 

If either condition 1 or condition 2 of Proposition 5 is satisfied, then to check existence 
for any particular 𝑞𝑞, we only need to solve a linear programming problem to see if a 
solution exists for a particular 𝑞𝑞. As this may be substantially faster than solving the 
LCP, this may be helpful in practice. 

Proposition 6 The LCP �𝑞𝑞, 𝑀𝑀� is solvable for all 𝑞𝑞 ∈ ℝ𝑇𝑇, if at least one of the following 
conditions holds: 
1. 𝑀𝑀  is an S-matrix, and either condition 1 or condition 2 of Proposition 5 are 

satisfied. 
2. 𝑀𝑀 is copositive with non-zero principal minors. 
3. 𝑀𝑀 is a P-matrix, a strictly copositive matrix or a strictly semi-monotone matrix. 
(Cottle, Pang, and Stone 2009a) 

If condition 1, 2 or 3 of Proposition 6 is satisfied, then we know that the LCP will 
always have a solution. Therefore, for any path of the bounded variable in the absence 
of the bound, we will also be able to solve the model when the bound is imposed. 
Monetary policy makers should always choose a policy rule that produces a model 
that satisfies one of these three conditions, if they can, since otherwise there is a 
positive probability that only solutions converging to the “bad” steady-state will exist 
for some values of state variables and shock realisations.  
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Ideally, we might have liked conditions for the existence of a solution that are both 
necessary and sufficient, but unfortunately at present no such conditions exist in full 
generality. However, in the special case of 𝑀𝑀 matrices with nonnegative entries, we 
have the following result: 

Proposition 7 If 𝑀𝑀  is a matrix with nonnegative entries, then the LCP �𝑞𝑞, 𝑀𝑀�  is 
solvable for all 𝑞𝑞 ∈ ℝ𝑇𝑇 if and only if 𝑀𝑀 has a strictly positive diagonal. 
(Cottle, Pang, and Stone 2009a) 

2.5. Uniqueness results 
While no fully general necessary and sufficient conditions have been derived for 

existence, such conditions are available for uniqueness, in particular: 

Proposition 8 The LCP �𝑞𝑞, 𝑀𝑀� has a unique solution for all 𝑞𝑞 ∈ ℝ𝑇𝑇, if and only if 𝑀𝑀 is 
a P-matrix. If 𝑀𝑀 is not a P-matrix, then the LCP �𝑞𝑞, 𝑀𝑀� has multiple solutions for some 
𝑞𝑞. (Samelson, Thrall, and Wesler 1958; Cottle, Pang, and Stone 2009a) 

This proposition is the equivalent for models with OBCs of the key proposition of 
Blanchard and Kahn (1980). By testing whether our matrix 𝑀𝑀  is a P-matrix we can 
immediately determine if the model possesses a unique solution no matter what the 
initial state is, and no matter what shocks (if any) are predicted to hit the model in 
future, for a fixed 𝑇𝑇. In our experience, this condition is satisfied in efficient models, 
such as models of irreversible investment, as one would expect, but is not generally 
satisfied in medium-scale NK models with a ZLB on nominal interest rates. Given that 
if 𝑀𝑀 is a P-matrix, so too are all its principal sub-matrices, if we see that 𝑀𝑀 is not a P-
matrix for some 𝑇𝑇, then we know that with larger 𝑇𝑇 it would also not be a P-matrix. 
Thus, if for some 𝑇𝑇, 𝑀𝑀 is not a P-matrix, then we know that the model does not have a 
unique solution, even for arbitrarily large 𝑇𝑇 . Alternatively, we can prove that with 
large 𝑇𝑇  some 𝑀𝑀  is not a P-matrix by using the analytic formula for the limit of its 
diagonal given in the previous section, i.e. 𝑑𝑑0,1 = −𝐼𝐼1,⋅(𝐴𝐴𝐻𝐻 + 𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐼𝐼⋅,1 . If this 
value is negative, then we know that with sufficiently large 𝑇𝑇, 𝑀𝑀 will not be a P-matrix. 

Since some classes of models almost never possess a unique solution when at the 
zero lower bound, we might reasonably require a lesser condition, namely that at least 
when the solution to the model without a bound is a solution to the model with the 
bound, then it ought to be the unique solution. This is equivalent to requiring that 
when 𝑞𝑞 is non-negative, the LCP �𝑞𝑞, 𝑀𝑀� has a unique solution. Conditions for this are 
given in the following proposition: 

Proposition 9 The LCP �𝑞𝑞, 𝑀𝑀� has a unique solution for all 𝑞𝑞 ∈ ℝ𝑇𝑇 with 𝑞𝑞 ≫ 0 (𝑞𝑞 ≥ 0) 
if and only if 𝑀𝑀 is (strictly) semi-monotone. (Cottle, Pang, and Stone 2009a) 
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Hence, by verifying that 𝑀𝑀 is (strictly) semi-monotone, we can reassure ourselves that 
merely introducing the bound will not change the solution away from the bound. 
When this condition is violated, even when the economy is a long way from the bound, 
there may be solutions which jump to the bound. Again, since principal sub-matrices 
of (strictly) semi-monotone are (strictly) semi-monotone, a failure of (strict) semi-
monotonicity for some 𝑇𝑇 implies a failure for all larger 𝑇𝑇. Furthermore, if 𝑑𝑑0,1 < 0 then 
again for sufficiently large 𝑇𝑇, 𝑀𝑀 cannot be semi-monotone. 

Where there are multiple solutions, we might like to be able to select one via some 
objective function. This is particularly tractable when either the number of solutions 
is finite, or the solution set is convex. Conditions for this are given in the appendix, 
section 6.1. 

2.6. Checking the existence and uniqueness conditions in practice 
This section has presented a large number of results on existence and uniqueness, 

but the practical details of what one should test and in what order may still be 
somewhat unclear. Luckily, a lot of the decisions are automated by the author’s 
DynareOBC toolkit, but we present a suggested testing procedure here in any case. 
This also serves to give an overview of our results and their limitations. 

For checking feasibility and existence, the most powerful result is the combination 
of Corollary 1 and Proposition 4. If the lower bound from Proposition 4 is positive, 
then Corollary 1 guarantees that for all sufficiently high 𝑇𝑇, the LCP is always feasible. 
If further conditions are satisfied for a given 𝑇𝑇, (see Proposition 5 and Proposition 6) 
then this guarantees existence for that particular 𝑇𝑇 . However, since the additional 
conditions are sufficient and not necessary, in practice it may not be worth checking 
them, since we have never encountered a problem without a solution that was 
nonetheless feasible. Finding a 𝑇𝑇 for which Proposition 4 produces a positive lower 
bound on 𝜍𝜍 requires a bit of trial and error. In general, 𝑇𝑇 will need to be big enough 
that the asymptotic approximation is accurate, which in turn usually requires 𝑇𝑇 to be 
bigger than the time it takes for the model’s dynamics to die out. However, if 𝑇𝑇 is too 
large, numerical inaccuracies can dominate. 

For checking non-existence, Corollary 1 and Proposition 4 can still be useful, though 
in this case they do not provide definitive proof of non-feasibility, due to numerical 
inaccuracies. For a particular 𝑇𝑇, we may test if 𝑀𝑀 is not an S-matrix in time polynomial 
in 𝑇𝑇 by solving a simple linear programming problem. If 𝑀𝑀 is not an S-matrix, then by 
Proposition 3, there are some 𝑞𝑞 for which there is no solution which finally escapes the 
bound after at most 𝑇𝑇  periods. With 𝑇𝑇  larger than the time it takes for the model’s 
dynamics to die out, this provides further evidence of non-existence for arbitrarily 
large 𝑇𝑇. In any case, given that only having a solution that stays at the bound for 250 
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years is arguably as bad as having no solution at all, for medium scale models, we 
suggest to just check if 𝑀𝑀 is an S-matrix with 𝑇𝑇 = 1000. 

For checking uniqueness vs multiplicity, it is important to remember that while we 
can prove uniqueness for a given finite 𝑇𝑇 by proving that the 𝑀𝑀 matrix is a P-matrix, 
once we have found one 𝑇𝑇  for which 𝑀𝑀  is not a P-matrix (so there are multiple 
solutions, by Proposition 8), we know the same is true for all higher 𝑇𝑇. Additionally, it 
is much easier to prove a matrix is not a P-matrix than to prove that it is, as the former 
just requires us to find one principal sub-matrix with negative determinant, while the 
latter requires us to check all such sub-matrices. As a result, in practice, checking that 
𝑀𝑀  is a P-matrix for large 𝑇𝑇  may not be computationally feasible, though finding a 
counter-example usually is. 

If we wish to prove multiplicity by finding a principal sub-matrix with negative 
determinant, it is often sensible to begin by checking the contiguous principal sub-
matrices.19 These correspond to a single spell at the ZLB which is natural given that 
impulse responses in DSGE models tend to be single peaked. This is so reliable a 
diagnostic (and so fast) that DynareOBC reports it automatically for all models. 
Additionally, DynareOBC always checks the sign of 𝑑𝑑0,1 , and a condition on the 
arguments of the 𝑀𝑀 matrix’s eigenvalues, 20 which can also quickly help rule out being 
a P-matrix. If none of these conditions are informative, then it is sensible to start by 
checking all the 2 × 2 principal sub-matrices, then the 3 × 3 ones, and so on. With 𝑇𝑇 
around the half-life of the model’s dynamics, one of these conditions will usually 
produce a counter-example reasonably quickly. A similar search strategy can be used 
to rule out semi-monotonicity, implying multiplicity even when away from the bound, 
by Proposition 9. 

3. Applications to New Keynesian models 

Brendon, Paustian, and Yates (2013) (henceforth: BPY) consider multiple equilibria 
in a simple New Keynesian model with an output growth rate term in the Taylor rule. 
They show that with sufficiently large reaction to the growth rate, there can be 
multiple equilibria today, even when the policy rule used to form tomorrow’s 
expectations is held fixed. This is equivalent to the existence of multiple equilibria even 
when 𝑇𝑇 = 1. In the first subsection here, we give an alternative analytic proof of this 
using our results, and discuss the generalisation to higher 𝑇𝑇. We go on to consider a 
variant of the BPY model with price targeting, and show that it produces determinacy. 

However, we do not want to give the impression that multiplicity and non-existence 
are only caused by the central bank responding to the growth rate, or that they are 

                                                 
19 Some care must be taken though as checking the signs of determinants of large matrices is numerically unreliable. 
20 All of the eigenvalues of a 𝑇𝑇 × 𝑇𝑇  P-matrix have complex arguments in the interval �−𝜋𝜋 + 𝜋𝜋

𝑇𝑇 , 𝜋𝜋 − 𝜋𝜋
𝑇𝑇 �, and all of the eigenvalues of 

a 𝑇𝑇 × 𝑇𝑇  P0-matrix have complex arguments in the interval �−𝜋𝜋 + 𝜋𝜋
𝑇𝑇 , 𝜋𝜋 − 𝜋𝜋

𝑇𝑇 � (Fang 1989). 
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only a problem in carefully constructed theoretical examples. In subsection 3.4, we 
show that a standard NK model with positive steady-state inflation and a ZLB 
possesses multiple equilibria in some states, and no solutions in others, even with an 
entirely standard Taylor rule. We also show that here too price level targeting is 
sufficient to restore determinacy. Next, we show that these conclusions also carry 
through to the posterior-modes of the Smets and Wouters (2003; 2007) models. We 
conclude this section by discussing the economic significance of multiplicity, arguing 
that self-fulfilling recessions could well explain some aspects of recent economic 
outcomes in the US, Europe and Japan. 

3.1. The simple Brendon, Paustian, and Yates (2013) (BPY) model 
The equations of the simple Brendon, Paustian, and Yates (2013) model are as 

follows: 
𝑥𝑥𝑖𝑖,𝑡𝑡 = max�0,1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡�, 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 −
1
𝜎𝜎 �𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1�, 𝑥𝑥𝜋𝜋,𝑡𝑡 = 𝛽𝛽𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1 + 𝛾𝛾𝑥𝑥𝑦𝑦,𝑡𝑡, 

where 𝑥𝑥𝑖𝑖,𝑡𝑡 is the nominal interest rate, 𝑥𝑥𝑦𝑦,𝑡𝑡 is the deviation of output from steady-state, 
𝑥𝑥𝜋𝜋,𝑡𝑡  is the deviation of inflation from steady-state, and 𝛽𝛽 ∈ (0,1) , 𝛾𝛾, 𝜎𝜎, 𝛼𝛼∆𝑦𝑦 ∈ (0, ∞) , 
𝛼𝛼𝜋𝜋 ∈ (1, ∞) are parameters. In online appendix D, we prove the following: 

Proposition 10 The BPY model is in the form of Problem 2, and satisfies Assumptions 
1 and 2. With 𝑇𝑇 = 1, 𝑀𝑀 < 0 (𝑀𝑀 = 0) if and only if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋 (𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋). 

For a 1 × 1 matrix, checking the conditions from section 2.3 is trivial. In particular, 
we have that if 𝛼𝛼∆𝑦𝑦 < 𝜎𝜎𝛼𝛼𝜋𝜋 , 𝑀𝑀  is a general positive definite, strictly semi-monotone, 
strictly co-positive, sufficient, P, S matrix; if 𝛼𝛼∆𝑦𝑦 ≤ 𝜎𝜎𝛼𝛼𝜋𝜋 , 𝑀𝑀 is a general positive semi-
definite, semi-monotone, co-positive, sufficient, P0, S0 matrix. Hence, when 𝑇𝑇 = 1, if 
𝛼𝛼∆𝑦𝑦 < 𝜎𝜎𝛼𝛼𝜋𝜋, the model has a unique solution for all 𝑞𝑞; if 𝛼𝛼∆𝑦𝑦 ≤ 𝜎𝜎𝛼𝛼𝜋𝜋 , the model has a 
unique solution whenever 𝑞𝑞 > 0, and at least one solution when 𝑞𝑞 = 0. When 𝛼𝛼∆𝑦𝑦 >
𝜎𝜎𝛼𝛼𝜋𝜋 , 𝑀𝑀 is negative, and so for any positive 𝑞𝑞, there exists 𝑦𝑦 > 0 such that 𝑞𝑞 + 𝑀𝑀𝑦𝑦 = 0, 
so the model has multiple solutions. I.e. there are solutions that jump to the bound, 
even when the nominal interest rate would be positive were there no bound at all. 

We illustrate this by adding a shock to the Euler equation, and showing impulse 
responses for alternative solutions. In particular, we replace the Euler equation with: 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 −
1
𝜎𝜎 �𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝜋𝜋,𝑡𝑡+1 − (0.01)𝜀𝜀𝑡𝑡�, 

and take the parameterisation 𝜎𝜎 = 1, 𝛽𝛽 = 0.99, 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�
0.85 (2 + 𝜎𝜎), following 

BPY, and we additionally set 𝛼𝛼𝜋𝜋 = 1.5 and 𝛼𝛼∆𝑦𝑦 = 1.6, to ensure we are in the region 
with multiple solutions. In Figure 5, we show two alternative solutions to the impulse 
response to a magnitude 1 shock to 𝜀𝜀𝑡𝑡. The solid line in the left plot gives the solution 
which minimises �𝑦𝑦�∞ . This solution never hits the bound, and is moderately 
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expansionary. The solid line in the right plot gives the solution which minimises 
�𝑞𝑞 + 𝑀𝑀𝑦𝑦�∞. (The dotted line in the right plot repeats the left plot, for comparison.) This 
solution stays at the bound for two periods, and is strongly contractionary, with a 
magnitude around 100 times larger than the other solution. 

 

 
Minimum �𝒚𝒚�∞ solution 

 
Minimum �𝒒𝒒 + 𝑴𝑴𝒚𝒚�∞ solution 

Figure 5: Alternative solutions following a magnitude 𝟏𝟏 impulse to 𝜺𝜺𝒕𝒕  
 

When 𝑇𝑇 > 1 , the previous results imply that if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋 , then 𝑀𝑀  is neither P0, 
general positive semi-definite, semi-monotone, co-positive, nor sufficient, by Lemma 
4, since the top-left 1 × 1 principal sub-matrix of 𝑀𝑀 is the same as when 𝑇𝑇 = 1. Thus, 
if anything, when 𝑇𝑇 > 1, the parameter region in which there are multiple solutions 
(when away from the bound or at it) is larger. However, numerical experiments 
suggest that this parameter region in fact remains the same as 𝑇𝑇 increases, which is 
unsurprising given the weak persistence of this model. Thus, if we want more 
interesting results with higher 𝑇𝑇 , we need to consider a model with a stronger 
persistence mechanism. One obvious possibility is to consider models with either 
persistence in the interest rate, or persistence in the “shadow” rate that would hold 
were it not for the ZLB. However, perhaps unsurprisingly, in online appendix E we 
find that persistence in the shadow interest rate does not change the determinacy 
region providing 𝑇𝑇 is large enough. Identical results can be shown for persistence in 
the actual interest rate. 

