Presentation Open Access

High-fidelity aeroelastic simulation of flexible wings inseparated flows

Lahooti, Mohsen; Palacios, Rafael; Sherwin, Spencer


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.5911692">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.5911692</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.5911692"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-9659-7344">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-9659-7344</dct:identifier>
        <foaf:name>Lahooti, Mohsen</foaf:name>
        <foaf:givenName>Mohsen</foaf:givenName>
        <foaf:familyName>Lahooti</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Imperial College London</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Palacios, Rafael</foaf:name>
        <foaf:givenName>Rafael</foaf:givenName>
        <foaf:familyName>Palacios</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Imperial College London</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Sherwin, Spencer</foaf:name>
        <foaf:givenName>Spencer</foaf:givenName>
        <foaf:familyName>Sherwin</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Imperial College London</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>High-fidelity aeroelastic simulation of flexible wings inseparated flows</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued>
    <dcat:keyword>fluid structure interaction, FSI, high-fidelity simulation, LES, DNS, aeroelasticity, wind turbine, wind energy</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Research and Innovation action/828799/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-06-15</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/5911692"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5911692</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.5911691"/>
    <dct:description>&lt;p&gt;An efficient high-fidelity FSI method is developed for aeroelastic simulations of highly deformable streamlined&lt;br&gt; structures in separated flows with a non-constant cross-section over the structure span. The method is the further&lt;br&gt; development of our Nektar++/SHARPy FSI solver [1] to support non-constant sectional geometry over the&lt;br&gt; structural span as well as introducing correction factor for tip loss effect. The FSI solver has implemented in&lt;br&gt; Nektar++ [2] framework where the Navier-Stokes equation is discretized and solved using the high-order&lt;br&gt; spectral/hp element method. Large-Eddy Simulation (LES) method is used to resolve the turbulent structures in&lt;br&gt; highly separated flow condition and accurately predict the fluid forces on the structure. To reduce the&lt;br&gt; computational cost of LES simulation over the slender structure, the thick-strip method [3] is adopted where the&lt;br&gt; full 3D fluid domain is represented with series of separated smaller domains, each of which has a finite thickness&lt;br&gt; in the spanwise direction. Having the finite thickness for the strips enables capturing local 3D wake turbulent&lt;br&gt; while representing the full 3D domain with a finite number of smaller domains reduces the overall computational&lt;br&gt; cost of LES simulation over the slender structure. The thick strips are separated domains that implicitly connected&lt;br&gt; via the structural dynamics. Hence, a correction factor based on the calculated circulation in each strip is&lt;br&gt; introduced to take into account the tip-loss effect. To support independent geometry and meshes for each strip,&lt;br&gt; the hybrid parallelism approach [4] of Nektar++ is further modified which enable having non-constant cross-&lt;br&gt; sections over the span. Large-deformation dynamics of the structure is modelled using a geometrically-exact&lt;br&gt; composite beam finite-element model [5]. Simulation results of deformation of NREL5 MW reference wind&lt;br&gt; turbine blade [6] in high angle of attack with large separating flow over the blade is presented and the&lt;br&gt; computational challenges and requirements for such simulations are discussed in the present research.&lt;br&gt; REFERENCES&lt;br&gt; [1] M. Lahooti and R. Palacios and S.J. Sherwin, &amp;ldquo;Thick Strip Method for Efficient Large-Eddy Simulations of Flexible&lt;br&gt; Wings in Stall&amp;rdquo;. In AIAA Scitech 2021 Forum,p. 0363 (2021).&lt;br&gt; [2] D. Moxey and C.D. Cantwell and Y. Bao and A. Cassinelli and G. Castiglioni and S. Chun and E. Juda and E. Kazemi,&lt;br&gt; and K. Lackhove and J. Marcon and G.Mengaldo, &amp;ldquo;Nektar++: Enhancing the capability and application of high-fidelity&lt;br&gt; spectral/hp element methods&amp;rdquo;. Compu. Phys. Commu., 249, p.107110 (2020).&lt;br&gt; [3] Y. Bao and R. Palacios and M. Graham and S. Sherwin, &amp;ldquo;Generalized thick strip modelling for vortex-induced&lt;br&gt; vibration of long flexible cylinders&amp;rdquo;. J Comput. Phys, 321, pp.1079-1097. (2016).&lt;br&gt; [4] A. Bolis, Fourier spectral/hp element method: investigation of time-stepping and parallelisation strategies, PhD&lt;br&gt; dissertation, Imperial College London, (2012).&lt;br&gt; [5] A. del Carre and A. Mu&amp;ntilde;oz-Sim&amp;oacute;n and N. Goizueta and R. Palacios, &amp;ldquo;SHARPy: A dynamic aeroelastic simulation&lt;br&gt; toolbox for very flexible aircraft and wind turbines.&amp;rdquo;, J. Open Source Softw., 4(44), p.1885. (2019)&lt;br&gt; [6] J. Jonkman and S. Butterfield and W. Musial and G. Scott., &amp;ldquo;Definition of a 5-MW reference wind turbine for offshore&lt;br&gt; system development (No. NREL/TP-500-38060).&amp;rdquo;, National Renewable Energy Lab.(NREL), Golden, CO, United States,&lt;br&gt; (2009)&lt;/p&gt;</dct:description>
    <dct:description>My presentation slides at Coupled 2021</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5911692"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5911692"/>
        <dcat:byteSize>6271169</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5911692/files/COUPLED21.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Research and Innovation action/828799/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">828799</dct:identifier>
    <dct:title>High performance computing for wind energy</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
27
19
views
downloads
All versions This version
Views 2727
Downloads 1919
Data volume 119.2 MB119.2 MB
Unique views 2222
Unique downloads 1818

Share

Cite as