Video/Audio Open Access

Wall Resolved Fluid-Structure Interaction Numerical Simulation of a Modern Wind Turbine Blade

Lahooti, Mohsen; Puraca, Rudolfo; Carmo, Bruno; Palacios, Rafael; Sherwin, Spencer


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.5903368">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/MovingImage"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.5903368</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.5903368"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-9659-7344">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-9659-7344</dct:identifier>
        <foaf:name>Lahooti, Mohsen</foaf:name>
        <foaf:givenName>Mohsen</foaf:givenName>
        <foaf:familyName>Lahooti</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Imperial College London</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Puraca, Rudolfo</foaf:name>
        <foaf:givenName>Rudolfo</foaf:givenName>
        <foaf:familyName>Puraca</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of São Paulo</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Carmo, Bruno</foaf:name>
        <foaf:givenName>Bruno</foaf:givenName>
        <foaf:familyName>Carmo</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of São Paulo</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Palacios, Rafael</foaf:name>
        <foaf:givenName>Rafael</foaf:givenName>
        <foaf:familyName>Palacios</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Imperial College London</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Sherwin, Spencer</foaf:name>
        <foaf:givenName>Spencer</foaf:givenName>
        <foaf:familyName>Sherwin</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Imperial College London</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Wall Resolved Fluid-Structure Interaction Numerical Simulation of a Modern Wind Turbine Blade</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued>
    <dcat:keyword>Fluid-structure interaction, Large Eddy simulation, wind energy, wind turbine blades, aeroelasticity</dcat:keyword>
    <frapo:isFundedBy rdf:resource="info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Research and Innovation action/828799/"/>
    <schema:funder>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </schema:funder>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-11-22</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/5903368"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5903368</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.5903367"/>
    <dct:description>&lt;p&gt;Wall-resolved fluid-structure interaction (FSI) numerical simulations of the NREL 5 MW wind turbine blade&lt;br&gt; are compared using two FSI approaches. The first method is based on high-fidelity Nektar++/SHARPy FSI framework,&lt;br&gt; where the fluid governing equations are solved using high-order spectral/hp element method and the turbulent flow is&lt;br&gt; resolved using Large Eddy Simulation (LES) on thick strips, while large-deformation dynamics of the structure are mod-&lt;br&gt; elled using a geometrically exact nonlinear composite beam finite-element model. Thick strip method for the fluid reduces&lt;br&gt; the computational cost by considering a series of smaller domains, each of which has a finite thickness in the spanwise&lt;br&gt; direction. Hence, the overall flow over the blade is treated with a sectional approach, where in each of these sections,&lt;br&gt; strips, the 3D flow is reconstructed locally. Tip-loss correction is used to compensate for the sectional approach over the&lt;br&gt; blade. The second FSI approach is based on OpenFoam/Calculix coupling, where the second-order unstructured finite&lt;br&gt; volume method approach is used for solving the three-dimensional flow equations and the flow turbulence is captured us-&lt;br&gt; ing the k-&amp;omega; SST model. The structural dynamics are modeled via second-order finite element method using standard solid&lt;br&gt; elements. Effects of the solution fidelity on the prediction of aerodynamic forces as well as on the full three-dimensional&lt;br&gt; flow modelling over the blade versus sectional representation of flow over the blade while incorporating the local three-&lt;br&gt; dimensionality in each section and tip-correction are discussed. Further, significance of two approaches on modelling&lt;br&gt; the slender blade, one using the beam mode and the other utilizing the full 3D solution of structure is addressed. Finally,&lt;br&gt; assessment of computational cost and scalability of the two approaches are presented and discussed.&lt;/p&gt;</dct:description>
    <dct:description>Video of my presentatin at COBEM 21</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5903368"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5903368"/>
        <dcat:byteSize>21265378</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5903368/files/COBEM2021-0320 (2).mp4"/>
        <dcat:mediaType>video/mp4</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
  <foaf:Project rdf:about="info:eu-repo/grantAgreement/EC/Horizon 2020 Framework Programme - Research and Innovation action/828799/">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">828799</dct:identifier>
    <dct:title>High performance computing for wind energy</dct:title>
    <frapo:isAwardedBy>
      <foaf:Organization>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">10.13039/100010661</dct:identifier>
        <foaf:name>European Commission</foaf:name>
      </foaf:Organization>
    </frapo:isAwardedBy>
  </foaf:Project>
</rdf:RDF>
33
2
views
downloads
All versions This version
Views 3333
Downloads 22
Data volume 42.5 MB42.5 MB
Unique views 2525
Unique downloads 22

Share

Cite as