3.2. The BPY model with price targeting 
One way to introduce persistence to shadow interest rates is to set: 

𝑥𝑥𝑑𝑑,𝑡𝑡 = �1 − 𝜌𝜌� �1 − 𝛽𝛽 +
𝛼𝛼∆𝑦𝑦

1 − 𝜌𝜌 �𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� +
𝛼𝛼𝜋𝜋

1 − 𝜌𝜌 𝑥𝑥𝜋𝜋,𝑡𝑡� + 𝜌𝜌𝑥𝑥𝑑𝑑,𝑡𝑡−1 

= �1 − 𝜌𝜌��1 − 𝛽𝛽� + �𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡� + 𝜌𝜌𝑥𝑥𝑑𝑑,𝑡𝑡−1, 
where 𝑥𝑥𝑖𝑖,𝑡𝑡 = max�0, 𝑥𝑥𝑑𝑑,𝑡𝑡�. If the second bracketed term was multiplied by �1 − 𝜌𝜌�, then 
this would be entirely standard, however as written here, we have that in the limit as 
𝜌𝜌 → 1, this tends to: 

𝑥𝑥𝑑𝑑,𝑡𝑡 = 1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦𝑥𝑥𝑦𝑦,𝑡𝑡 + 𝛼𝛼𝜋𝜋𝑥𝑥𝑝𝑝,𝑡𝑡 
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where 𝑥𝑥𝑝𝑝,𝑡𝑡 is the price level, so 𝑥𝑥𝜋𝜋,𝑡𝑡 = 𝑥𝑥𝑝𝑝,𝑡𝑡 − 𝑥𝑥𝑝𝑝,𝑡𝑡−1. This is a level targeting rule, with 
nominal GDP targeting as a special case with 𝛼𝛼∆𝑦𝑦 = 𝛼𝛼𝜋𝜋 . Note that the omission of the 
�1 − 𝜌𝜌� coefficient on 𝛼𝛼∆𝑦𝑦 and 𝛼𝛼𝜋𝜋  is akin to having a “true” response to output growth 
of 

𝛼𝛼∆𝑦𝑦
1−𝜌𝜌 and a “true” response to inflation of 𝛼𝛼𝜋𝜋

1−𝜌𝜌, so in the limit as 𝜌𝜌 → 1, we effectively 

have an infinitely strong response to these quantities. It turns out that this is sufficient 
to produce determinacy for all 𝛼𝛼∆𝑦𝑦, 𝛼𝛼𝜋𝜋 ∈ (0, ∞). 

In particular, given the model: 
𝑥𝑥𝑖𝑖,𝑡𝑡 = max�0,1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦𝑥𝑥𝑦𝑦,𝑡𝑡 + 𝛼𝛼𝜋𝜋𝑥𝑥𝑝𝑝,𝑡𝑡�, 

𝑥𝑥𝑦𝑦,𝑡𝑡 = 𝔼𝔼𝑡𝑡𝑥𝑥𝑦𝑦,𝑡𝑡+1 −
1
𝜎𝜎 �𝑥𝑥𝑖𝑖,𝑡𝑡 + 𝛽𝛽 − 1 − 𝔼𝔼𝑡𝑡𝑥𝑥𝑝𝑝,𝑡𝑡+1 + 𝑥𝑥𝑝𝑝,𝑡𝑡�, 

𝑥𝑥𝑝𝑝,𝑡𝑡 − 𝑥𝑥𝑝𝑝,𝑡𝑡−1 = 𝛽𝛽𝔼𝔼𝑡𝑡𝑥𝑥𝑝𝑝,𝑡𝑡+1 − 𝛽𝛽𝑥𝑥𝑝𝑝,𝑡𝑡 + 𝛾𝛾𝑥𝑥𝑦𝑦,𝑡𝑡, 
we prove in online appendix F that the following proposition holds: 

Proposition 11 The BPY model with price targeting is in the form of Problem 2, and 
satisfies Assumptions 1 and 2. With 𝑇𝑇 = 1, 𝑀𝑀 > 0 for all 𝛼𝛼𝜋𝜋 ∈ (0, ∞), 𝛼𝛼∆𝑦𝑦 ∈ [0, ∞). 

Furthermore, with 𝜎𝜎 = 1 , 𝛽𝛽 = 0.99 , 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�
0.85 (2 + 𝜎𝜎) , as before, and 

𝛼𝛼∆𝑦𝑦 = 1, 𝛼𝛼𝜋𝜋 = 1, if we check our lower bound on 𝜍𝜍 with 𝑇𝑇 = 20, we find that 𝜍𝜍 > 0.042. 
Hence, this model is always feasible for any sufficiently large 𝑇𝑇. Given that 𝑑𝑑0 > 0 for 
this model, and that for 𝑇𝑇 = 20 , 𝑀𝑀  is a P-matrix, this is strongly suggestive of the 
existence of a unique solution for any 𝑞𝑞 and for arbitrarily large 𝑇𝑇. 

3.3. The linearized Fernández-Villaverde et al. (2015) model 
The discussion of the BPY (2013) model might lead one to believe that multiplicity 

and non-existence is solely a consequence of overly aggressive monetary responses to 
output growth, and overly weak monetary responses to inflation. However, it turns 
out that in basic New Keynesian models with positive inflation in steady-state, and 
hence price dispersion, even without any monetary response to output growth, and 
even with extremely aggressive monetary responses to inflation, there are still 
multiple equilibria in some states of the world (i.e. for some 𝑞𝑞), and no solutions in 
others. Price level targeting is again sufficient to fix these problems though. 

We show these results in the Fernández-Villaverde et al. (2015) model, which is a 
basic non-linear New Keynesian model without capital or price indexation of non-
resetting firms, but featuring (non-valued) government spending and steady-state 
inflation (and hence price-dispersion). We refer the reader to the original paper for the 
model’s equations. After substitutions, the model has four non-linear equations which 
are functions of gross inflation, labour supply, price dispersion and an auxiliary 
variable introduced from the firms’ price-setting first order condition. Of these 
variables, only price dispersion enters with a lag. We linearize the model around its 
steady-state, and then reintroduce the “max” operator which linearization removed 
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from the Taylor rule. 21  All parameters are set to the values given in Fernández-
Villaverde et al. (2015). There is no term featuring output growth in the Taylor rule, so 
any multiplicity or non-existence in this model cannot be a consequence of the 
mechanism highlighted by BPY (2013). 

For this model, numerical calculations reveal that with 𝑇𝑇 ≤ 14 , 𝑀𝑀  is a P-matrix. 
However, with 𝑇𝑇 ≥ 15, 𝑀𝑀 is not a P matrix, and thus there are certainly some states of 
the world (some 𝑞𝑞) in which the model has multiple solutions. One example was given 
in Figure 4. Furthermore, with 𝑇𝑇 = 1000, our upper bound on 𝜍𝜍 from Proposition 4 
implies that 𝜍𝜍 ≤ 0 + numerical error , suggesting that 𝑀𝑀  is not an S-matrix for 
arbitrarily large 𝑇𝑇, by Corollary 1. If this is correct, then even for arbitrarily large 𝑇𝑇, 
there are some 𝑞𝑞 for which no solution exists.  

However, if we replace inflation in the monetary rule with the price level relative to 
its linear trend, which evolves according to: 

𝑥𝑥𝑝𝑝,𝑡𝑡 = 𝑥𝑥𝑝𝑝,𝑡𝑡−1 + 𝑥𝑥𝜋𝜋,𝑡𝑡 − 𝑥𝑥𝜋𝜋, (5) 
then with 𝑇𝑇 = 200 , we have that 𝑀𝑀  is an S-matrix, and the lower bound from 
Proposition 4 implies that 𝜍𝜍 > 0.003, and hence that for all sufficiently large 𝑇𝑇, 𝑀𝑀 is an 
S-matrix (by Corollary 1), so there is always a feasible solution. Furthermore, with 𝑇𝑇 =
20, 𝑀𝑀 is a P-matrix, and even with 𝑇𝑇 = 200, 𝑀𝑀 has no contiguous sub-matrices with 
negative determinant. This is strongly suggestive of uniqueness even for arbitrarily 
large 𝑇𝑇, given the relatively short lived dynamics of the model. 

3.4. The Smets and Wouters (2003) and Smets and Wouters (2007) models 
Smets and Wouters (2003) and Smets and Wouters (2007) are the canonical medium-

scale linear DSGE models, featuring assorted shocks, habits, price and wage 
indexation, capital (with adjustment costs), (costly) variable utilisation and quite 
general monetary policy reaction functions. The former model is estimated on Euro 
area data, while the latter is estimated on US data. The latter model also contains trend 
growth (permitting its estimation on non-detrended data), and a slightly more general 
aggregator across industries. However, overall, they are quite similar models, and any 
differences in their behaviour chiefly stems from differences in the estimated 
parameters. Since both models are incredibly well known in the literature, we omit 
their equations here, referring the reader to the original papers for further details.  

To assess the likelihood of multiple equilibria at or away from the zero lower bound, 
we augment each model with a ZLB on nominal interest rates, and evaluate the 
properties of each model’s 𝑀𝑀  matrix at the estimated posterior-modes from the 

                                                 
21 Prior to linearization, we first transform the model’s variables so that the transformed variables may take values on the entire 
real line. I.e. we work with the logarithms of labour supply, price dispersion and the auxiliary variable. For inflation, we note that 
inflation is always less than 𝜃𝜃

1
1−𝜀𝜀 (in the notation of Fernández-Villaverde et al. (2015)). Thus we work with a logit transformation 

of inflation over 𝜃𝜃
1

1−𝜀𝜀. This is generally more accurate than working with the logarithm of inflation. 
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original papers. Note that in order to minimise the deviation from the original papers, 
we do not introduce an auxiliary for shadow nominal interest rates, so the monetary 
rules take the form of 𝑥𝑥𝑟𝑟,𝑡𝑡 = max�0, �1 − 𝜌𝜌𝑟𝑟�(⋯ ) + 𝜌𝜌𝑟𝑟𝑥𝑥𝑟𝑟,𝑡𝑡−1 + ⋯ �, in both cases. In any 
case, this seems more natural than the alternative, which can result in implausibly fast 
exits from the ZLB. However, our results would be essentially identical with a shadow 
nominal interest rate. 

As shown in Lemma 4, if the diagonal of the 𝑀𝑀 matrix ever goes negative, then the 
𝑀𝑀 matrix cannot be general positive semi-definite, semi-monotone, sufficient, P0 or 
copositive, and hence the model will sometimes have multiple solutions even when 
away from the zero lower bound (i.e. for some strictly positive 𝑞𝑞), by Proposition 9. In 
Figure 6, we plot the diagonal of the 𝑀𝑀 matrix for each model in turn,22 i.e. the impact 
on nominal interest rates in period 𝑡𝑡 of news in period 1 that a positive, magnitude one 
shock will hit nominal interest rates in period 𝑡𝑡. Immediately, we see that while in the 
US model, these impacts remain positive at all horizons, in the Euro area model, these 
impacts turn negative after just a few periods, and remain so at least up to period 40. 
Therefore, in the ZLB augmented Smets and Wouters (2003) model, there is not always 
a unique equilibrium. Furthermore, if a run of future shocks was drawn from a 
distribution with unbounded support, then the value of these shocks was revealed to 
the model’s agents (as in the stochastic extended path), then there would be a positive 
probability that the model without the ZLB would always feature positive interest 
rates, but that the model with the ZLB could hit zero. 

 
The Smets and Wouters (2003) model 

 
The Smets and Wouters (2007) model 

Figure 6: The diagonals of the 𝑴𝑴 matrices for the Smets and Wouters (2003; 2007) models 

It remains for us to assess whether 𝑀𝑀 is a P(0)-matrix or (strictly) semi-monotone for 
the Smets and Wouters (2007) model. Numerical calculations reveal that for 𝑇𝑇 < 9, 𝑀𝑀 
is a P-matrix, and hence is strictly semi-monotone. However, with 𝑇𝑇 ≥ 9, the top-left 
9 × 9 sub-matrix of 𝑀𝑀 has negative determinant and is not an S or S(0) matrix. Thus, 
for 𝑇𝑇 ≥ 9, 𝑀𝑀 is not a P(0)-matrix or (strictly) semi-monotone, and hence this model also 

                                                 
22 The MOD files for the Smets and Wouters (2003) model were derived from the Macro Model Database (Wieland et al. 2012). 
The MOD files for the Smets and Wouters (2007) model were derived from files provided by Johannes Pfeifer here: 
http://goo.gl/CP53x5  
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has multiple equilibria, even when away from the bound. Given that the US has been 
at the ZLB for over eight years, that 𝑇𝑇 ought to be greater than eight quarters seems 
uncontroversial. While placing a larger coefficient on inflation in the Taylor rule can 
make the Euro area picture more like the US one, with a strictly positive diagonal to 
the 𝑀𝑀 matrix, even with incredibly large coefficients, 𝑀𝑀 remains a non-P-matrix for 
both models. Hence, in both the Euro area and the US, we ought to take seriously the 
possibility that the existence of the ZLB produces non-uniqueness. 

As an example of such non-uniqueness, in Figure 7 we plot two different solutions 
following the most likely combination of shocks to the Smets and Wouters (2007) 
model that would produce negative interest rates for a year in the absence of a ZLB.23 
In both cases, the dotted line shows the response in the absence of the ZLB. Particularly 
notable is the flip in sign, since the shocks most likely to take the model to the ZLB for 
a year are expansionary ones reducing prices (i.e. positive productivity and negative 
mark-up shocks). The following section shows an example of multiplicity in the Smets 
and Wouters (2003) model, and discusses the economic relevance of such multiplicity. 
 

  
Figure 7: Two alternative solutions following a combination of shocks to the Smets and Wouters (2007) model 

All variables are in logarithms. The precise combination of shocks is detailed in footnote 23. 
 

In addition, it turns out that for neither model is 𝑀𝑀 an S-matrix even with 𝑇𝑇 = 1000, 
and thus for both models there are some 𝑞𝑞 ∈ ℝ1000 for which no solution exists. This 
is strongly suggestive of non-existence for some 𝑞𝑞  even for arbitrarily large 𝑇𝑇 , 
something that is reinforced by the fact that for the Smets and Wouters (2007) model, 
with 𝑇𝑇 = 1000, Proposition 4 gives that 𝜍𝜍 ≤ 0 + numerical error.  

Alternatively, suppose we replace the monetary rule in both models by: 
𝑥𝑥𝑟𝑟,𝑡𝑡 = max�0, �1 − 𝜌𝜌𝑟𝑟��𝑥𝑥𝑦𝑦,𝑡𝑡 + 𝑥𝑥𝑝𝑝,𝑡𝑡� + 𝜌𝜌𝑟𝑟𝑥𝑥𝑟𝑟,𝑡𝑡−1� 

where 𝜌𝜌𝑟𝑟 is as in the respective original model, where the price level 𝑥𝑥𝑝𝑝,𝑡𝑡 again evolves 
according to equation (16), and where 𝑥𝑥𝑦𝑦,𝑡𝑡 is output relative to its linear trend. Then, 

                                                 
23 I.e. the shock magnitudes are given by the vector 𝑤𝑤 that minimises 𝑤𝑤′𝑤𝑤 subject to 𝑟𝑟 ̅+ 𝑍𝑍𝑤𝑤, where 𝑟𝑟 ̅is the steady-state interest 
rate, and each column of 𝑍𝑍 gives the first four periods of the impulse response of interest rates to one of the model’s shocks. This 
produces the following shock magnitudes: productivity, 3.56; risk premium, -2.70; government, -1.63; investment, -4.43; monetary, 
-2.81; price mark-up, -3.19; wage mark-up, -4.14. 
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for both models, with 𝑇𝑇 = 20, 𝑀𝑀 was a P-matrix, and there are no contiguous principal 
sub-matrices with negative determinant even for 𝑇𝑇 = 200 . Furthermore, from 
Proposition 4, with 𝑇𝑇 = 1000, for the Euro area model we have that 𝜍𝜍 > 3 × 10−7 and 
for the US model we have that 𝜍𝜍 > 0.002, so Corollary 1 implies that a solution always 
exists to both models for sufficiently large 𝑇𝑇. As one would expect, this result is also 
robust to departures from equal, unit, coefficients. Thus, price level targeting again 
appears to be sufficient for determinacy in the presence of the ZLB. 

3.5. Economic significance of multiplicity 
There are two reasons why one might be sceptical about the economic significance 

of the multiple equilibria caused by the presence of the ZLB. Firstly, as with any non-
fundamental equilibrium, the coordination of beliefs needed to sustain the 
equilibrium may be difficult. Secondly, as we have seen, self-fulfilling jumps to the 
zero lower bound may feature implausibly large falls in output and inflation. This 
reflects the implausibly large response to news about future policy innovations, a 
problem that has been termed the “forward guidance puzzle” in the literature 
(Carlstrom, Fuerst, and Paustian 2015; Del Negro, Giannoni, and Patterson 2015).24 

However, if the economy is already in a recession, then both of these problems are 
substantially ameliorated. If interest rates are already low, then it does not seem too 
great a stretch to suggest that a drop in confidence may lead people to expect to hit 
the ZLB. Even more plausibly, if the economy is already at the ZLB, then small changes 
in confidence could easily select an equilibrium featuring a longer spell at the ZLB 
than in the equilibrium with the shortest time there. Indeed, there is no good reason 
why people should coordinate on the equilibrium with the shortest time at the ZLB. 
Furthermore, with interest rates already low, the size of the required self-fulfilling 
news shock is much smaller, meaning that the additional drop in output and inflation 
caused by a jump to the ZLB will be much more moderate. 

As an example, in Figure 8 we plot the impulse response to a large magnitude 
preference shock (scaling utility), in the Smets and Wouters (2003) model.25 The shock 
is not quite large enough to send the economy to the zero lower bound 26  in the 

                                                 
24 McKay, Nakamura, and Steinsson (2016) point out that these implausibly large responses to news are muted in models with 
heterogeneous agents, and they give a simple “discounted Euler” approximation that produces similar results to a full 
heterogeneous agent model. However, while including a discounted Euler equation makes it harder to generate multiplicity (e.g. 
reducing the parameter space with multiplicity in the Brendon, Paustian, and Yates (2013) model), when there is multiplicity, the 
resulting responses are much larger, since the weaker response to news means that the required endogenous news shocks need 
to be much greater in order to drive the model to the bound. 
25 The shock is 22.5 standard deviations. While this is implausibly large, the economy could be driven to the bound with a run of 
much smaller shocks. It is also worth recalling that the model was estimated on the great moderation period, and so the estimated 
standard deviations may be too low. Finally, recent evidence (Cúrdia, del Negro, and Greenwald 2014) suggests that the shocks 
in DSGE models are better modelled as being fat tailed, making large shocks more likely. 
26 Since the Smets and Wouters (2003) model does not include trend growth, it is impossible to produce a steady-state value for 
nominal interest rates that is consistent with both the model and the data. We choose to follow the data, setting the steady-state 
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fundamental solution, shown with a dotted line. However, there is an alternative 
solution in which the economy jumps to the bound one period after the initial shock, 
remaining there for three periods. While the alternative solution features larger drops 
in output and inflation, they are less than twice the magnitude. Indeed, the falls are 
broadly in line with the magnitude of the crisis, with Eurozone GDP and consumption 
now being about 20% below a pre-crisis log-linear trend, and the largest drop in 
Eurozone consumption inflation from 2008q3 to 2008q4 being around 1%.27 In light of 
this, we view it as plausible that multiplicity of equilibria could be a significant 
component of the explanation for the great recession. 
 

