Presentation Open Access

High-fidelity aeroelastic simulation of flexible wings inseparated flows

Lahooti, Mohsen; Palacios, Rafael; Sherwin, Spencer


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">fluid structure interaction, FSI, high-fidelity simulation, LES, DNS, aeroelasticity, wind turbine, wind energy</subfield>
  </datafield>
  <controlfield tag="005">20220128014849.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">My presentation slides at Coupled 2021</subfield>
  </datafield>
  <controlfield tag="001">5911692</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">13-16 Jun 2021</subfield>
    <subfield code="g">Coupled 2021</subfield>
    <subfield code="a">Coupled Problems 21</subfield>
    <subfield code="n">High-fidelity methods for Fluid-Structure interaction and Aeroelasticity</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Imperial College London</subfield>
    <subfield code="a">Palacios, Rafael</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Imperial College London</subfield>
    <subfield code="a">Sherwin, Spencer</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">6271169</subfield>
    <subfield code="z">md5:24ee1ce9e6ca46cfa9aab38cb2b7714e</subfield>
    <subfield code="u">https://zenodo.org/record/5911692/files/COUPLED21.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://congress.cimne.com/Coupled2021/frontal/Objectives.asp</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-06-15</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5911692</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Imperial College London</subfield>
    <subfield code="0">(orcid)0000-0002-9659-7344</subfield>
    <subfield code="a">Lahooti, Mohsen</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">High-fidelity aeroelastic simulation of flexible wings inseparated flows</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">828799</subfield>
    <subfield code="a">High performance computing for wind energy</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;An efficient high-fidelity FSI method is developed for aeroelastic simulations of highly deformable streamlined&lt;br&gt;
structures in separated flows with a non-constant cross-section over the structure span. The method is the further&lt;br&gt;
development of our Nektar++/SHARPy FSI solver [1] to support non-constant sectional geometry over the&lt;br&gt;
structural span as well as introducing correction factor for tip loss effect. The FSI solver has implemented in&lt;br&gt;
Nektar++ [2] framework where the Navier-Stokes equation is discretized and solved using the high-order&lt;br&gt;
spectral/hp element method. Large-Eddy Simulation (LES) method is used to resolve the turbulent structures in&lt;br&gt;
highly separated flow condition and accurately predict the fluid forces on the structure. To reduce the&lt;br&gt;
computational cost of LES simulation over the slender structure, the thick-strip method [3] is adopted where the&lt;br&gt;
full 3D fluid domain is represented with series of separated smaller domains, each of which has a finite thickness&lt;br&gt;
in the spanwise direction. Having the finite thickness for the strips enables capturing local 3D wake turbulent&lt;br&gt;
while representing the full 3D domain with a finite number of smaller domains reduces the overall computational&lt;br&gt;
cost of LES simulation over the slender structure. The thick strips are separated domains that implicitly connected&lt;br&gt;
via the structural dynamics. Hence, a correction factor based on the calculated circulation in each strip is&lt;br&gt;
introduced to take into account the tip-loss effect. To support independent geometry and meshes for each strip,&lt;br&gt;
the hybrid parallelism approach [4] of Nektar++ is further modified which enable having non-constant cross-&lt;br&gt;
sections over the span. Large-deformation dynamics of the structure is modelled using a geometrically-exact&lt;br&gt;
composite beam finite-element model [5]. Simulation results of deformation of NREL5 MW reference wind&lt;br&gt;
turbine blade [6] in high angle of attack with large separating flow over the blade is presented and the&lt;br&gt;
computational challenges and requirements for such simulations are discussed in the present research.&lt;br&gt;
REFERENCES&lt;br&gt;
[1] M. Lahooti and R. Palacios and S.J. Sherwin, &amp;ldquo;Thick Strip Method for Efficient Large-Eddy Simulations of Flexible&lt;br&gt;
Wings in Stall&amp;rdquo;. In AIAA Scitech 2021 Forum,p. 0363 (2021).&lt;br&gt;
[2] D. Moxey and C.D. Cantwell and Y. Bao and A. Cassinelli and G. Castiglioni and S. Chun and E. Juda and E. Kazemi,&lt;br&gt;
and K. Lackhove and J. Marcon and G.Mengaldo, &amp;ldquo;Nektar++: Enhancing the capability and application of high-fidelity&lt;br&gt;
spectral/hp element methods&amp;rdquo;. Compu. Phys. Commu., 249, p.107110 (2020).&lt;br&gt;
[3] Y. Bao and R. Palacios and M. Graham and S. Sherwin, &amp;ldquo;Generalized thick strip modelling for vortex-induced&lt;br&gt;
vibration of long flexible cylinders&amp;rdquo;. J Comput. Phys, 321, pp.1079-1097. (2016).&lt;br&gt;
[4] A. Bolis, Fourier spectral/hp element method: investigation of time-stepping and parallelisation strategies, PhD&lt;br&gt;
dissertation, Imperial College London, (2012).&lt;br&gt;
[5] A. del Carre and A. Mu&amp;ntilde;oz-Sim&amp;oacute;n and N. Goizueta and R. Palacios, &amp;ldquo;SHARPy: A dynamic aeroelastic simulation&lt;br&gt;
toolbox for very flexible aircraft and wind turbines.&amp;rdquo;, J. Open Source Softw., 4(44), p.1885. (2019)&lt;br&gt;
[6] J. Jonkman and S. Butterfield and W. Musial and G. Scott., &amp;ldquo;Definition of a 5-MW reference wind turbine for offshore&lt;br&gt;
system development (No. NREL/TP-500-38060).&amp;rdquo;, National Renewable Energy Lab.(NREL), Golden, CO, United States,&lt;br&gt;
(2009)&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5911691</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5911692</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">presentation</subfield>
  </datafield>
</record>
27
19
views
downloads
All versions This version
Views 2727
Downloads 1919
Data volume 119.2 MB119.2 MB
Unique views 2222
Unique downloads 1818

Share

Cite as