Presentation Open Access


Lahooti, Mohsen; Puraca, Rodulfo; Carmo, Bruno; Palacios, Rafael; Sherwin, Spencer

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Fluid-structure interaction, Large Eddy simulation, wind energy, wind turbine blades, aeroelasticity</subfield>
  <controlfield tag="005">20220128014849.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">My Presentation Slides at COBEM 21</subfield>
  <controlfield tag="001">5911651</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">22 Nov 2021</subfield>
    <subfield code="g">COBEM</subfield>
    <subfield code="a">COBEM21, 26th International congress of Mechanical Engineering</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of São Paulo - Brazil</subfield>
    <subfield code="a">Puraca, Rodulfo</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of São Paulo - Brazil</subfield>
    <subfield code="a">Carmo, Bruno</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Imperial College London</subfield>
    <subfield code="a">Palacios, Rafael</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Imperial College London</subfield>
    <subfield code="a">Sherwin, Spencer</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">7247369</subfield>
    <subfield code="z">md5:924d250747dba3373e4c31f3fc30feb7</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u"></subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-11-22</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Imperial College London, Department of Aeronautics</subfield>
    <subfield code="0">(orcid)0000-0002-9659-7344</subfield>
    <subfield code="a">Lahooti, Mohsen</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Wall Resolved FLUID-STRUCTURE INTERACTION NUMERICAL SIMULATIONS of A MODERN wind turbine blade</subfield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">828799</subfield>
    <subfield code="a">High performance computing for wind energy</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Wall-resolved fluid-structure interaction (FSI) numerical simulations of the NREL 5 MW wind turbine blade&lt;br&gt;
are compared using two FSI approaches. The first method is based on high-fidelity Nektar++/SHARPy FSI framework,&lt;br&gt;
where the fluid governing equations are solved using high-order spectral/hp element method and the turbulent flow is&lt;br&gt;
resolved using Large Eddy Simulation (LES) on thick strips, while large-deformation dynamics of the structure are mod-&lt;br&gt;
elled using a geometrically exact nonlinear composite beam finite-element model. Thick strip method for the fluid reduces&lt;br&gt;
the computational cost by considering a series of smaller domains, each of which has a finite thickness in the spanwise&lt;br&gt;
direction. Hence, the overall flow over the blade is treated with a sectional approach, where in each of these sections,&lt;br&gt;
strips, the 3D flow is reconstructed locally. Tip-loss correction is used to compensate for the sectional approach over the&lt;br&gt;
blade. The second FSI approach is based on OpenFoam/Calculix coupling, where the second-order unstructured finite&lt;br&gt;
volume method approach is used for solving the three-dimensional flow equations and the flow turbulence is captured us-&lt;br&gt;
ing the k-&amp;omega; SST model. The structural dynamics are modeled via second-order finite element method using standard solid&lt;br&gt;
elements. Effects of the solution fidelity on the prediction of aerodynamic forces as well as on the full three-dimensional&lt;br&gt;
flow modelling over the blade versus sectional representation of flow over the blade while incorporating the local three-&lt;br&gt;
dimensionality in each section and tip-correction are discussed. Further, significance of two approaches on modelling&lt;br&gt;
the slender blade, one using the beam mode and the other utilizing the full 3D solution of structure is addressed. Finally,&lt;br&gt;
assessment of computational cost and scalability of the two approaches are presented and discussed.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5911650</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5911651</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">presentation</subfield>
All versions This version
Views 2222
Downloads 1414
Data volume 101.5 MB101.5 MB
Unique views 1818
Unique downloads 1313


Cite as