 
Figure 8: Two solutions following a preference shock in the Smets and Wouters (2003) model. 

All variables are in logarithms. 

4. Conclusion 

This paper provides the first theoretical results on existence and uniqueness for 
otherwise linear models with occasionally binding constraints. As such, it may be 
thought of as doing for models with occasionally binding constraints what Blanchard 
and Kahn (1980) did for linear models. 

We provided necessary and sufficient conditions for the existence of a unique 
equilibrium, as well as such conditions for uniqueness when away from the bound. In 
our application to New Keynesian models, we showed that these conditions were 
violated in entirely standard models, rather than just being a consequence of policy 
rules responding to growth rates. In the presence of multiplicity, there is the potential 
for additional endogenous volatility from sunspots, so the welfare benefits of avoiding 
multiplicity may be substantial. Additionally, as we saw in Figure 5, the additional 

                                                 
of nominal interest rates to its mean level over the same sample period used by Smets and Wouters (2003), using data from the 
same source (Fagan, Henry, and Mestre 2005). 
27 Data was again from the area-wide model database (Fagan, Henry, and Mestre 2005). 
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equilibria may feature huge drops in output, providing further welfare reasons for 
their avoidance. The possibility of self-fulfilling jumps and returns from the ZLB also 
gives an alternative rationale for the neo-Fisherian view that argues that raising 
interest rates may raise inflation at the ZLB.28 

Luckily, our results suggest that a determinate equilibrium may be produced in 
standard New Keynesian models if the central bank switches to targeting the price 
level, rather than the inflation rate. There is of course a large literature advocating 
price level targeting already. Vestin (2006) made an important early contribution by 
showing that its history dependence mimics the optimal rule. This was built on by 
Eggertsson and Woodford (2003) who showed its particular desirability in the 
presence of the ZLB, since it produces inflation after the bound is escaped. A later 
contribution by Nakov  (2008) showed that this result survived taking a fully global 
solution, and Coibion, Gorodnichenko, and Wieland (2012) showed that it still holds 
in a richer model. More recently, Basu and Bundick (2015) have argued that a response 
to the price level avoids the kinds of equilibrium non-existence problems stressed by 
Mendes (2011), while also solving the contractionary bias caused by the ZLB, 
drastically improving welfare. Our argument is distinct from all of these; we showed 
that in the presence of the ZLB, inflation targeting rules are indeterminate, whereas 
price level targeting rules produce determinacy. Consequently, if one believes the 
arguments for the Taylor principle in the absence of the ZLB, then one should advocate 
price level targeting if the ZLB constraint is inescapable. 

In addition, we provided conditions for existence of any solution that converges to 
the “good” steady-state, and showed that under inflation targeting, standard New 
Keynesian models again failed to satisfy these conditions over all of the space of state 
variables and shocks. Whereas the literature started by Benhabib, Schmitt-Grohé, and 
Uribe (2001a; 2001b) showed that the existence of a “bad” steady-state may imply 
additional volatility if agents long-run beliefs are not pinned down by the inflation 
target, here we showed that under inflation targeting, there was positive probability 
of arriving in a state from which there was no way for the economy to converge to the 
“good” steady-state. This in turn implies that agents should not place prior certainty 
on converging to the “good” steady-state, thus rationalising the beliefs required to get 
the kind of global multiplicity at the zero lower bound that these and other authors 
have focussed on. Once again though, we showed that price level targeting is sufficient 
to restore existence and determinacy. 
 

                                                 
28 Theoretical and empirical evidence for this view is presented in Cochrane (2015). 
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6. Appendices 

6.1. Other properties of the solution set 
First, let us give one further definition: 

Definition 9 ((Non-)Degenerate matrix) A matrix 𝑀𝑀 ∈ ℝ𝑇𝑇×𝑇𝑇  is called a non-
degenerate matrix if the principal minors of 𝑀𝑀  are all non-zero. 𝑀𝑀  is called a 
degenerate matrix if it is not a non-degenerate matrix. 

Then, conditions for having a finite or convex set of solutions are given in the following 
propositions. 

Proposition 12 The LCP �𝑞𝑞, 𝑀𝑀� has a finite (possibly zero) number of solutions for all 
𝑞𝑞 ∈ ℝ𝑇𝑇 if and only if 𝑀𝑀 is non-degenerate. (Cottle, Pang, and Stone 2009a) 

Proposition 13 The LCP �𝑞𝑞, 𝑀𝑀� has a convex (possibly empty) set of solutions for all 
𝑞𝑞 ∈ ℝ𝑇𝑇 if and only if 𝑀𝑀 is column sufficient. (Cottle, Pang, and Stone 2009a) 

6.2. Results from dynamic programming 
Alternative existence and uniqueness results for the infinite 𝑇𝑇  problem can be 

established via dynamic programming methods, under the assumption that Problem 
2 comes from the first order conditions solution of a social planner problem. These 
have the advantage that their conditions are potentially much easier to evaluate, 
though they also have somewhat limited applicability. We focus here on uniqueness 
results, since these are generally of greater interest. 
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Suppose that the social planner in some economy solves the following problem: 

Problem 5 Suppose 𝜇𝜇 ∈ ℝ𝑛𝑛 , Ψ(0) ∈ ℝ𝑐𝑐×1  and Ψ(1) ∈ ℝ𝑐𝑐×2𝑛𝑛  are given, where 𝑐𝑐 ∈ ℕ . 
Define Γ̃: ℝ𝑛𝑛 → ℙ(ℝ𝑛𝑛) (where ℙ denotes the power-set operator) by: 

Γ̃(𝑥𝑥) = �𝑧𝑧 ∈ ℝ𝑛𝑛�  0 ≤ Ψ(0) + Ψ(1) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�� , (6) 

for all 𝑥𝑥 ∈ ℝ𝑛𝑛 . (Note: 𝛤𝛤̃(𝑥𝑥)  will give the set of feasible values for next period’s state if the 
current state is 𝑥𝑥. Equality constraints may be included by including an identical lower bound 
and upper bound.) Define: 

𝑋𝑋� ≔ �𝑥𝑥 ∈ ℝ𝑛𝑛�Γ̃(𝑥𝑥) ≠ ∅�, (7) 
and suppose without loss of generality that for all 𝑥𝑥 ∈ ℝ𝑛𝑛, Γ̃(𝑥𝑥) ∩ 𝑋𝑋� = Γ̃(𝑥𝑥). (Note: this 
means that the linear inequalities bounding 𝑋𝑋� are already included in those in the definition of 
𝛤𝛤̃(𝑥𝑥). It is without loss of generality as the planner will never choose an 𝑥𝑥̃ ∈ 𝛤𝛤̃(𝑥𝑥) such that 
𝛤𝛤̃(𝑥𝑥)̃ = ∅.) Further define ℱ̃ : 𝑋𝑋� × 𝑋𝑋� → ℝ by: 

ℱ̃(𝑥𝑥, 𝑧𝑧) = 𝑢𝑢(0) + 𝑢𝑢(1) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� +

1
2 �

𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�

′
𝑢𝑢(̃2) �

𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� , (8) 

for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋� , where 𝑢𝑢(0) ∈ ℝ , 𝑢𝑢(1) ∈ ℝ1×2𝑛𝑛  and 𝑢𝑢(̃2) = 𝑢𝑢(̃2)′ ∈ ℝ2𝑛𝑛×2𝑛𝑛  are given. 
Finally, suppose 𝑥𝑥0 ∈ 𝑋𝑋� is given and 𝛽𝛽 ∈ (0,1), and choose 𝑥𝑥1, 𝑥𝑥2, … to maximise: 

lim inf
𝑇𝑇→∞

� 𝛽𝛽𝑡𝑡−1ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
(9) 

subject to the constraints that for all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ̃(𝑥𝑥𝑡𝑡−1). 

To ensure the problem is well behaved, we make the following assumption: 

Assumption 3 𝑢𝑢(̃2) is negative-definite. 

In online appendix G, we establish the following (unsurprising) result: 

Proposition 14 If either 𝑋𝑋� is compact, or, Γ̃(𝑥𝑥) is compact valued and 𝑥𝑥 ∈ Γ̃(𝑥𝑥) for all 
𝑥𝑥 ∈ 𝑋𝑋�, then for all 𝑥𝑥0 ∈ 𝑋𝑋�, there is a unique path (𝑥𝑥𝑡𝑡)𝑡𝑡=0

∞  which solves Problem 5. 

We wish to use this result to establish the uniqueness of the solution to the first order 
conditions. The Lagrangian for our problem is given by: 

� 𝛽𝛽𝑡𝑡−1

⎣
⎢⎡ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆Ψ,𝑡𝑡

′ �Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 ��

⎦
⎥⎤

∞

𝑡𝑡=1
, (10) 

for some KKT-multipliers 𝜆𝜆𝑡𝑡 ∈ ℝ𝑐𝑐  for all 𝑡𝑡 ∈ ℕ+ . Taking the first order conditions 
leads to the following necessary KKT conditions, for all 𝑡𝑡 ∈ ℕ+: 

0 = 𝑢𝑢⋅,2
(1) + �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1) + 𝛽𝛽 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡 − 𝜇𝜇
𝑥𝑥𝑡𝑡+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡+1
′ Ψ⋅,1

(1)� , (11) 

0 ≤ Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 � , 0 ≤ 𝜆𝜆𝑡𝑡, 0 = 𝜆𝜆𝑡𝑡 ∘ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� , (12) 
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where subscripts 1 and 2 refer to blocks of rows or columns of length 𝑛𝑛. Additionally, 
for 𝜇𝜇 to be the steady-state of 𝑥𝑥𝑡𝑡 and 𝜆𝜆���� to be the steady-state of 𝜆𝜆𝑡𝑡, we require:  

0 = 𝑢𝑢⋅,2
(1) + 𝜆𝜆���� ′Ψ⋅,2

(1) + 𝛽𝛽�𝑢𝑢⋅,1
(1) + 𝜆𝜆���� ′Ψ⋅,1

(1)�, (13) 

0 ≤ Ψ(0), 0 ≤ 𝜆𝜆���� , 0 = 𝜆𝜆���� ∘ Ψ(0). (14) 
In online appendix H we prove the following result: 

Proposition 15 Suppose that for all 𝑡𝑡 ∈ ℕ , (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞   and (𝜆𝜆𝑡𝑡)𝑡𝑡=1

∞   satisfy the KKT 
conditions given in equations (10)  and (11) , and that as 𝑡𝑡 → ∞ , 𝑥𝑥𝑡𝑡 → 𝜇𝜇  and 𝜆𝜆𝑡𝑡 → 𝜆𝜆���� , 
where 𝜇𝜇  and 𝜆𝜆  satisfy the steady-state KKT conditions given in equations (12)  and 
(13). Then (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞  solves Problem 5. If, further, either condition of Proposition 10 is 
satisfied, then (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞  is the unique solution to Problem 5, and there can be no other 
solutions to the KKT conditions given in equations (10)  and (11)  satisfying 𝑥𝑥𝑡𝑡 → 𝜇𝜇 
and 𝜆𝜆𝑡𝑡 → 𝜆𝜆���� as 𝑡𝑡 → ∞. 

Now, it is possible to convert the KKT conditions given in equations (10) and (11) into 
a problem in the form of the multiple-bound generalisation of Problem 2 quite 
generally. To see this, first note that we may rewrite equation (10) as: 

0 = 𝑢𝑢⋅,2
(1)′

+ 𝑢𝑢2̃,1
(2)�𝑥𝑥𝑡𝑡−1 − 𝜇𝜇� + 𝑢𝑢2̃,2

(2)�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + Ψ⋅,2
(1)′

𝜆𝜆𝑡𝑡

+ 𝛽𝛽�𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,1
(2)�𝑥𝑥𝑡𝑡 − 𝜇𝜇� + 𝑢𝑢1̃,2

(2)�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + Ψ⋅,1
(1)′

𝜆𝜆𝑡𝑡+1�. 
Now, 𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1,1
(2) is negative definite, hence it is valid to define: 

𝒱𝒱 ≔ Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
. 

Then, equation (9) implies that: 
Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

= Ψ(0) + �Ψ⋅,1
(1) − 𝒱𝒱𝑢𝑢2̃,1

(2)�(𝑥𝑥𝑡𝑡−1 − 𝜇𝜇) − 𝒱𝒱 �𝑢𝑢⋅,2
(1)′

+ 𝛽𝛽�𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,2
(2)�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + Ψ⋅,1

(1)′
𝜆𝜆𝑡𝑡+1��

−Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�−1

Ψ⋅,2
(1)′

𝜆𝜆𝑡𝑡.

(15) 

Moreover, equation (11)  implies that if the 𝑘𝑘 th element of Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �  is 

strictly positive, then the 𝑘𝑘th element of 𝜆𝜆𝑡𝑡 is zero, so: 
Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 � = max{0, 𝑧𝑧𝑡𝑡} , (16) 

where: 
𝑧𝑧𝑡𝑡 ≔ Ψ(0) + �Ψ⋅,1

(1) − 𝒱𝒱𝑢𝑢2̃,1
(2)��𝑥𝑥𝑡𝑡−1 − 𝜇𝜇�

− 𝒱𝒱 �𝑢𝑢⋅,2
(1)′

+ 𝛽𝛽�𝑢𝑢⋅,1
(1)′

+ 𝑢𝑢1̃,2
(2)�𝑥𝑥𝑡𝑡+1 − 𝜇𝜇� + Ψ⋅,1

(1)′
𝜆𝜆𝑡𝑡+1��

− �Ψ⋅,2
(1)�𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2)�

−1
Ψ⋅,2

(1)′
+ 𝒲𝒲� 𝜆𝜆𝑡𝑡, 

and 𝒲𝒲 ∈ ℝ𝑐𝑐×𝑐𝑐 is an arbitrary, strictly positive diagonal matrix. A natural choice is: 
𝒲𝒲 ≔ − diag diag �Ψ⋅,2

(1)�𝑢𝑢2̃,2
(2) + 𝛽𝛽𝑢𝑢1̃,1

(2)�
−1

Ψ⋅,2
(1)′

�, 
providing this is strictly positive (it is weakly positive at least as 𝑢𝑢2̃,2

(2) + 𝛽𝛽𝑢𝑢1̃,1
(2) is negative 

definite), where the diag operator maps matrices to a vector containing their diagonal, 
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and maps vectors to a matrix with the given vector on the diagonal, and zeros 
elsewhere. 

We claim that we may replace equation (11) with equation (15) without changing 
the model. We have already shown that equation (11) implies equation (15), so we just 
have to prove the converse. We continue to suppose equation (9) holds, and thus, so 
too does equation (14). Then, from subtracting equation (14) from equation (15), we 
have that: 

𝒲𝒲𝜆𝜆𝑡𝑡 = max{−𝑧𝑧𝑡𝑡, 0}. 
Hence, as 𝒲𝒲  is a strictly positive diagonal matrix, and the right hand side is weakly 
positive, 𝜆𝜆𝑡𝑡 ≥ 0. Furthermore, the 𝑘𝑘th element of 𝜆𝜆𝑡𝑡 is non-negative if and only if the 
𝑘𝑘th element of 𝑧𝑧𝑡𝑡 is non-positive (as 𝒲𝒲  is a strictly positive diagonal matrix), which in 
turn holds if and only if the 𝑘𝑘th element of Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 � is equal to zero, by 

equation (15). Thus equation (11) is satisfied.  
Combined with our previous results, this gives the following proposition: 

Proposition 16 Suppose we are given a problem in the form of Problem 5. Then, the 
KKT conditions of that problem may be placed into the form of the multiple-bound 
generalisation of Problem 2. Let �𝑞𝑞𝑥𝑥0

, 𝑀𝑀�  be the infinite LCP corresponding to this 
representation, given initial state 𝑥𝑥0 ∈ 𝑋𝑋�. Then, if 𝑦𝑦 is a solution to the LCP, 𝑞𝑞𝑥𝑥0

+ 𝑀𝑀𝑦𝑦 
gives the stacked paths of the bounded variables in a solution to Problem 5. If, further, 
either condition of Proposition 10 is satisfied, then this LCP has a unique solution for 
all 𝑥𝑥0 ∈ 𝑋𝑋�, which gives the unique solution to Problem 5, and, for sufficiently large 𝑇𝑇∗, 
the finite LCP �𝑞𝑞𝑥𝑥0

(𝑇𝑇∗), 𝑀𝑀(𝑇𝑇∗)�  has a unique solution 𝑦𝑦(𝑇𝑇∗)  for all 𝑥𝑥0 ∈ 𝑋𝑋� , where 𝑞𝑞𝑥𝑥0
(𝑇𝑇∗) +

𝑀𝑀(𝑇𝑇∗)𝑦𝑦(𝑇𝑇∗) gives the first 𝑇𝑇∗ periods of the stacked paths of the bounded variables in a 
solution to Problem 5. 

