Dataset Open Access

Shadow Detection/Texture Segmentation Computer Vision Dataset

Newey, Charles; Jones, Owain; Dee, Hannah


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/publicdomain/zero/1.0/legalcode</subfield>
    <subfield code="a">Creative Commons Zero v1.0 Universal</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2016-07-28</subfield>
  </datafield>
  <controlfield tag="005">20170906070727.0</controlfield>
  <controlfield tag="001">59019</controlfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:59019</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;A&amp;nbsp;simple computer vision&amp;nbsp;dataset for shadow detection and texture analysis, specifically created to help test shadow detection algorithms (and texture segmentation algorithms)&amp;nbsp;for mobile robots - that is, shadow detection with an&amp;nbsp;&lt;em&gt;active (moving)&amp;nbsp;camera&lt;/em&gt;.&lt;/p&gt;

&lt;p&gt;The dataset is focused around texture analysis, so each image sequence contains shadows moving in front of a number of various textured surfaces. The dataset contains four main subfolders: &amp;quot;active&amp;quot;, &amp;quot;artificial&amp;quot;, &amp;quot;kondo&amp;quot;, and&amp;nbsp;&amp;quot;static&amp;quot;. The &amp;quot;static&amp;quot; folder contains ground-truthed image sequences of textured surfaces with shadows moving over them,&amp;nbsp;and the &amp;quot;active&amp;quot; folder contains ground-truthed image sequences of a camera travelling over&amp;nbsp;textured surfaces. The &amp;quot;artificial&amp;quot; folder contains a computer-generated 3D scene with computer-generated ground truth, but note that texture is absent from all images within. Finally, the &amp;quot;kondo&amp;quot; folder contains a series of extremely challenging images captured from a webcam mounted to a Kondo bipedal robot. This final dataset is challenging because it contains a high level of noise, flicker and interference from electrical lighting, and the&amp;nbsp;poor&amp;nbsp;lighting conditions make for complex shadows with large penumbrae.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">MARS, National Oceanography Centre</subfield>
    <subfield code="a">Jones, Owain</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Aberystwyth University</subfield>
    <subfield code="a">Dee, Hannah</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">534417635</subfield>
    <subfield code="z">md5:4eb05aaa9166b1aad8cc892e6aca0446</subfield>
    <subfield code="u">https://zenodo.org/record/59019/files/sdmr.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Southampton</subfield>
    <subfield code="a">Newey, Charles</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">shadow, detection, segmentation, texture, computer, vision</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.59019</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Shadow Detection/Texture Segmentation Computer Vision Dataset</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
</record>
1,429
281
views
downloads
All versions This version
Views 1,4291,429
Downloads 281281
Data volume 150.2 GB150.2 GB
Unique views 1,3651,365
Unique downloads 170170

Share

Cite as