Video/Audio Open Access
Lahooti, Mohsen;
Puraca, Rudolfo;
Carmo, Bruno;
Palacios, Rafael;
Sherwin, Spencer
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.5903368</identifier> <creators> <creator> <creatorName>Lahooti, Mohsen</creatorName> <givenName>Mohsen</givenName> <familyName>Lahooti</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9659-7344</nameIdentifier> <affiliation>Imperial College London</affiliation> </creator> <creator> <creatorName>Puraca, Rudolfo</creatorName> <givenName>Rudolfo</givenName> <familyName>Puraca</familyName> <affiliation>University of São Paulo</affiliation> </creator> <creator> <creatorName>Carmo, Bruno</creatorName> <givenName>Bruno</givenName> <familyName>Carmo</familyName> <affiliation>University of São Paulo</affiliation> </creator> <creator> <creatorName>Palacios, Rafael</creatorName> <givenName>Rafael</givenName> <familyName>Palacios</familyName> <affiliation>Imperial College London</affiliation> </creator> <creator> <creatorName>Sherwin, Spencer</creatorName> <givenName>Spencer</givenName> <familyName>Sherwin</familyName> <affiliation>Imperial College London</affiliation> </creator> </creators> <titles> <title>Wall Resolved Fluid-Structure Interaction Numerical Simulation of a Modern Wind Turbine Blade</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2021</publicationYear> <subjects> <subject>Fluid-structure interaction, Large Eddy simulation, wind energy, wind turbine blades, aeroelasticity</subject> </subjects> <dates> <date dateType="Issued">2021-11-22</date> </dates> <resourceType resourceTypeGeneral="Audiovisual"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5903368</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5903367</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Wall-resolved fluid-structure interaction (FSI) numerical simulations of the NREL 5 MW wind turbine blade<br> are compared using two FSI approaches. The first method is based on high-fidelity Nektar++/SHARPy FSI framework,<br> where the fluid governing equations are solved using high-order spectral/hp element method and the turbulent flow is<br> resolved using Large Eddy Simulation (LES) on thick strips, while large-deformation dynamics of the structure are mod-<br> elled using a geometrically exact nonlinear composite beam finite-element model. Thick strip method for the fluid reduces<br> the computational cost by considering a series of smaller domains, each of which has a finite thickness in the spanwise<br> direction. Hence, the overall flow over the blade is treated with a sectional approach, where in each of these sections,<br> strips, the 3D flow is reconstructed locally. Tip-loss correction is used to compensate for the sectional approach over the<br> blade. The second FSI approach is based on OpenFoam/Calculix coupling, where the second-order unstructured finite<br> volume method approach is used for solving the three-dimensional flow equations and the flow turbulence is captured us-<br> ing the k-&omega; SST model. The structural dynamics are modeled via second-order finite element method using standard solid<br> elements. Effects of the solution fidelity on the prediction of aerodynamic forces as well as on the full three-dimensional<br> flow modelling over the blade versus sectional representation of flow over the blade while incorporating the local three-<br> dimensionality in each section and tip-correction are discussed. Further, significance of two approaches on modelling<br> the slender blade, one using the beam mode and the other utilizing the full 3D solution of structure is addressed. Finally,<br> assessment of computational cost and scalability of the two approaches are presented and discussed.</p></description> <description descriptionType="Other">Video of my presentatin at COBEM 21</description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Research and Innovation action/828799/">828799</awardNumber> <awardTitle>High performance computing for wind energy</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 33 | 33 |
Downloads | 2 | 2 |
Data volume | 42.5 MB | 42.5 MB |
Unique views | 25 | 25 |
Unique downloads | 2 | 2 |