This proposition provides some evidence that the LCP will have a unique solution 
when it is generated from a dynamic programming problem with a unique solution. 
In online appendix I, we derive similar results for models with more general 
constraints and objective functions. The proof of this proposition also showed how one 
can convert KKT conditions into equations of the form handled by our methods. 
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 Relationship between multiplicity under perfect-foresight, and 
multiplicity under rational expectations 

By augmenting the state-space appropriately, the first order conditions of a general, 
non-linear, rational expectations, DSGE model may always be placed in the form: 

0 = 𝔼𝔼𝑡𝑡 𝑓𝑓 �̂𝑥𝑥�̂�𝑡−1, 𝑥𝑥�̂�𝑡, 𝑥𝑥�̂�𝑡+1, 𝜎𝜎𝜀𝜀𝑡𝑡�, 
for all 𝑡𝑡 ∈ ℤ, where 𝜎𝜎 ∈ [0,1], 𝑓𝑓 :̂ �ℝ�̂�𝑛�3 × ℝ𝑚𝑚 → ℝ�̂�𝑛, and where for all 𝑡𝑡 ∈ ℤ, 𝑥𝑥�̂�𝑡 ∈ ℝ�̂�𝑛, 
𝜀𝜀𝑡𝑡 ∈ ℝ𝑚𝑚, 𝔼𝔼𝑡𝑡−1𝜀𝜀𝑡𝑡 = 0, and 𝔼𝔼𝑡𝑡𝑥𝑥�̂�𝑡 = 𝑥𝑥�̂�𝑡. Since 𝑓𝑓  is arbitrary, without loss of generality we 
may further assume that 𝜀𝜀𝑡𝑡~NIID(0, 𝐼𝐼). We further assume: 

Assumption 4 𝑓𝑓  ̂is everywhere continuous. 

The continuity of 𝑓𝑓  ̂does rule out some models, but all models in which the only source 
of non-differentiability is a max or min operator (like those studied in this paper and 
its computational companion (Holden 2016)) will have a continuous 𝑓𝑓 .̂ 

Now, by further augmenting the state space, we can then find a continuous function 
𝑓𝑓 : (ℝ𝑛𝑛)3 × ℝ𝑚𝑚 → ℝ𝑛𝑛 such that for all 𝑡𝑡 ∈ ℤ: 

0 =  𝑓𝑓 �𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡, 𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡+1, 𝜎𝜎𝜀𝜀𝑡𝑡�, 
where for all 𝑡𝑡 ∈ ℤ , 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛  and 𝔼𝔼𝑡𝑡𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡 .29  A solution to this model is given by a 
policy function. Given 𝑓𝑓  is continuous, it is natural to restrict attention to continuous 
policy functions.30 Furthermore, given the model’s transversality conditions, we are 
usually only interested in stationary, Markov solutions, so the policy function will not 
be a function of 𝑡𝑡  or of lags of the state. Additionally, in this paper we are only 
interested in solutions in which the deterministic model converges to some particular 
steady-state 𝜇𝜇. Thus we make the following assumption: 

Assumption 5 The policy function is given by a continuous function: 𝑔𝑔: [0,1] × ℝ𝑛𝑛 ×
ℝ𝑚𝑚 → ℝ𝑛𝑛, such that for all (𝜎𝜎, 𝑥𝑥, 𝑒𝑒) ∈ [0,1] × ℝ𝑛𝑛 × ℝ𝑚𝑚: 

0 =  𝑓𝑓 �𝑥𝑥, 𝑔𝑔(𝜎𝜎, 𝑥𝑥, 𝑒𝑒), 𝔼𝔼𝜀𝜀𝑔𝑔�𝜎𝜎, 𝑔𝑔(𝜎𝜎, 𝑥𝑥, 𝑒𝑒), 𝜎𝜎𝜀𝜀�, 𝑒𝑒�, 
where 𝜀𝜀~N(0, 𝐼𝐼) and 𝔼𝔼𝜀𝜀 denotes an expectation with respect to 𝜀𝜀. Furthermore, for all 
𝑥𝑥0 ∈ ℝ𝑛𝑛, the recurrence 𝑥𝑥𝑡𝑡 = 𝑔𝑔(0, 𝑥𝑥𝑡𝑡−1, 0) satisfies 𝑥𝑥𝑡𝑡 → 𝜇𝜇 as 𝑡𝑡 → ∞. 

                                                 
29 For example, we may use the equations: 𝑥𝑥�̂�𝑡

∘ = 𝑥𝑥�̂�𝑡−1, 𝜀𝜀�̂�𝑡 = 𝜀𝜀𝑡𝑡, 𝑧𝑧𝑡𝑡 = 𝑓𝑓 �̂𝑥𝑥�̂�𝑡−1
∘ , 𝑥𝑥�̂�𝑡−1, 𝑥𝑥�̂�𝑡, 𝜎𝜎𝜀𝜀�̂�𝑡−1�, 0 = 𝔼𝔼𝑡𝑡𝑧𝑧𝑡𝑡+1, with 𝑥𝑥𝑡𝑡 ≔ �𝑥𝑥�̂�𝑡

′ 𝑥𝑥�̂�𝑡
∘′ 𝜀𝜀�̂�𝑡

′ 𝑧𝑧𝑡𝑡′�′. 
30 Note also that in standard dynamic programming applications, the policy function will be continuous. See e.g. Theorem 9.8 of 
Stokey, Lucas, and Prescott (1989). 
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To produce a lower bound on the number of policy functions satisfying Assumption 
5, we need two further assumptions. The first assumption just gives the existence of 
the “time iteration” (a.k.a. “policy function iteration”) operator 𝒯𝒯 , and ensures that it 
maps fixed points to fixed points. 

Assumption 6 Let 𝒢𝒢  denote the space of all continuous functions [0,1] × ℝ𝑛𝑛 × ℝ𝑚𝑚 →
ℝ𝑛𝑛 . We assume there exists a function 𝒯𝒯 : 𝒢𝒢 → 𝒢𝒢   such that for all �ℊ, 𝜎𝜎, 𝑥𝑥, 𝑒𝑒� ∈ 𝒢𝒢 ×
[0,1] × ℝ𝑛𝑛 × ℝ𝑚𝑚: 

0 =  𝑓𝑓 �𝑥𝑥, 𝒯𝒯 �ℊ�(𝜎𝜎, 𝑥𝑥, 𝑒𝑒), 𝔼𝔼𝜀𝜀ℊ�𝜎𝜎, 𝒯𝒯 �ℊ�(𝜎𝜎, 𝑥𝑥, 𝑒𝑒), 𝜎𝜎𝜀𝜀�, 𝑒𝑒�. 
We further assume that if there exists some �ℊ, 𝜎𝜎� ∈ 𝒢𝒢 × [0,1] such that for all (𝑥𝑥, 𝑒𝑒) ∈
ℝ𝑛𝑛 × ℝ𝑚𝑚: 

0 =  𝑓𝑓 �𝑥𝑥, ℊ(𝜎𝜎, 𝑥𝑥, 𝑒𝑒), 𝔼𝔼𝜀𝜀ℊ�𝜎𝜎, ℊ(𝜎𝜎, 𝑥𝑥, 𝑒𝑒), 𝜎𝜎𝜀𝜀�, 𝑒𝑒�, 
then for all (𝑥𝑥, 𝑒𝑒) ∈ ℝ𝑛𝑛 × ℝ𝑚𝑚, 𝒯𝒯 �ℊ�(𝜎𝜎, 𝑥𝑥, 𝑒𝑒) = ℊ(𝜎𝜎, 𝑥𝑥, 𝑒𝑒). 

The second assumption ensures that time iteration always converges when started 
from a solution to the model with no uncertainty after the current period. This is a 
weak assumption since the policy functions under uncertainty are invariably close to 
the policy function in the absence of uncertainty. 

Assumption 7 Let ℎ: ℝ𝑛𝑛 × ℝ𝑚𝑚 → ℝ𝑛𝑛 be a continuous function giving a solution to the 
model in which there is no future uncertainty, i.e. for all (𝑥𝑥, 𝑒𝑒) ∈ ℝ𝑛𝑛 × ℝ𝑚𝑚: 

0 =  𝑓𝑓 (𝑥𝑥, ℎ(𝑥𝑥, 𝑒𝑒), ℎ(ℎ(𝑥𝑥, 𝑒𝑒), 0), 𝑒𝑒). 
Further, define 𝑔𝑔ℎ,0 ∈ 𝒢𝒢   by 𝑔𝑔ℎ,0(𝜎𝜎, 𝑥𝑥, 𝑒𝑒) = ℎ(𝑥𝑥, 𝑒𝑒)  for all (𝜎𝜎, 𝑥𝑥, 𝑒𝑒) ∈ [0,1] × ℝ𝑛𝑛 × ℝ𝑚𝑚 , 
and define 𝑔𝑔ℎ,𝑘𝑘 ∈ 𝒢𝒢   inductively by 𝑔𝑔ℎ,𝑘𝑘+1 = 𝒯𝒯 �𝑔𝑔ℎ,𝑘𝑘�  for all 𝑘𝑘 ∈ ℕ . Then there exists 
some 𝑔𝑔ℎ,∞ ∈ 𝒢𝒢   such that 𝑔𝑔ℎ,∞ = 𝒯𝒯 �𝑔𝑔ℎ,∞�  and for all (𝜎𝜎, 𝑥𝑥, 𝑒𝑒) ∈ [0,1] × ℝ𝑛𝑛 × ℝ𝑚𝑚 , 
𝑔𝑔ℎ,𝑘𝑘(𝜎𝜎, 𝑥𝑥, 𝑒𝑒) → 𝑔𝑔ℎ,∞(𝜎𝜎, 𝑥𝑥, 𝑒𝑒) as 𝑘𝑘 → ∞. 

Note, by construction, if ℎ is as in Assumption 7, then for all (𝑥𝑥, 𝑒𝑒) ∈ ℝ𝑛𝑛 × ℝ𝑚𝑚: 
0 =  𝑓𝑓 �𝑥𝑥, 𝑔𝑔ℎ,0(0, 𝑥𝑥, 𝑒𝑒), 𝔼𝔼𝜀𝜀𝑔𝑔ℎ,0�0, 𝑔𝑔ℎ,0(0, 𝑥𝑥, 𝑒𝑒), 0𝜀𝜀�, 𝑒𝑒�. 

Hence, by Assumption 6, for all 𝑘𝑘 ∈ ℕ , all 𝑥𝑥(𝑥𝑥, 𝑒𝑒) ∈ ℝ𝑛𝑛 × ℝ𝑚𝑚 , 𝑔𝑔ℎ,𝑘𝑘(0, 𝑥𝑥, 𝑒𝑒) =
𝑔𝑔ℎ,0(0, 𝑥𝑥, 𝑒𝑒). Consequently, for all (𝑥𝑥, 𝑒𝑒) ∈ ℝ𝑛𝑛 × ℝ𝑚𝑚, 𝑔𝑔ℎ,∞(0, 𝑥𝑥, 𝑒𝑒) = 𝑔𝑔ℎ,0(0, 𝑥𝑥, 𝑒𝑒) = ℎ(𝑥𝑥, 𝑒𝑒). 

Now suppose that ℎ1 and ℎ2 were as in Assumption 7, and that there exists (𝑥𝑥, 𝑒𝑒) ∈
ℝ𝑛𝑛 × ℝ𝑚𝑚, such that ℎ1(𝑥𝑥, 𝑒𝑒) ≠ ℎ2(𝑥𝑥, 𝑒𝑒). Then, by the continuity of 𝑔𝑔ℎ1,∞ and 𝑔𝑔ℎ2,∞, there 
is some 𝒮𝒮 ⊆ [0,1] × ℝ𝑛𝑛 × ℝ𝑚𝑚 of positive measure, with (0, 𝑥𝑥, 𝑒𝑒) ∈ 𝒮𝒮 , such that for all 
(𝜎𝜎, 𝑥𝑥, 𝑒𝑒) ∈ 𝒮𝒮  , 𝑔𝑔ℎ1,∞(𝜎𝜎, 𝑥𝑥, 𝑒𝑒) ≠ 𝑔𝑔ℎ2,∞(𝜎𝜎, 𝑥𝑥, 𝑒𝑒) . Hence, the rational expectations policy 
functions differ, at least for small 𝜎𝜎  . Thus, if Assumption 6 and Assumption 7 are 
satisfied, there are at least as many policy functions satisfying Assumption 5 as there 
are solutions to the model in which there is no future uncertainty. 
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 Construction of a static model with no dynamic solution in some 
states 

Consider the model: 
𝒶𝒶𝑡𝑡 = max�0, 𝒷𝒷𝑡𝑡� , 𝒶𝒶𝑡𝑡 = 1 − 𝒸𝒸𝑡𝑡, 𝒸𝒸𝑡𝑡 = 𝒶𝒶𝑡𝑡 − 𝒷𝒷𝑡𝑡. 

The model has steady-state 𝒶𝒶 = 𝒷𝒷 = 1, 𝒸𝒸 = 0. Furthermore, in the model’s Problem 3 
type equivalent, in which for 𝑡𝑡 ∈ ℕ+: 

𝒶𝒶𝑡𝑡 = �
𝒷𝒷𝑡𝑡 + 𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇

𝒷𝒷𝑡𝑡 if 𝑡𝑡 > 𝑇𝑇
, 

where 𝑦𝑦⋅,⋅ is defined as in Problem 3, we have that: 

𝒸𝒸𝑡𝑡 = �𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇
0 if 𝑡𝑡 > 𝑇𝑇

, 

so: 

𝒷𝒷𝑡𝑡 = �1 − 2𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇
1 if 𝑡𝑡 > 𝑇𝑇

, 

implying: 

𝒶𝒶𝑡𝑡 = �1 − 𝑦𝑦𝑡𝑡,0 if 𝑡𝑡 ≤ 𝑇𝑇
1 if 𝑡𝑡 > 𝑇𝑇

. 

thus, 𝑀𝑀 = −𝐼𝐼 for this model. 

 Proof of sufficient conditions for feasibility with 𝑻𝑻 = ∞ 

First, define 𝐺𝐺 ≔ −𝐶𝐶(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1, and note that if 𝐿𝐿 is the lag (right-shift) operator, 
the model from Problem 1 can be written as: 

𝐿𝐿−1(𝐴𝐴𝐿𝐿𝐿𝐿 + 𝐵𝐵𝐿𝐿 + 𝐶𝐶)�𝑥𝑥 − 𝜇𝜇� = 0. 
Furthermore, by the definitions of 𝐹𝐹 and 𝐺𝐺: 

(𝐿𝐿 − 𝐺𝐺)(𝐵𝐵 + 𝐶𝐶𝐹𝐹)(𝐼𝐼 − 𝐹𝐹𝐿𝐿) = 𝐴𝐴𝐿𝐿𝐿𝐿 + 𝐵𝐵𝐿𝐿 + 𝐶𝐶, 
so the stability of the model from Problem 1 is determined by the solutions for 𝑧𝑧 ∈ ℂ 
of the polynomial: 

0 = det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶� = det(𝐼𝐼𝑧𝑧 − 𝐺𝐺) det(𝐵𝐵 + 𝐶𝐶𝐹𝐹) det(𝐼𝐼 − 𝐹𝐹𝑧𝑧). 
Now by Assumption 1, all of the roots of det(𝐼𝐼 − 𝐹𝐹𝑧𝑧) are strictly outside of the unit 
circle, and all of the other roots of det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶� are weakly inside the unit circle 
(else there would be indeterminacy), thus, all of the roots of det(𝐼𝐼𝑧𝑧 − 𝐺𝐺) are weakly 
inside the unit circle.  Therefore, if we write 𝜌𝜌ℳ  for the spectral radius of some matrix 
ℳ , then, by this discussion and Assumption 2, 𝜌𝜌𝐺𝐺 < 1. 

Next, let 𝑠𝑠𝑡𝑡
∗, 𝑥𝑥𝑡𝑡

∗ ∈ ℝ𝑛𝑛×ℕ+ be such that for any 𝑦𝑦 ∈ ℝℕ+, the 𝑘𝑘th columns of 𝑠𝑠𝑡𝑡
∗𝑦𝑦 and 𝑥𝑥𝑡𝑡

∗𝑦𝑦 
give the value of 𝑠𝑠𝑡𝑡 and 𝑥𝑥𝑡𝑡 following a magnitude 1 news shock at horizon 𝑘𝑘, i.e. when 
𝑥𝑥0 = 𝜇𝜇 and 𝑦𝑦0 is the 𝑘𝑘th row of 𝐼𝐼ℕ+×ℕ+. Then: 

𝑠𝑠𝑡𝑡
∗ = −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞ + 𝐺𝐺𝐼𝐼⋅,1𝐼𝐼𝑡𝑡+1,1:∞ + 𝐺𝐺2𝐼𝐼⋅,1𝐼𝐼𝑡𝑡+2,1:∞ + ⋯ � 

= −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1 �(𝐺𝐺𝐿𝐿)𝑘𝑘
∞

𝑘𝑘=0
𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞ 

= −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1(𝐼𝐼 − 𝐺𝐺𝐿𝐿)−1𝐼𝐼⋅,1𝐼𝐼𝑡𝑡,1:∞, 
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where the infinite sums are well defined as 𝜌𝜌𝐺𝐺 < 1, and where 𝐼𝐼𝑡𝑡,1:∞ ∈ ℝ1×ℕ+ is a row 
vector with zeros everywhere except position 𝑡𝑡 where there is a 1. Thus: 

𝑠𝑠𝑡𝑡
∗ = �0𝑛𝑛×(𝑡𝑡−1) 𝑠𝑠1

∗� = 𝐿𝐿𝑡𝑡−1𝑠𝑠1
∗. 

Furthermore,  

�𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗� = � 𝐹𝐹𝑡𝑡−𝑗𝑗𝑠𝑠𝑘𝑘

∗
𝑡𝑡

𝑗𝑗=1
= � 𝐹𝐹𝑡𝑡−𝑗𝑗𝐿𝐿𝑗𝑗−1𝑠𝑠1

∗
𝑡𝑡

𝑗𝑗=1
, 

i.e.: 

�𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗�⋅,𝑘𝑘 = � 𝐹𝐹𝑡𝑡−𝑗𝑗𝑠𝑠1,⋅,𝑘𝑘+1−𝑗𝑗

∗
𝑡𝑡

𝑗𝑗=1
= − � 𝐹𝐹𝑡𝑡−𝑗𝑗(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐺𝐺𝑘𝑘−𝑗𝑗𝐼𝐼⋅,1

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
, 

and so the 𝑘𝑘th offset diagonal of 𝑀𝑀 (𝑘𝑘 ∈ ℤ) is given by the first row of the 𝑘𝑘th column 
of: 

𝐿𝐿−𝑡𝑡�𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗� = 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑡𝑡−𝑗𝑗𝑠𝑠1

∗
𝑡𝑡

𝑗𝑗=1
= 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
𝑡𝑡−1

𝑗𝑗=0
, 

where we abuse notation slightly by allowing 𝐿𝐿−1 to give a result with indices in ℤ 
rather than ℕ+, with padding by zeros. Consequently, for all 𝑘𝑘 ∈ ℕ+, 𝑀𝑀𝑡𝑡,𝑘𝑘 = Ο�𝑡𝑡𝑛𝑛𝜌𝜌𝐹𝐹

𝑡𝑡 �, 
as 𝑡𝑡 → ∞ , for all 𝑡𝑡 ∈ ℕ+ , 𝑀𝑀𝑡𝑡,𝑘𝑘 = Ο�𝑡𝑡𝑛𝑛𝜌𝜌𝐺𝐺

𝑘𝑘 � , as 𝑘𝑘 → ∞ , and for all 𝑘𝑘 ∈ ℤ , 𝑀𝑀𝑡𝑡,𝑡𝑡+𝑘𝑘 −
lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘 = Ο�𝑡𝑡𝑛𝑛−1�𝜌𝜌𝐹𝐹𝜌𝜌𝐺𝐺�𝑡𝑡�, as 𝑡𝑡 → ∞. Hence, 

sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 

exists and is well defined, and so: 
𝜍𝜍 = sup

𝑦𝑦∈[0,1]ℕ+

∃𝑇𝑇∈ℕ s.t. ∀𝑡𝑡>𝑇𝑇,𝑦𝑦𝑡𝑡=0

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 = sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦, 

since every point in [0,1]ℕ+ is a limit (under the supremum norm) of a sequence of 
points in the set: 

�𝑦𝑦 ∈ [0,1]ℕ+�∃𝑇𝑇 ∈ ℕ s.t. ∀𝑡𝑡 > 𝑇𝑇, 𝑦𝑦𝑡𝑡 = 0�. 
Thus, we just need to provide conditions under which sup

𝑦𝑦∈[0,1]ℕ+
inf

𝑡𝑡∈ℕ+
𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 > 0. 

To produce such conditions, we need constructive bounds on 𝑀𝑀, even if they have 
slightly worse convergence rates. For any matrix, ℳ ∈ ℝ𝑛𝑛×𝑛𝑛 with 𝜌𝜌ℳ < 1, and any 𝜙𝜙 ∈
�𝜌𝜌ℳ , 1�, let: 

𝒞𝒞ℳ,𝜙𝜙 ≔ sup
𝑘𝑘∈ℕ

��ℳ𝜙𝜙−1�𝑘𝑘�2. 

Furthermore, for any matrix, ℳ ∈ ℝ𝑛𝑛×𝑛𝑛 with 𝜌𝜌ℳ < 1, and any 𝜖𝜖 > 0, let: 
𝜌𝜌ℳ,𝜖𝜖 ≔ max�|𝑧𝑧|�𝑧𝑧 ∈ ℂ, 𝜎𝜎min�ℳ − 𝑧𝑧𝐼𝐼� = 𝜖𝜖�, 

where 𝜎𝜎min�ℳ − 𝑧𝑧𝐼𝐼� is the minimum singular value of ℳ − 𝑧𝑧𝐼𝐼, and let 𝜖𝜖∗�ℳ� ∈ (0, ∞] 
solve: 

𝜌𝜌ℳ,𝜖𝜖 = 1. 
(This has a solution in (0, ∞] by continuity as 𝜌𝜌ℳ < 1.) 
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Then, by Theorem 16.2 of Trefethen and Embree (2005), for any 𝐾𝐾 ∈ ℕ and 𝑘𝑘 > 𝐾𝐾: 

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≤ ��ℳ𝜙𝜙−1�𝐾𝐾�2��ℳ𝜙𝜙−1�𝑘𝑘−𝐾𝐾�2 ≤
��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

. 

Now, ��ℳ𝜙𝜙−1�𝐾𝐾�2 → 0 as 𝐾𝐾 → ∞, hence, there exists some 𝐾𝐾 ∈ ℕ such that: 

sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≥
��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

≥ sup
𝑘𝑘>𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2, 

meaning 𝒞𝒞ℳ,𝜙𝜙 = sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 . The quantity 𝜌𝜌ℳ,𝜖𝜖  (and hence 𝜖𝜖∗�ℳ� ) may be 

efficiently computed using the methods described by Wright and Trefethen (2001), 
and implemented in their EigTool toolkit31. Thus, 𝒞𝒞ℳ,𝜙𝜙 may be calculated in finitely 
many operations by iterating over 𝐾𝐾 ∈ ℕ until a 𝐾𝐾 is found which satisfies: 

sup
𝑘𝑘=0,…,𝐾𝐾

��ℳ𝜙𝜙−1�𝑘𝑘�2 ≥
��ℳ𝜙𝜙−1�𝐾𝐾�2
𝜖𝜖∗�ℳ𝜙𝜙−1�

. 

From the definition of 𝒞𝒞ℳ,𝜙𝜙, we have that for any 𝑘𝑘 ∈ ℕ and any 𝜙𝜙 ∈ �𝜌𝜌ℳ , 1�: 
�ℳ𝑘𝑘�2 ≤ 𝒞𝒞ℳ,𝜙𝜙𝜙𝜙𝑘𝑘. 

Now, fix 𝜙𝜙𝐹𝐹 ∈ �𝜌𝜌𝐹𝐹, 1� and 𝜙𝜙𝐺𝐺 ∈ �𝜌𝜌𝐺𝐺, 1�,32 and define: 
𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

≔ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝒞𝒞𝐺𝐺,𝜙𝜙𝐹𝐹

�(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�2, 
then, for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+: 

�𝑀𝑀𝑡𝑡,𝑘𝑘� = ��𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗�1,𝑘𝑘� ≤ ��𝑥𝑥𝑡𝑡

∗ − 𝜇𝜇∗�⋅,𝑘𝑘�2 ≤ � �𝐹𝐹𝑡𝑡−𝑗𝑗�2�(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�2�𝐺𝐺𝑘𝑘−𝑗𝑗�2

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
 

≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐹𝐹

𝑡𝑡−𝑗𝑗𝜙𝜙𝐺𝐺
𝑘𝑘−𝑗𝑗

min{𝑡𝑡,𝑘𝑘}

𝑗𝑗=1
= 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘 �𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺�− min{𝑡𝑡,𝑘𝑘} − 1
1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺

. 

Additionally, for all 𝑡𝑡 ∈ ℕ+, 𝑘𝑘 ∈ ℤ: 
�𝑀𝑀𝑡𝑡,𝑡𝑡+𝑘𝑘 − lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘� = ��𝐿𝐿−𝑡𝑡�𝑥𝑥𝑡𝑡

∗ − 𝜇𝜇∗��
1,𝑘𝑘

− � lim𝜏𝜏→∞ 𝐿𝐿−𝑡𝑡�𝑥𝑥𝑡𝑡
∗ − 𝜇𝜇∗��

1,𝑘𝑘
� 

≤
�
�
�
�

⎝
⎜⎛𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
𝑡𝑡−1

𝑗𝑗=0
− 𝐿𝐿−1 ��𝐹𝐹𝐿𝐿−1�𝑗𝑗𝑠𝑠1

∗
∞

𝑗𝑗=0 ⎠
⎟⎞

⋅,𝑘𝑘�
�
�
�

2

 

=
�
��
�
�

⎝
⎜⎛ � 𝐹𝐹𝑗𝑗𝑠𝑠1,⋅,𝑗𝑗+𝑘𝑘+1

∗
∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘} ⎠
⎟⎞

⋅,0�
��
�
�

2

 

=
�
��
�

� 𝐹𝐹𝑗𝑗(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐺𝐺𝑗𝑗+𝑘𝑘𝐼𝐼⋅,1

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘} �
��
�

2

 

≤ � �𝐹𝐹𝑗𝑗�2�(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1�2�𝐺𝐺𝑗𝑗+𝑘𝑘�2

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘}
 

≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐹𝐹

𝑗𝑗 𝜙𝜙𝐺𝐺
𝑗𝑗+𝑘𝑘

∞

𝑗𝑗=max{𝑡𝑡,−𝑘𝑘}
= 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
max{𝑡𝑡,−𝑘𝑘}𝜙𝜙𝐺𝐺

max{0,𝑡𝑡+𝑘𝑘}

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
, 

                                                 
31 This toolkit is available from https://github.com/eigtool/eigtool, and is included in DynareOBC.  
32 In practice, we try a grid of values, as it is problem dependent whether high 𝜙𝜙𝐹𝐹 and low 𝒦𝒦�ℳ𝜙𝜙−1� is preferable to low 𝜙𝜙𝐹𝐹 and 
high 𝒦𝒦�ℳ𝜙𝜙−1�. 

https://github.com/eigtool/eigtool
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so, for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+: 

�𝑀𝑀𝑡𝑡,𝑘𝑘 − lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘−𝑡𝑡� ≤ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
. 

To evaluate lim𝜏𝜏→∞ 𝑀𝑀𝜏𝜏,𝜏𝜏+𝑘𝑘−𝑡𝑡, note that this limit is the top element from the (𝑘𝑘 − 𝑡𝑡)th 
column of: 

𝑑𝑑 ≔ lim𝜏𝜏→∞ 𝐿𝐿−𝜏𝜏�𝑥𝑥𝜏𝜏
∗ − 𝜇𝜇∗� = 𝐿𝐿−1�𝐼𝐼 − 𝐹𝐹𝐿𝐿−1�−1𝑠𝑠1

∗ 
= −�𝐼𝐼 − 𝐹𝐹𝐿𝐿−1�−1(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1(𝐼𝐼 − 𝐺𝐺𝐿𝐿)−1𝐼𝐼⋅,1𝐼𝐼0,−∞:∞, 

where 𝐼𝐼0,−∞:∞ ∈ ℝ1×ℤ  is zero everywhere apart from index 0  where it equals 1 . 
Hence, by the definitions of 𝐹𝐹 and 𝐺𝐺: 

𝐴𝐴𝐿𝐿−1𝑑𝑑 + 𝐵𝐵𝑑𝑑 + 𝐶𝐶𝐿𝐿𝑑𝑑 = −𝐼𝐼⋅,1𝐼𝐼0,−∞:∞. 
In other words, if we write 𝑑𝑑𝑘𝑘 in place of 𝑑𝑑⋅,𝑘𝑘 for convenience, then, for all 𝑘𝑘 ∈ ℤ: 

𝐴𝐴𝑑𝑑𝑘𝑘+1 + 𝐵𝐵𝑑𝑑𝑘𝑘 + 𝐶𝐶𝑑𝑑𝑘𝑘−1 = − �𝐼𝐼⋅,1 if 𝑘𝑘 = 0
0 otherwise

 

I.e. the homogeneous part of the difference equation for 𝑑𝑑−𝑡𝑡 is identical to that of 𝑥𝑥𝑡𝑡 −
𝜇𝜇. The time reversal here is intuitive since we are indexing diagonals such that indices 
increase as we move up and to the right in 𝑀𝑀, but time is increasing as we move down 
in 𝑀𝑀. 

It turns out that exploiting the possibility of reversing time is the key to easy 
evaluating 𝑑𝑑𝑘𝑘. First, note that for 𝑘𝑘 < 0, it must be the case that 𝑑𝑑𝑘𝑘 = 𝐹𝐹𝑑𝑑𝑘𝑘+1, since the 
shock has already “occurred” (remember, that we are going forwards in “time” when 
we reduce 𝑘𝑘). Now consider the model in which we are going forwards time when we 
increase 𝑘𝑘, i.e. the model with: 

𝐿𝐿�𝐴𝐴𝐿𝐿−1𝐿𝐿−1 + 𝐵𝐵𝐿𝐿−1 + 𝐶𝐶�𝑑𝑑 = 0, 
subject to the terminal condition that 𝑑𝑑𝑘𝑘 → 0 as 𝑘𝑘 → ∞, which must hold as we have 
already proved that the first row of 𝑀𝑀 converges to zero. Now, let 𝑧𝑧 ∈ ℂ, 𝑧𝑧 ≠ 0 be a 
solution to: 

0 = det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶�, 
and define 𝑧𝑧̃ = 𝑧𝑧−1, so: 

0 = det�𝐴𝐴 + 𝐵𝐵𝑧𝑧̃ + 𝐶𝐶𝑧𝑧2̃� = 𝑧𝑧−2 det�𝐴𝐴𝑧𝑧2 + 𝐵𝐵𝑧𝑧 + 𝐶𝐶�
= det(𝐼𝐼 − 𝐺𝐺𝑧𝑧)̃ det(𝐵𝐵 + 𝐶𝐶𝐹𝐹) det(𝐼𝐼𝑧𝑧̃ − 𝐹𝐹). 

By Assumption 1, all of the roots of det(𝐼𝐼𝑧𝑧̃ − 𝐹𝐹) are inside the unit circle, thus they 
cannot contribute to the dynamics of the time reversed process, else the terminal 
condition would be violated. Thus, the time reversed model has a unique solution 
satisfying the terminal condition with a transition matrix with the same eigenvalues 
as 𝐺𝐺. Consequently, this solution can be calculated via standard methods for solving 
linear DSGE models, and it will be given by 𝑑𝑑𝑘𝑘 = 𝐻𝐻𝑑𝑑𝑘𝑘−1 , for all 𝑘𝑘 > 0 , where 𝐻𝐻 =
−(𝐵𝐵 + 𝐴𝐴𝐻𝐻)−1𝐶𝐶, and 𝜙𝜙𝐻𝐻 = 𝜙𝜙𝐺𝐺 < 1, by Assumption 2. 

It just remains to determine the value of 𝑑𝑑0. By the previous results, this must satisfy: 
−𝐼𝐼⋅,1 = 𝐴𝐴𝑑𝑑1 + 𝐵𝐵𝑑𝑑0 + 𝐶𝐶𝑑𝑑−1 = (𝐴𝐴𝐻𝐻 + 𝐵𝐵 + 𝐶𝐶𝐹𝐹)𝑑𝑑0. 
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Hence: 
𝑑𝑑0 = −(𝐴𝐴𝐻𝐻 + 𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1𝐼𝐼⋅,1. 

This gives a readily computed solution for the limits of the diagonals of 𝑀𝑀. Lastly, note 
that: 

�𝑑𝑑−𝑡𝑡,1� ≤ ‖𝑑𝑑−𝑡𝑡‖2 = �𝐹𝐹𝑡𝑡𝑑𝑑0�2 ≤ �𝐹𝐹𝑡𝑡�2�𝑑𝑑0�2 ≤ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡 �𝑑𝑑0�2, 
and: 

�𝑑𝑑𝑡𝑡,1� ≤ ‖𝑑𝑑𝑡𝑡‖2 = �𝐻𝐻𝑡𝑡𝑑𝑑0�2 ≤ �𝐻𝐻𝑡𝑡�2�𝑑𝑑0�2 ≤ 𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻
𝜙𝜙𝐻𝐻

𝑡𝑡 �𝑑𝑑0�2. 
We will use these results in producing our bounds on 𝜍𝜍. 

First, fix 𝑇𝑇 ∈ ℕ+ , and define a new matrix 𝑀𝑀(𝑇𝑇) ∈ ℝℕ+×ℕ+  by 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇
(𝑇𝑇) = 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇 , 

and for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+, with min{𝑡𝑡, 𝑘𝑘} > 𝑇𝑇, 𝑀𝑀𝑡𝑡,𝑘𝑘
(𝑇𝑇) = 𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1−𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
, then: 

𝜍𝜍 ≥ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞ �
𝑦𝑦

𝑦𝑦∞1∞×1
� ≥ max

𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞
(𝑇𝑇) �

𝑦𝑦
𝑦𝑦∞1∞×1

� 

= max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
⎨
��
�⎧ min

𝑡𝑡=1,…,𝑇𝑇
�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + � �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦∞

∞

𝑘𝑘=𝑇𝑇+1
� ,

inf
𝑡𝑡∈ℕ+,𝑡𝑡>𝑇𝑇

�� �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ � �𝑑𝑑𝑘𝑘−𝑡𝑡,1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦∞

∞

𝑘𝑘=𝑇𝑇+1
�

⎭�
��
⎬
��
�⎫

 

≥ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
��
��
��
��
⎨
��
��
��
��
��
�⎧ min

𝑡𝑡=1,…,𝑇𝑇
�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑𝑇𝑇+1−𝑡𝑡�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� 𝑦𝑦∞� ,

min
𝑡𝑡=𝑇𝑇+1,…,2𝑇𝑇

⎣
⎢
⎢
⎢
⎢
⎡� �𝑑𝑑−(𝑡𝑡−𝑘𝑘),1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� 𝑦𝑦∞ ⎦
⎥
⎥
⎥
⎥
⎤

,

inf
𝑡𝑡∈ℕ+,𝑡𝑡>2𝑇𝑇

⎣
⎢⎢
⎢⎢
⎡ � 𝑑𝑑−(𝑡𝑡−𝑘𝑘),1𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
2𝑇𝑇+1𝜙𝜙𝐺𝐺

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺�⎦
⎥⎥
⎥⎥
⎤

⎭�
��
��
��
��
��
⎬
��
��
��
��
��
�⎫

. 

Now, for 𝑡𝑡 ≥ 𝑇𝑇: 
��(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�1� ≤ �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�2 ≤ �(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑−(𝑡𝑡−𝑇𝑇)�2

≤ 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑇𝑇�(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑0�2, 
so: 

� 𝑑𝑑−(𝑡𝑡−𝑘𝑘),1𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
− �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−(𝑡𝑡−𝑇𝑇)�1𝑦𝑦∞

≥ − � 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑘𝑘�𝑑𝑑0�2

𝑇𝑇

𝑘𝑘=1
− 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
𝑡𝑡−𝑇𝑇�(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑0�2𝑦𝑦∞

= −𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
𝑡𝑡 �𝜙𝜙𝐹𝐹

−𝑇𝑇 − 1�
1 − 𝜙𝜙𝐹𝐹

�𝑑𝑑0�2 − 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑡𝑡−𝑇𝑇�(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑0�2𝑦𝑦∞, 
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thus 𝜍𝜍 ≥ 𝜍𝜍, where: 

𝜍𝜍𝑇𝑇 ≔ max
𝑦𝑦∈[0,1]𝑇𝑇

𝑦𝑦∞∈[0,1]

min

⎩�
��
��
��
��
��
⎨
��
��
��
��
��
�⎧ min

𝑡𝑡=1,…,𝑇𝑇
�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑𝑇𝑇+1−𝑡𝑡�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� 𝑦𝑦∞� ,

min
𝑡𝑡=𝑇𝑇+1,…,2𝑇𝑇

⎣
⎢
⎢
⎢
⎢
⎡� �𝑑𝑑−(𝑡𝑡−𝑘𝑘),1 − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝑦𝑦𝑘𝑘

𝑇𝑇

𝑘𝑘=1
+ �(𝐼𝐼 − 𝐹𝐹)−1�𝑑𝑑−1 − 𝑑𝑑−(𝑡𝑡−𝑇𝑇)��

1
𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� 𝑦𝑦∞ ⎦
⎥
⎥
⎥
⎥
⎤

,

⎣
⎢⎢
⎢⎢
⎡−𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹

𝜙𝜙𝐹𝐹
2𝑇𝑇+1�𝜙𝜙𝐹𝐹

−𝑇𝑇 − 1�
1 − 𝜙𝜙𝐹𝐹

�𝑑𝑑0�2 − 𝒞𝒞𝐹𝐹,𝜙𝜙𝐹𝐹
𝜙𝜙𝐹𝐹

𝑇𝑇+1�(𝐼𝐼 − 𝐹𝐹)−1�2�𝑑𝑑0�2𝑦𝑦∞ + �(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−1�1𝑦𝑦∞

+�(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞ − 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
2𝑇𝑇+1𝜙𝜙𝐺𝐺

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺� ⎦
⎥⎥
⎥⎥
⎤

⎭�
��
��
��
��
��
⎬
��
��
��
��
��
�⎫

. 

It is worth noting that as 𝑇𝑇 → ∞, the final minimand in this expression tends to: 
�(𝐼𝐼 − 𝐹𝐹)−1𝑑𝑑−1�1𝑦𝑦∞ + �(𝐼𝐼 − 𝐻𝐻)−1𝑑𝑑0�1𝑦𝑦∞, 

i.e. a positive multiple of the doubly infinite sum of 𝑑𝑑1,𝑘𝑘  over all 𝑘𝑘 ∈ ℤ . If this 
expression is negative, then our lower bound on 𝜍𝜍 will be negative as well, and hence 
uninformative. 

To construct an upper bound on 𝜍𝜍 , fix 𝑇𝑇 ∈ ℕ+ , and define a new matrix 𝑀𝑀(𝑇𝑇) ∈
ℝℕ+×ℕ+  by 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇

(𝑇𝑇) = 𝑀𝑀1:𝑇𝑇,1:𝑇𝑇 , and for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+ , with min{𝑡𝑡, 𝑘𝑘} > 𝑇𝑇 , 𝑀𝑀𝑡𝑡,𝑘𝑘
(𝑇𝑇) =

�𝑑𝑑𝑘𝑘−𝑡𝑡,1� + 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1−𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
. Then: 

𝜍𝜍 = sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 ≤ sup
𝑦𝑦∈[0,1]ℕ+

inf
𝑡𝑡∈ℕ+

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 ≤ sup
𝑦𝑦∈[0,1]ℕ+

min
𝑡𝑡=1,…,𝑇𝑇

𝑀𝑀𝑡𝑡,1:∞𝑦𝑦 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

𝑀𝑀𝑡𝑡,1:∞ �
𝑦𝑦

1∞×1
� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + � �𝑑𝑑𝑘𝑘−𝑡𝑡,1�
∞

𝑘𝑘=𝑇𝑇+1
+ � 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑘𝑘

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺

∞

𝑘𝑘=𝑇𝑇+1
� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + � �𝑑𝑑𝑘𝑘,1�
∞

𝑘𝑘=𝑇𝑇+1−𝑡𝑡
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺
� 𝜙𝜙𝐺𝐺

𝑘𝑘
∞

𝑘𝑘=0
� 

≤ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇

�𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 + 𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻
�𝑑𝑑0�2𝜙𝜙𝐻𝐻

𝑇𝑇+1−𝑡𝑡 � 𝜙𝜙𝐻𝐻
𝑘𝑘

∞

𝑘𝑘=0
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺�� 

= 𝜍𝜍𝑇𝑇 ≔ max
𝑦𝑦∈[0,1]𝑇𝑇

min
𝑡𝑡=1,…,𝑇𝑇 ⎣

⎢⎡𝑀𝑀𝑡𝑡,1:𝑇𝑇𝑦𝑦 +
𝒞𝒞𝐻𝐻,𝜙𝜙𝐻𝐻

�𝑑𝑑0�2𝜙𝜙𝐻𝐻
𝑇𝑇+1−𝑡𝑡

1 − 𝜙𝜙𝐻𝐻
+ 𝒟𝒟𝜙𝜙𝐹𝐹,𝜙𝜙𝐺𝐺

𝜙𝜙𝐹𝐹
𝑡𝑡 𝜙𝜙𝐺𝐺

𝑇𝑇+1

�1 − 𝜙𝜙𝐹𝐹𝜙𝜙𝐺𝐺��1 − 𝜙𝜙𝐺𝐺�⎦
⎥⎤. 

 Proof of the properties of the BPY model 

Defining 𝑥𝑥𝑡𝑡 = [𝑥𝑥𝑖𝑖,𝑡𝑡 𝑥𝑥𝑦𝑦,𝑡𝑡 𝑥𝑥𝜋𝜋,𝑡𝑡]′, the BPY model is in the form of Problem 2, with: 

𝐴𝐴 ≔
⎣
⎢⎡

0 −𝛼𝛼∆𝑦𝑦 0
0 0 0
0 0 0⎦

⎥⎤ , 𝐵𝐵 ≔

⎣
⎢⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

−
1
𝜎𝜎 −1 0

0 𝛾𝛾 −1⎦
⎥⎥
⎥
⎤

, 𝐶𝐶 ≔

⎣
⎢⎢
⎢
⎡

0 0 0

0 1
1
𝜎𝜎

0 0 𝛽𝛽⎦
⎥⎥
⎥
⎤

. 

Assumption 2 is satisfied for this model as: 

det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) = det

⎣
⎢⎢
⎢
⎡

−1 0 𝛼𝛼𝜋𝜋

−
1
𝜎𝜎 0

1
𝜎𝜎

0 𝛾𝛾 −1⎦
⎥⎥
⎥
⎤

≠ 0 



Online Appendices: Page 9 of 19 

as 𝛼𝛼𝜋𝜋 ≠ 1 and 𝛾𝛾 ≠ 0. Let 𝑓𝑓 ≔ 𝐹𝐹2,2, where 𝐹𝐹 is as in Assumption 1. Then: 

𝐹𝐹 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡0 𝛼𝛼∆𝑦𝑦�𝑓𝑓 − 1� + 𝛼𝛼𝜋𝜋

𝛾𝛾𝑓𝑓
1 − 𝛽𝛽𝑓𝑓 0

0 𝑓𝑓 0

0
𝛾𝛾𝑓𝑓

1 − 𝛽𝛽𝑓𝑓 0
⎦
⎥
⎥
⎥
⎥
⎥
⎤

. 

Hence: 

𝑓𝑓 = 𝑓𝑓 2 −
1
𝜎𝜎 �𝛼𝛼∆𝑦𝑦�𝑓𝑓 − 1� + 𝛼𝛼𝜋𝜋

𝛾𝛾𝑓𝑓
1 − 𝛽𝛽𝑓𝑓 −

𝛾𝛾𝑓𝑓 2

1 − 𝛽𝛽𝑓𝑓 �, 

i.e.: 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 2 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�𝑓𝑓 − 𝛼𝛼∆𝑦𝑦 = 0. (17) 

When 𝑓𝑓 ≤ 0, the left hand side is negative, and when 𝑓𝑓 = 1, the left hand side equals 
(𝛼𝛼𝜋𝜋 − 1)𝛾𝛾 > 0  (by assumption on 𝛼𝛼𝜋𝜋  ), hence equation (3)  has either one or three 
solutions in (0,1) , and no solutions in (−∞, 0] . We wish to prove there is a unique 
solution in (−1,1). First note that when 𝛼𝛼𝜋𝜋 = 1, the discriminant of the polynomial is: 

��1 − 𝛽𝛽��𝛼𝛼∆𝑦𝑦 − 𝜎𝜎� − 𝛾𝛾�
2
��𝛽𝛽𝛼𝛼∆𝑦𝑦�2 + 2𝛽𝛽(𝛾𝛾 − 𝜎𝜎)𝛼𝛼∆𝑦𝑦 + (𝛾𝛾 + 𝜎𝜎)2�. 

The first multiplicand is positive. The second is minimised when 𝜎𝜎 = 𝛽𝛽𝛼𝛼∆𝑦𝑦 − 𝛾𝛾, at the 
value 4𝛽𝛽𝛾𝛾𝛼𝛼∆𝑦𝑦 > 0, hence this multiplicand is positive too. Consequently, at least for 
small 𝛼𝛼𝜋𝜋  , there are three real solutions for 𝑓𝑓  , so there may be multiple solutions in 
(0,1). 

Suppose for a contradiction that there were at least three solutions to equation (3) 
in (0,1)  (double counting repeated roots), even for arbitrary large 𝛽𝛽 ∈ (0,1) . Let 
𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3 ∈ (0,1) be the three roots. Then, by Vieta’s formulas: 

3 > 𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3 =
�𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎

𝛽𝛽𝜎𝜎 , 

3 > 𝑓𝑓1𝑓𝑓2 + 𝑓𝑓1𝑓𝑓3 + 𝑓𝑓2𝑓𝑓3 =
�1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎

𝛽𝛽𝜎𝜎 , 

1 > 𝑓𝑓1𝑓𝑓2𝑓𝑓3 =
𝛼𝛼∆𝑦𝑦

𝛽𝛽𝜎𝜎 , 

so: 
�2𝛽𝛽 − 1�𝜎𝜎 > 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾 > 𝛾𝛾 > 0 

𝛽𝛽 >
1
2 , �2𝛽𝛽 − 1�𝜎𝜎 > 𝛾𝛾, 

𝛽𝛽𝜎𝜎 > 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾 + 𝜎𝜎�1 − 𝛽𝛽�, 
2𝛽𝛽𝜎𝜎 > �1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�1 − 𝛽𝛽�, 

𝛽𝛽𝜎𝜎 > 𝛼𝛼∆𝑦𝑦. 
Also, the first derivative of equation (3) must be strictly positive at 𝑓𝑓 = 1, so: 

�1 − 𝛽𝛽��𝛼𝛼∆𝑦𝑦 − 𝜎𝜎� + (𝛼𝛼𝜋𝜋 − 2)𝛾𝛾 > 0. 
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Combining all of these inequalities gives the bounds: 
0 < 𝛼𝛼∆𝑦𝑦 < 2𝜎𝜎 −

𝛾𝛾 + 𝜎𝜎
𝛽𝛽 , 

2 +
�1 − 𝛽𝛽��𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�

𝛾𝛾 < 𝛼𝛼𝜋𝜋 <
�3𝛽𝛽 − 1�𝜎𝜎 − �1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦

𝛾𝛾 . 

Furthermore, if there are multiple solutions to equation (3), then the discriminant of 
its first derivative must be weakly positive, i.e.: 

��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�
2

− 3𝛽𝛽𝜎𝜎��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� ≥ 0. 

Therefore, we have the following bounds on 𝛼𝛼𝜋𝜋 : 

2 +
�1 − 𝛽𝛽��𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�

𝛾𝛾 < 𝛼𝛼𝜋𝜋 ≤
��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

2
− 3𝛽𝛽𝜎𝜎��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�

3𝛽𝛽𝜎𝜎𝛾𝛾  

since, 

�3𝛽𝛽 − 1�𝜎𝜎 − �1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦

𝛾𝛾 −
��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

2
− 3𝛽𝛽𝜎𝜎��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�

3𝛽𝛽𝜎𝜎𝛾𝛾

=
��2𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�𝛽𝛽 − 𝛾𝛾 − 𝜎𝜎���4𝜎𝜎 + 𝛼𝛼∆𝑦𝑦�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

3𝛽𝛽𝛾𝛾𝜎𝜎 > 0 

as 𝛼𝛼∆𝑦𝑦 < 2𝜎𝜎 − 𝛾𝛾+𝜎𝜎
𝛽𝛽 . Consequently, there exists 𝜆𝜆, 𝜇𝜇, 𝜅𝜅 ∈ [0,1] such that: 

𝛼𝛼𝜋𝜋 = (1 − 𝜆𝜆)
⎣
⎢⎡2 +

�1 − 𝛽𝛽��𝜎𝜎 − 𝛼𝛼∆𝑦𝑦�
𝛾𝛾 ⎦

⎥⎤

+ 𝜆𝜆
⎣
⎢⎢
⎡��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�

2
− 3𝛽𝛽𝜎𝜎��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�

3𝛽𝛽𝜎𝜎𝛾𝛾
⎦
⎥⎥
⎤

, 

𝛼𝛼∆𝑦𝑦 = �1 − 𝜇𝜇�[0] + 𝜇𝜇 �2𝜎𝜎 −
𝛾𝛾 + 𝜎𝜎

𝛽𝛽 �, 

𝛾𝛾 = (1 − 𝜅𝜅)[0] + 𝜅𝜅��2𝛽𝛽 − 1�𝜎𝜎� 
These simultaneous equations have unique solutions for 𝛼𝛼𝜋𝜋 , 𝛼𝛼∆𝑦𝑦 and 𝛾𝛾 in terms of 𝜆𝜆, 
𝜇𝜇  and 𝜅𝜅 . Substituting these solutions into the discriminant of equation (3)  gives a 
polynomial in 𝜆𝜆, 𝜇𝜇, 𝜅𝜅, 𝛽𝛽, 𝜎𝜎 . As such, an exact global maximum of the discriminant may 
be found subject to the constraints 𝜆𝜆, 𝜇𝜇, 𝜅𝜅 ∈ [0,1], 𝛽𝛽 ∈ �1

2 , 1�, 𝜎𝜎 ∈ [0, ∞), by using an 
exact compact polynomial optimisation solver, such as that in the Maple computer 
algebra package. Doing this gives a maximum of 0 when 𝛽𝛽 ∈ �1

2 , 1�, 𝜅𝜅 = 1 and 𝜎𝜎 = 0. 
But of course, we actually require that 𝛽𝛽 ∈ �1

2 , 1�, 𝜅𝜅 < 1, 𝜎𝜎 > 0. Thus, by continuity, the 
discriminant is strictly negative over the entire possible domain. This gives the 
required contradiction to our assumption of three roots to the polynomial, establishing 
that Assumption 1 holds for this model. 

Now, when 𝑇𝑇 = 1, 𝑀𝑀 is equal to the top left element of the matrix −(𝐵𝐵 + 𝐶𝐶𝐹𝐹)−1, i.e.: 

𝑀𝑀 =
𝛽𝛽𝜎𝜎𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎

𝛽𝛽𝜎𝜎𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾 + 𝛽𝛽𝛼𝛼∆𝑦𝑦�𝑓𝑓 + 𝜎𝜎 + 𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋

. 
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Now, multiplying the denominator by 𝑓𝑓  gives: 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾 + 𝛽𝛽𝛼𝛼∆𝑦𝑦�𝑓𝑓 2 + �𝜎𝜎 + 𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋�𝑓𝑓

= �𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 2 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�𝑓𝑓 − 𝛼𝛼∆𝑦𝑦�
− �𝛽𝛽𝛼𝛼∆𝑦𝑦𝑓𝑓 − 𝛼𝛼∆𝑦𝑦� = �1 − 𝛽𝛽𝑓𝑓 �𝛼𝛼∆𝑦𝑦 > 0, 

by equation (19). Hence, the sign of 𝑀𝑀 is that of 𝛽𝛽𝜎𝜎𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎 . I.e., 𝑀𝑀 is 
negative if and only if: 

��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾� − ���1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝜎𝜎 < 𝑓𝑓

<
��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾� + ���1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝜎𝜎 . 

The upper limit is greater than 1, so only the lower is relevant. To translate this bound 
on 𝑓𝑓  into a bound on 𝛼𝛼∆𝑦𝑦, we first need to establish that 𝑓𝑓  is monotonic in 𝛼𝛼∆𝑦𝑦. 

Totally differentiating equation (19) gives: 

�3𝛽𝛽𝜎𝜎𝑓𝑓 2 − 2��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎��
𝑑𝑑𝑓𝑓

𝑑𝑑𝛼𝛼∆𝑦𝑦
= �1 − 𝛽𝛽𝑓𝑓 ��1 − 𝑓𝑓 �

> 0. 
Thus, the sign of 𝑑𝑑𝑓𝑓

𝑑𝑑𝛼𝛼∆𝑦𝑦
 is equal to that of: 

3𝛽𝛽𝜎𝜎𝑓𝑓 2 − 2��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�. 

Note, however, that this expression is just the derivative of the left hand side of 
equation (19) with respect to 𝑓𝑓 . 

To establish the sign of 𝑑𝑑𝑓𝑓
𝑑𝑑𝛼𝛼∆𝑦𝑦

, we consider two cases. First, suppose that equation (19) 

has three real solutions. Then, the unique solution to equation (19) in (0,1) is its lowest 
solution. Hence, this solution must be below the first local maximum of the left hand 
side of equation (19) . Consequently, at the 𝑓𝑓 ∈ (0,1) , which solves equation (19) ,  
3𝛽𝛽𝜎𝜎𝑓𝑓 2 − 2��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� > 0 . Alternatively, 

suppose that equation (19) has a unique real solution. Then the left hand side of this 
equation cannot change sign in between its local maximum and its local minimum (if 
it has any). Thus, at the 𝑓𝑓 ∈ (0,1) at which it changes sign, we must have that 3𝛽𝛽𝜎𝜎𝑓𝑓 2 −
2��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎� > 0 . Therefore, in either case 

𝑑𝑑𝑓𝑓
𝑑𝑑𝛼𝛼∆𝑦𝑦

> 0, meaning that 𝑓𝑓  is monotonic increasing in 𝛼𝛼∆𝑦𝑦. 

Consequently, to find the critical �𝑓𝑓 , 𝛼𝛼∆𝑦𝑦� at which 𝑀𝑀 changes sign, it is sufficient to 
find the lowest solution with respect to both 𝑓𝑓  and 𝛼𝛼∆𝑦𝑦 of the pair of equations: 

𝛽𝛽𝜎𝜎𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎 = 0, 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 2 + ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋 + 𝜎𝜎�𝑓𝑓 − 𝛼𝛼∆𝑦𝑦 = 0. 
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The former implies that: 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 2 + 𝜎𝜎𝑓𝑓 = 0, 

so, by the latter: 
𝛼𝛼∆𝑦𝑦𝛽𝛽𝑓𝑓 2 − ��1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + 𝛾𝛾𝛼𝛼𝜋𝜋�𝑓𝑓 + 𝛼𝛼∆𝑦𝑦 = 0. 

If 𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋 , then this equation holds if and only if: 
𝜎𝜎𝛽𝛽𝑓𝑓 2 − ��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�𝑓𝑓 + 𝜎𝜎 = 0. 

Therefore, the critical �𝑓𝑓 , 𝛼𝛼∆𝑦𝑦� at which 𝑀𝑀 changes sign are given by: 
𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋, 

𝑓𝑓 =
��1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾� − ���1 + 𝛽𝛽�𝜎𝜎 + 𝛾𝛾�2 − 4𝛽𝛽𝜎𝜎2

2𝛽𝛽𝜎𝜎 . 

Thus, 𝑀𝑀 is negative if and only if 𝛼𝛼∆𝑦𝑦 > 𝜎𝜎𝛼𝛼𝜋𝜋 , and 𝑀𝑀 is zero if and only if 𝛼𝛼∆𝑦𝑦 = 𝜎𝜎𝛼𝛼𝜋𝜋 . 

 The BPY model with shadow interest rate persistence 

Following BPY (2013), we introduce persistence in the shadow interest rate by 
replacing the previous Taylor rule with 𝑥𝑥𝑖𝑖,𝑡𝑡 = max�0, 𝑥𝑥𝑑𝑑,𝑡𝑡� , where 𝑥𝑥𝑑𝑑,𝑡𝑡 , the shadow 
nominal interest rate is given by: 

𝑥𝑥𝑑𝑑,𝑡𝑡 = �1 − 𝜌𝜌��1 − 𝛽𝛽 + 𝛼𝛼∆𝑦𝑦�𝑥𝑥𝑦𝑦,𝑡𝑡 − 𝑥𝑥𝑦𝑦,𝑡𝑡−1� + 𝛼𝛼𝜋𝜋𝑥𝑥𝜋𝜋,𝑡𝑡� + 𝜌𝜌𝑥𝑥𝑑𝑑,𝑡𝑡−1. 
It is easy to verify that this may be put in the form of Problem 2, and that with 𝛽𝛽 ∈
(0,1) , 𝛾𝛾, 𝜎𝜎, 𝛼𝛼∆𝑦𝑦 ∈ (0, ∞) , 𝛼𝛼𝜋𝜋 ∈ (1, ∞) , 𝜌𝜌 ∈ (−1,1) , Assumption 2 is satisfied. For our 

numerical exercise, we again set 𝜎𝜎 = 1, 𝛽𝛽 = 0.99, 𝛾𝛾 = (1−0.85)�1−𝛽𝛽(0.85)�
0.85 (2 + 𝜎𝜎), 𝜌𝜌 = 0.5, 

following BPY. 
In Figure 9, we plot the regions in �𝛼𝛼∆𝑦𝑦, 𝛼𝛼𝜋𝜋�  space in which 𝑀𝑀  is a P-matrix (P0-

matrix) when 𝑇𝑇 = 2 or 𝑇𝑇 = 4. For this model, these correspond to the regions in which 
𝑀𝑀 is strictly semi-monotone (semi-monotone). As may be seen, in the smaller 𝑇𝑇 case, 
the P-matrix region is much larger. This relationship appears to continue to hold for 
both larger and smaller 𝑇𝑇 , with the equivalent 𝑇𝑇 = 1  plot being almost entirely 
shaded, and the large 𝑇𝑇 plot apparently tending to the equivalent plot from the model 
without monetary policy persistence. Intuitively, the persistence in the shadow 
nominal interest rate dampens the immediate response of nominal interest rates to 
inflation and output growth, making it harder to induce a zero lower bound episode 
over short-horizons. 

Further evidence that the long-horizon behaviour is the same as in the model 
without persistence is provided by the fact that with 𝛼𝛼𝜋𝜋 = 1.5 and 𝛼𝛼∆𝑦𝑦 = 1.05, 33 then 
𝑀𝑀 is a P-matrix with 𝑇𝑇 = 20. Moreover, from Proposition 4 with 𝑇𝑇 = 50, we have that 
𝜍𝜍 > 6.385 × 10−8, so 𝑀𝑀 is an S-matrix for all sufficiently large 𝑇𝑇, by Corollary 1. 

                                                 
33 Results for larger 𝛼𝛼∆𝑦𝑦 were impossible due to numerical errors. 
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On the other hand, with 𝛼𝛼𝜋𝜋 = 1.5 and 𝛼𝛼∆𝑦𝑦 = 1.51, then with 𝑇𝑇 = 200, 𝑀𝑀 is not an S-
matrix, 34  meaning that for all sufficiently large 𝑇𝑇 , 𝑀𝑀  is not a P-matrix, so there are 
sometimes multiple solutions. Additionally, from Proposition 4 with 𝑇𝑇 = 200, 𝜍𝜍 ≤ 0 +
numerical error, meaning that it is likely that the model does not always possess a 
solution, no matter how high is 𝑇𝑇. 

 

 
𝑻𝑻 = 𝟐𝟐 

 
𝑻𝑻 = 𝟒𝟒 

Figure 9: Regions in which 𝑴𝑴 is a P-matrix (shaded grey) or a P0-matrix (shaded grey, plus the black line), 
when 𝑻𝑻 = 𝟐𝟐 (left) or 𝑻𝑻 = 𝟒𝟒 (right). 

 

 Proof of the properties of the BPY model with level targeting 

Defining 𝑥𝑥𝑡𝑡 = [𝑥𝑥𝑖𝑖,𝑡𝑡 𝑥𝑥𝑦𝑦,𝑡𝑡 𝑥𝑥𝑝𝑝,𝑡𝑡]′, the model of section 3.3 is in the form of Problem 2, 
with: 

𝐴𝐴 ≔
⎣
⎢⎡

0 0 0
0 0 0
0 0 1⎦

⎥⎤ , 𝐵𝐵 ≔

⎣
⎢⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

−
1
𝜎𝜎 −1 −

1
𝜎𝜎

0 𝛾𝛾 −1 − 𝛽𝛽⎦
⎥⎥
⎥
⎤

, 𝐶𝐶 ≔

⎣
⎢⎢
⎢
⎡

0 0 0

0 1
1
𝜎𝜎

0 0 𝛽𝛽⎦
⎥⎥
⎥
⎤

. 

Assumption 2 is satisfied for this model as: 

det(𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶) = det

⎣
⎢⎢
⎢
⎡

−1 𝛼𝛼∆𝑦𝑦 𝛼𝛼𝜋𝜋

−
1
𝜎𝜎 0 0

0 𝛾𝛾 −1⎦
⎥⎥
⎥
⎤

≠ 0 

as 𝛼𝛼∆𝑦𝑦 ≠ 0 and 𝛼𝛼𝜋𝜋 ≠ 0. Let 𝑓𝑓 ≔ 𝐹𝐹3,3, where 𝐹𝐹 is as in Assumption 1. Then: 

𝐹𝐹 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡0 0

𝑓𝑓 �1 − 𝑓𝑓 ��𝜎𝜎𝛼𝛼𝜋𝜋 − 𝛼𝛼∆𝑦𝑦�
𝛼𝛼∆𝑦𝑦 + �1 − 𝑓𝑓 �𝜎𝜎

0 0
𝑓𝑓 �1 − 𝑓𝑓 − 𝛼𝛼𝜋𝜋�

𝛼𝛼∆𝑦𝑦 + �1 − 𝑓𝑓 �𝜎𝜎
0 0 𝑓𝑓 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

                                                 
34 This was verified a second way by checking that −𝑀𝑀′ was an S0-matrix, as discussed in footnote 14. 

𝛼𝛼 𝜋𝜋
 

𝛼𝛼∆𝑦𝑦 

 

𝛼𝛼 𝜋𝜋
 

𝛼𝛼∆𝑦𝑦 
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and so: 
𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��1 + 2𝛽𝛽�𝜎𝜎 + 𝛽𝛽𝛼𝛼∆𝑦𝑦 + 𝛾𝛾�𝑓𝑓 2 + ��2 + 𝛽𝛽�𝜎𝜎 + �1 + 𝛽𝛽�𝛼𝛼∆𝑦𝑦 + (1 + 𝛼𝛼𝜋𝜋)𝛾𝛾�𝑓𝑓

− �𝜎𝜎 + 𝛼𝛼∆𝑦𝑦� = 0. 
Now define: 

𝛼𝛼∆̂𝑦𝑦 ≔ 𝜎𝜎 + 𝛼𝛼∆𝑦𝑦, 𝛼𝛼�̂�𝜋 ≔ 1 + 𝛼𝛼𝜋𝜋  
so: 

𝛽𝛽𝜎𝜎𝑓𝑓 3 − ��𝛼𝛼∆̂𝑦𝑦 + 𝜎𝜎�𝛽𝛽 + 𝛾𝛾 + 𝜎𝜎�𝑓𝑓 2 + ��1 + 𝛽𝛽�𝛼𝛼∆̂𝑦𝑦 + 𝛾𝛾𝛼𝛼�̂�𝜋 + 𝜎𝜎�𝑓𝑓 − 𝛼𝛼∆̂𝑦𝑦 = 0. 

This is identical to the equation for 𝑓𝑓  in the previous section, apart from the fact that 
𝛼𝛼∆̂𝑦𝑦  has replaced 𝛼𝛼∆𝑦𝑦  and 𝛼𝛼�̂�𝜋  has replaced 𝛼𝛼𝜋𝜋  . Hence, by the results of the previous 
section, Assumption 1 holds for this model as well. 

Finally, for this model, with 𝑇𝑇 = 1, we have that: 

𝑀𝑀 =
�1 − 𝑓𝑓 ��1 + �1 − 𝑓𝑓 �𝛽𝛽�𝜎𝜎2 + ��1 + �1 − 𝑓𝑓 �𝛽𝛽�𝛼𝛼∆𝑦𝑦 + ��1 − 𝑓𝑓 � + 𝛼𝛼𝜋𝜋𝑓𝑓 �𝛾𝛾�𝜎𝜎 + �1 − 𝑓𝑓 �𝛾𝛾𝛼𝛼∆𝑦𝑦

��1 − 𝑓𝑓 ��1 + �1 − 𝑓𝑓 �𝛽𝛽�𝜎𝜎 + �1 + �1 − 𝑓𝑓 �𝛽𝛽�𝛼𝛼∆𝑦𝑦 + ��1 − 𝑓𝑓 � + 𝛼𝛼𝜋𝜋�𝛾𝛾��𝜎𝜎 + 𝛼𝛼∆𝑦𝑦�
> 0. 

 Proof of the sufficient conditions for the existence of a unique 
solution to the dynamic programming problem 

Results when �̃�𝑿  is possibly non-compact, but �̃�𝚪(𝒙𝒙) is compact valued and 𝒙𝒙 ∈ �̃�𝚪(𝒙𝒙) 
for all 𝒙𝒙 ∈ �̃�𝑿  We first note that for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋�: 

ℱ̃(𝑥𝑥, 𝑧𝑧) ≤ 𝑢𝑢(0) −
1
2 𝑢𝑢(1)𝑢𝑢(̃2)−1𝑢𝑢(1)′, 

thus our objective function is bounded above without additional assumptions. For a 
lower bound, we assume that for all 𝑥𝑥 ∈ 𝑋𝑋� , 𝑥𝑥 ∈ Γ̃(𝑥𝑥) , so holding the state fixed is 
always feasible. This is true in very many standard applications. Then, the value of 
setting 𝑥𝑥𝑡𝑡 = 𝑥𝑥0 for all 𝑡𝑡 ∈ ℕ+ provides a lower bound for our objective function. 

More precisely, we define 𝕍𝕍 ≔ �𝑣𝑣�𝑣𝑣: 𝑋𝑋� → [−∞, ∞)� and 𝑣𝑣, 𝑣𝑣 ∈ 𝕍𝕍 by: 

𝑣𝑣(𝑥𝑥) =
1

1 − 𝛽𝛽 ℱ̃(𝑥𝑥0, 𝑥𝑥0), 

𝑣𝑣(𝑥𝑥) =
1

1 − 𝛽𝛽 �𝑢𝑢(0) −
1
2 𝑢𝑢(1)𝑢𝑢(̃2)−1𝑢𝑢(1)′�, 

for all 𝑥𝑥 ∈ 𝑋𝑋�. 
Finally, define ℬ : 𝕍𝕍 → 𝕍𝕍 by: 

ℬ(𝑣𝑣)(𝑥𝑥) = sup
𝑧𝑧∈Γ�(𝑥𝑥)

�ℱ̃(𝑥𝑥, 𝑧𝑧) + 𝛽𝛽𝑣𝑣(𝑧𝑧)� (18) 

for all 𝑣𝑣 ∈ 𝕍𝕍  and for all 𝑥𝑥 ∈ 𝑋𝑋� . Then ℬ(𝑣𝑣) ≥ 𝑣𝑣  and ℬ(𝑣𝑣) ≤ 𝑣𝑣 . Furthermore, if some 
sequence (𝑥𝑥𝑡𝑡)𝑡𝑡=1

∞   satisfies the constraint that for all 𝑡𝑡 ∈ ℕ+ , 𝑥𝑥𝑡𝑡 ∈ Γ̃(𝑥𝑥𝑡𝑡−1) , and the 
objective in (8) is finite for that sequence, then it must be the case that ‖𝑥𝑥𝑡𝑡‖∞𝑡𝑡𝛽𝛽

𝑡𝑡
2 → 0 as 

𝑡𝑡 → ∞ (by the comparison test), so:  
lim inf

𝑡𝑡→∞
𝛽𝛽𝑡𝑡𝑣𝑣(𝑥𝑥𝑡𝑡) = 0. 
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Additionally, for any sequence (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞ : 

lim sup
𝑡𝑡→∞

𝛽𝛽𝑡𝑡𝑣𝑣(𝑥𝑥𝑡𝑡) = 0. 

Thus, our dynamic programming problem satisfies the assumptions of Theorem 2.1 
of Kamihigashi (2014), and so ℬ   has a unique fixed point in [𝑣𝑣, 𝑣𝑣]  to which ℬ𝑘𝑘(𝑣𝑣) 
converges pointwise, monotonically, as 𝑘𝑘 → ∞ , and which is equal to the function 
𝑣𝑣∗: 𝑋𝑋� → ℝ defined by: 

𝑣𝑣∗(𝑥𝑥0) = sup�∑ 𝛽𝛽𝑡𝑡−1ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
∞
𝑡𝑡=1 �∀𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1)� , (19) 

for all 𝑥𝑥0 ∈ 𝑋𝑋�. 
Furthermore, if we define: 

𝕎𝕎 ≔ �𝑣𝑣 ∈ 𝑉𝑉�𝑣𝑣 is continuous on 𝑋𝑋�, 𝑣𝑣 is concave on 𝑋𝑋��, 
then as 𝑢𝑢(̃2) is negative-definite, 𝑣𝑣 ∈ 𝕎𝕎. Additionally, under the assumption that Γ̃(𝑥𝑥) 
is compact valued, if 𝑣𝑣 ∈ 𝕎𝕎, then ℬ(𝑣𝑣) ∈ 𝕎𝕎, by the theorem of the maximum,35 and, 
furthermore, there is a unique policy function which attains the supremum in the 
definition of ℬ(𝑣𝑣). Moreover, 𝑣𝑣∗ = lim

𝑘𝑘→∞
ℬ𝑘𝑘(𝑣𝑣) is concave and lower semi-continuous 

on 𝑋𝑋� . 36  We just need to prove that 𝑣𝑣∗  is upper semi-continuous. 37  Suppose for a 
contradiction that it is not, so there exists 𝑥𝑥∗ ∈ 𝑋𝑋� such that: 

lim sup
𝑥𝑥→𝑥𝑥∗

𝑣𝑣∗(𝑥𝑥) > lim
𝑘𝑘→∞

𝑣𝑣∗(𝑥𝑥∗). 

Then, there exists 𝛿𝛿 > 0  such that for all 𝜖𝜖 > 0 , there exists 𝑥𝑥0
(𝜖𝜖) ∈ 𝑋𝑋�  with �𝑥𝑥∗ −

𝑥𝑥0
(𝜖𝜖)�∞ < 𝜖𝜖 such that: 

𝑣𝑣∗�𝑥𝑥0
(𝜖𝜖)� > 𝛿𝛿 + 𝑣𝑣∗(𝑥𝑥∗). 

Now, by the definition of a supremum, for all 𝜖𝜖 > 0, there exists �𝑥𝑥𝑡𝑡
(𝜖𝜖)�𝑡𝑡=1

∞  such that for 
all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡

(𝜖𝜖) ∈ Γ�𝑥𝑥𝑡𝑡−1
(𝜖𝜖) � and: 

𝑣𝑣∗�𝑥𝑥0
(𝜖𝜖)� < 𝛿𝛿 + � 𝛽𝛽𝑡𝑡−1ℱ̃�𝑥𝑥𝑡𝑡−1

(𝜖𝜖) , 𝑥𝑥𝑡𝑡
(𝜖𝜖)�

∞

𝑡𝑡=1
. 

Hence: 

� 𝛽𝛽𝑡𝑡−1ℱ̃�𝑥𝑥𝑡𝑡−1
(𝜖𝜖) , 𝑥𝑥𝑡𝑡

(𝜖𝜖)�
∞

𝑡𝑡=1
> 𝑣𝑣∗�𝑥𝑥0

(𝜖𝜖)� − 𝛿𝛿 > 𝑣𝑣∗(𝑥𝑥∗). 

Now, let 𝒮𝒮0 ≔ �𝑥𝑥 ∈ 𝑋𝑋��‖𝑥𝑥∗ − 𝑥𝑥‖∞ ≤ 1 �, and for 𝑡𝑡 ∈ ℕ+, let 𝒮𝒮𝑡𝑡 ≔ Γ�𝒮𝒮𝑡𝑡−1�. Then, since we 
are assuming Γ is compact valued, for all 𝑡𝑡 ∈ ℕ, 𝒮𝒮𝑡𝑡 is compact by the continuity of Γ. 
Furthermore, for all 𝑡𝑡 ∈ ℕ  and 𝜖𝜖 ∈ (0,1) , 𝑥𝑥𝑡𝑡

(𝜖𝜖) ∈ 𝒮𝒮𝑡𝑡 . Hence, ∏ 𝒮𝒮𝑡𝑡
∞
𝑡𝑡=0   is sequentially 

compact in the product topology. Thus, there exists a sequence (𝜖𝜖𝑘𝑘)𝑘𝑘=1
∞  with 𝜖𝜖𝑘𝑘 → 0 as 

𝑘𝑘 → ∞  and such that 𝑥𝑥𝑡𝑡
(𝜖𝜖𝑘𝑘)  converges for all 𝑡𝑡 ∈ ℕ . Let 𝑥𝑥𝑡𝑡 ≔ lim

𝑘𝑘→∞
𝑥𝑥𝑡𝑡

(𝜖𝜖𝑘𝑘) , and note that 

                                                 
35 See e.g. Theorem 3.6 and following of Stokey, Lucas, and Prescott (1989). 
36 See e.g. Lemma 2.41 of Aliprantis and Border (2013). 
37 In the following, we broadly follow the proof of Lemma 3.3 of Kamihigashi and Roy (2003). 
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𝑥𝑥∗ = 𝑥𝑥0 ∈ 𝒮𝒮0 ⊆ 𝑋𝑋�, and that for all 𝑡𝑡, 𝑘𝑘 ∈ ℕ+, 𝑥𝑥𝑡𝑡
(𝜖𝜖𝑘𝑘) ∈ Γ�𝑥𝑥𝑡𝑡−1

(𝜖𝜖𝑘𝑘)�, so by the continuity of Γ, 
𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1) for all 𝑡𝑡 ∈ ℕ+. Thus, by Fatou’s Lemma: 

𝑣𝑣∗(𝑥𝑥∗) ≥ � 𝛽𝛽𝑡𝑡−1ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
∞

𝑡𝑡=1
≥ lim sup

𝑘𝑘→∞
� 𝛽𝛽𝑡𝑡−1ℱ̃�𝑥𝑥𝑡𝑡−1

(𝜖𝜖,𝑘𝑘), 𝑥𝑥𝑡𝑡
(𝜖𝜖,𝑘𝑘)�

∞

𝑡𝑡=1
> 𝑣𝑣∗(𝑥𝑥∗), 

which gives the required contradiction. Thus 𝑣𝑣∗ is continuous and concave, and there 
is a unique policy function which attains the supremum in the definition of ℬ(𝑣𝑣∗) =
𝑣𝑣∗. 
Results when �̃�𝑿  is compact If 𝑋𝑋� is compact, then Γ is compact valued. Furthermore, 
𝑋𝑋� is clearly convex, and Γ is continuous. Thus assumption 4.3 of Stokey, Lucas, and 
Prescott (1989) (henceforth: SLP) is satisfied. Since the continuous image of a compact 
set is compact, ℱ̃  is bounded above and below, so assumption 4.4 of SLP is satisfied as 
well. Furthermore, ℱ̃  is concave and Γ is convex, so assumptions 4.7 and 4.8 of SLP are 
satisfied too. Thus, by theorem 4.6 of SLP, with ℬ  defined as in equation (17) and 𝑣𝑣∗ 
defined as in equation (18), ℬ  has a unique fixed point which is continuous and equal 
to 𝑣𝑣∗. Moreover, by theorem 4.8 of SLP, there is a unique policy function which attains 
the supremum in the definition of ℬ(𝑣𝑣∗) = 𝑣𝑣∗. 

 Proof of the sufficiency of the KKT and limit conditions 

Suppose that (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞ , (𝜆𝜆𝑡𝑡)𝑡𝑡=1

∞  satisfy the KKT conditions given in equations (10) and 
(11), and that 𝑥𝑥𝑡𝑡 → 𝜇𝜇 and 𝜆𝜆𝑡𝑡 → 𝜆𝜆���� as 𝑡𝑡 → ∞. Let (𝑧𝑧𝑡𝑡)𝑡𝑡=0

∞  satisfy 𝑧𝑧0 = 𝑥𝑥0 and 𝑧𝑧𝑡𝑡 ∈ Γ̃(𝑧𝑧𝑡𝑡−1) 
for all 𝑡𝑡 ∈ ℕ+. Then, by the KKT conditions and the concavity of: 

(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) ↦ ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 ��, 

we have that for all 𝑇𝑇 ∈ ℕ+:38 

� 𝛽𝛽𝑡𝑡−1�ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
𝑇𝑇

𝑡𝑡=1
 

= � 𝛽𝛽𝑡𝑡−1 �ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�

𝑇𝑇

𝑡𝑡=1
 

≥ � 𝛽𝛽𝑡𝑡−1

⎣
⎢⎡ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) + 𝜆𝜆𝑡𝑡

′ �Ψ(0) + Ψ(1) �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �� − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)

𝑇𝑇

𝑡𝑡=1

− 𝜆𝜆𝑡𝑡
′ �Ψ(0) + Ψ(1) �

𝑧𝑧𝑡𝑡−1 − 𝜇𝜇
𝑧𝑧𝑡𝑡 − 𝜇𝜇 ��

⎦
⎥⎤ 

≥ � 𝛽𝛽𝑡𝑡−1

⎣
⎢⎡�𝑢𝑢⋅,2

(1) + �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1)� (𝑥𝑥𝑡𝑡 − 𝑧𝑧𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

+ �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,1

(1)� (𝑥𝑥𝑡𝑡−1 − 𝑧𝑧𝑡𝑡−1)
⎦
⎥⎤ 

                                                 
38 Here, we broadly follow the proof of Theorem 4.15 of Stokey, Lucas, and Prescott (1989). 
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= � 𝛽𝛽𝑡𝑡−1

⎣
⎢⎡

⎣
⎢⎡𝑢𝑢⋅,2

(1) + �
𝑥𝑥𝑡𝑡−1 − 𝜇𝜇
𝑥𝑥𝑡𝑡 − 𝜇𝜇 �

′
𝑢𝑢⋅̃,2

(2) + 𝜆𝜆𝑡𝑡
′Ψ⋅,2

(1)
𝑇𝑇

𝑡𝑡=1

+ 𝛽𝛽 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑡𝑡 − 𝜇𝜇
𝑥𝑥𝑡𝑡+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑡𝑡+1
′ Ψ⋅,1

(1)�
⎦
⎥⎤ (𝑥𝑥𝑡𝑡 − 𝑧𝑧𝑡𝑡)

⎦
⎥⎤

+ 𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇) 

= 𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇). 

Thus: 

� 𝛽𝛽𝑡𝑡−1�ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
∞

𝑡𝑡=1

≥ lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇 �𝑢𝑢⋅,1
(1) + �

𝑥𝑥𝑇𝑇 − 𝜇𝜇
𝑥𝑥𝑇𝑇+1 − 𝜇𝜇�

′
𝑢𝑢⋅̃,1

(2) + 𝜆𝜆𝑇𝑇+1
′ Ψ⋅,1

(1)� (𝑧𝑧𝑇𝑇 − 𝑥𝑥𝑇𝑇)

= lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇�𝑢𝑢⋅,1
(1) + 𝜆𝜆���� ′Ψ⋅,1

(1)��𝑧𝑧𝑇𝑇 − 𝜇𝜇� = lim
𝑇𝑇→∞

𝛽𝛽𝑇𝑇�𝑢𝑢⋅,1
(1) + 𝜆𝜆���� ′Ψ⋅,1

(1)�𝑧𝑧𝑇𝑇. 
Now, suppose lim

𝑇𝑇→∞
𝛽𝛽𝑇𝑇𝑧𝑧𝑇𝑇 ≠ 0, then since 𝑢𝑢(̃2) is negative definite: 

� 𝛽𝛽𝑡𝑡−1ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)
∞

𝑡𝑡=1
= −∞, 

so (𝑧𝑧𝑡𝑡)𝑡𝑡=0
∞  cannot be optimal. Hence, regardless of the value of lim

𝑇𝑇→∞
𝛽𝛽𝑇𝑇𝑧𝑧𝑇𝑇: 

� 𝛽𝛽𝑡𝑡−1�ℱ̃(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡) − ℱ̃(𝑧𝑧𝑡𝑡−1, 𝑧𝑧𝑡𝑡)�
∞

𝑡𝑡=1
≥ 0, 

which implies that (𝑥𝑥𝑡𝑡)𝑡𝑡=1
∞  solves Problem 5. 

 Results from and for general dynamic programming problems 

Here we consider non-linear dynamic programming problems with general 
objective functions. Consider then the following generalisation of Problem 5: 

Problem 6 Suppose Γ: ℝ𝑛𝑛 → ℙ(ℝ𝑛𝑛)  is a given compact, convex valued continuous 
function. Define 𝑋𝑋 ≔ �𝑥𝑥 ∈ ℝ𝑛𝑛�Γ(𝑥𝑥) ≠ ∅�, and suppose without loss of generality that 
for all 𝑥𝑥 ∈ ℝ𝑛𝑛, Γ(𝑥𝑥) ∩ 𝑋𝑋 = Γ(𝑥𝑥). Further suppose that ℱ: 𝑋𝑋 × 𝑋𝑋 → ℝ is a given twice 
continuously differentiable, concave function, and that 𝑥𝑥0 ∈ 𝑋𝑋  and 𝛽𝛽 ∈ (0,1)  are 
given. 
Choose 𝑥𝑥1, 𝑥𝑥2, … to maximise: 

lim inf
𝑇𝑇→∞

� 𝛽𝛽𝑡𝑡−1ℱ(𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
𝑇𝑇

𝑡𝑡=1
, 

subject to the constraints that for all 𝑡𝑡 ∈ ℕ+, 𝑥𝑥𝑡𝑡 ∈ Γ(𝑥𝑥𝑡𝑡−1). 

For tractability, we make the following additional assumption, which enables us to 
uniformly approximate Γ by a finite number of inequalities: 

Assumption 8 𝑋𝑋 is compact. 
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Then, by theorem 4.8 of Stokey, Lucas, and Prescott (1989), there is a unique solution 
to Problem 6 for any 𝑥𝑥0 . We further assume the following to ensure that there is a 
natural point to approximate around:39 

Assumption 9 There exists 𝜇𝜇 ∈ 𝑋𝑋  such that for any given 𝑥𝑥0 ∈ 𝑋𝑋 , in the solution to 
Problem 6 with that 𝑥𝑥0, as 𝑡𝑡 → ∞, 𝑥𝑥𝑡𝑡 → 𝜇𝜇. 

Having defined 𝜇𝜇, we can let ℱ̃  be a second order Taylor approximation to ℱ  around 
𝜇𝜇, which will take the form of equation (7). Assumption 3 will be satisfied for this 
approximation thanks to the concavity of ℱ . To apply the previous results, we also 
then need to approximate the constraints. 

Suppose first that the graph of Γ  is convex, i.e. the set {(𝑥𝑥, z)|𝑥𝑥 ∈ 𝑋𝑋, 𝑧𝑧 ∈ Γ(𝑥𝑥)}  is 
convex. Since it is also compact, by Assumption 4, for any 𝜖𝜖 > 0, there exists 𝑐𝑐 ∈ ℕ, 
Ψ(0) ∈ ℝ𝑐𝑐×1  and Ψ(1) ∈ ℝ𝑐𝑐×2𝑛𝑛  such that with Γ̃  defined as in equation (5)  and 𝑋𝑋� 
defined as in equation (6): 

1) 𝜇𝜇 ∈ 𝑋𝑋� ⊆ 𝑋𝑋, 
2) for all 𝑥𝑥 ∈ 𝑋𝑋, there exists 𝑥𝑥̃ ∈ 𝑋𝑋� such that ‖𝑥𝑥 − 𝑥𝑥‖̃2 < 𝜖𝜖, 
3) for all 𝑥𝑥 ∈ 𝑋𝑋�, Γ̃(𝑥𝑥) ⊆ Γ(𝑥𝑥), 
4) for all 𝑥𝑥 ∈ 𝑋𝑋�, and for all 𝑧𝑧 ∈ Γ(𝑥𝑥), there exists 𝑧𝑧̃ ∈ Γ̃(𝑥𝑥) such that ‖𝑧𝑧 − 𝑧𝑧‖̃2 < 𝜖𝜖. 

(This follows from standard properties of convex sets.) Then, by our previous results, 
the following proposition is immediate: 

Proposition 17 Suppose we are given a problem in the form of Problem 6 (and which 
satisfies Assumption 4 and Assumption 5). If the graph of Γ is convex, then we can 
construct a problem in the form of the multiple-bound generalisation of Problem 2 
which encodes a local approximation to the original dynamic programming problem 
around 𝑥𝑥𝑡𝑡 = 𝜇𝜇. Furthermore, the LCP corresponding to this approximation will have 
a unique solution for all 𝑥𝑥0 ∈ 𝑋𝑋� . Moreover, the approximation is consistent for 
quadratic objectives in the sense that as the number of inequalities used to 
approximate Γ goes to infinity, the approximate value function converges uniformly 
to the true value function. 

Unfortunately, if the graph of Γ is non-convex, then we will not be able to derive 
similar results. To see the best we could do along similar proof lines, here we merely 
sketch the construction of an approximation to the graph of Γ in this case.  We will 
need to assume that there exists 𝑧𝑧 ∈ int Γ(𝑥𝑥)  for all 𝑥𝑥 ∈ 𝑋𝑋 , which precludes the 
existence of equality constraints.40 We first approximate the graph of Γ by a polytope 
(i.e. 𝑛𝑛  dimensional polygon) contained in the graph of Γ  such that all points in the 

                                                 
39 If 𝑋𝑋 is convex, then the existence of a fixed point of the policy function is a consequence of the Brouwer fixed point theorem, 
but there is no reason the fixed point guaranteed by Brouwer’s theorem should be even locally attractive. 
40 This is often not too much of a restriction, since equality constraints may be substituted out. 
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graph of Γ  are within 𝜖𝜖
2  of a point in the polytope. Then, providing 𝜖𝜖  is sufficiently 

small, for each simplicial surface element of the polytope, indexed by 𝑘𝑘 ∈ {1, … , 𝑐𝑐}, we 
can find a quadratic function 𝑞𝑞𝑘𝑘: 𝑋𝑋 × 𝑋𝑋 → ℝ with: 

𝑞𝑞𝑘𝑘 = Ψ𝑘𝑘
(0) + Ψ𝑘𝑘,⋅

(1) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� + �

𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇�

′
Ψ𝑘𝑘

(2) �
𝑥𝑥 − 𝜇𝜇
𝑧𝑧 − 𝜇𝜇� 

for all 𝑥𝑥, 𝑧𝑧 ∈ 𝑋𝑋 and such that 𝑞𝑞𝑘𝑘 is zero at the corners of the simplicial surface element, 
such that 𝑞𝑞𝑘𝑘  is weakly negative on its surface, such that Ψ𝑘𝑘

(2)  is symmetric positive 
definite, and such that all points in the polytope are within 𝜖𝜖2 of a point in the set: 

�(𝑥𝑥, 𝑧𝑧) ∈ 𝑋𝑋 × 𝑋𝑋�∀𝑘𝑘 ∈ {1, … , 𝑆𝑆}, 0 ≤ 𝑞𝑞𝑘𝑘(𝑥𝑥, 𝑧𝑧)�. 
This gives a set of quadratic constraints that approximate Γ. If we then define: 

𝑢𝑢(̃2) ≔ 𝑢𝑢(2) + � 𝜆𝜆����Ψ,𝑘𝑘
′ Ψ𝑘𝑘

(2)
𝑐𝑐

𝑘𝑘=1
, 

where 𝑢𝑢(2)  is the Hessian of ℱ  , then the Lagrangian in equation (9)  is the same as 
what would be obtained from taking a second order Taylor approximation to the 
Lagrangian of the problem of maximising our non-linear objective subject to the 
approximate quadratic constraints, suggesting it may perform acceptably well for 𝑥𝑥 
near 𝜇𝜇, along similar lines to the results of Levine, Pearlman, and Pierse (2008) and 
Benigno and Woodford (2012). However, existence of a unique solution to the original 
problem cannot be used to establish even the existence of a solution of the 
approximated problem, since only linear approximations to the quadratic constraints 
would be imposed by our algorithm, giving a greatly reduced choice set (as the 
quadratic terms are positive definite). 
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