Oxidation of Catechol with Ceric Ammonium Sulphate

(MS.) REKHA SHARMA^a, ARVIND KUMAR^a and R. K. PRASAD^{b*}

^aDepartment of Chemistry, M. I T., Muzaffarpur-842 003

^bDepartment of Chemistry, L S. College Muzaffarpur-842 001

Manuscript received 31 October 1991, revised 15 March 1994, accepted 12 May 1994

Yadav and Verma reported the oxidation of catechol by cerium $(IV)^1$. In view of the fact that their results widely differ from ours², a detailed study of the oxidation of catechol by Ce^{IV} in sulphuric acid medium has been made.

Results and Discussion

Salient features of the stoichiometry of the reaction are presented in Table 1.

TABLE 1					
Method	Titrant	No. of moles of Ce ^{IV} per mole of catechol	Product		
Back titration with Ce ^{IV}	Reaction mixture with excess of Ce ^{IV}	2	<i>o</i> -Benzo- quinone		
Potentiometric titration with Ce ^{IV}	Fixed volume of catechol	2	o-Benzo- quinone		
Potentiometric titration with order of addition changed		14	CO		

The results of kinetic investigations are given in Table 2. From the measurements of k_1 at four different temperatures (298, 303, 308 and 313 K), activation energy (E^{\dagger}) and activation entropy (ΔS^{\sharp}) are found to be 51.18 kJ mol⁻¹ (13.67 kcal mol⁻¹) and -103.83 JK⁻¹ mol⁻¹ (-24.84 e.u.) respectively. Based on the kinetic results the following tentative mechanism is proposed,

$$Ce^{4+} + S \longrightarrow R + Ce^{3+} + H^{+}$$

$$Ce^{4+} + R \longrightarrow P_{1} + Ce^{3+} + H^{+} \qquad (1)$$

$$P_{1} \longrightarrow Product$$

where S is catechol, R the intermediate free radical and P_1 intermediate product (*o*-benzoquinone). This leads to the following rate law,

$$\frac{-d[Ce^{IV}] = k[S][Ce^{IV}] = k_1[Ce^{IV}]}{d t}$$
(2)

where, $k_1 = k[S]$, and k = k (H⁺, HSO⁺₄). The nature of the function can be determined from the reactive forms of Ce^{IV}. In H₂SO₄ medium, Hardwick and Robertson³ established the following equilibria among the various Ce^{IV} species,

$$\operatorname{Ce}^{4+} + \operatorname{HSO}_{4}^{-} \xleftarrow{K_{1}} \operatorname{CeSO}_{4}^{2+} + \operatorname{H}^{+} \quad K_{1} = 3500$$

$$\operatorname{CeSO}_{4}^{2+} + \operatorname{HSO}_{4}^{-} \xleftarrow{K_{2}} \operatorname{Ce}(\operatorname{SO}_{4})_{2} + \operatorname{H}^{+} K_{2} = 200$$

$$\operatorname{Ce}(\operatorname{SO}_4)_2 + \operatorname{HSO}_4^- \xleftarrow{K_3} \operatorname{Ce}(\operatorname{SO}_4)_3^{2-} + \operatorname{H}^+$$
$$K_3 = 20$$

Calculations using these equilibria would show that at a fixed $[HSO_4^-]$, as $[H^+]$ increases the relative concentration of $Ce(SO_4)_3^{2^-}$ decreases while those of the other species increase. In the range of $[H^+]$ used here $[Ce^{4+}]$ and $[CeSO_4^{2+}]$ are negligibly small and

$$[Ce^{4+}]_{T} = [Ce(SO_{4})_{2}] + [Ce(SO_{4})_{3}^{2-}]$$
(4)

Now, we assume that both $Ce(SO_4)_2$ and $Ce(SO_4)_3^{2-}$ react with the substrate and the former is more reactive. For low [H⁺] (< 1 *M*) the [Ce(SO₄)₂] is relatively small and therefore the reaction with [Ce(SO₄)₃²⁻] dominates. As [H⁺] increase, the [Ce(SO₄)₂] increases and even though [Ce(SO₄)₃²⁻] remains larger, the reaction with the former dominates due to its greater reac-857

J. INDIAN CHEM	. SOC.,	VOL. 72,	DECEMBER	1995
----------------	---------	----------	----------	------

	TABLE 2	
Analysis	Observation	Inference
k ₁ vs [Ce ^{IV}]	Insensitive	First order w.r.t. Ce ^{IV}
log k ₁ vs log [catechol] ⁻¹	Linear	First order w.r.t. catechol
k_1^{-1} vs [catechol] ⁻¹	No intercept on ordinate axis	No complex formation
UV-spectra of reaction mixture neutralised with NaOH	No new peak	No complex formation
Effect of [H ₂ SO ₄] and [HSO ₄]	Rate of reaction reduced	
log k ₁ vs log [H+]	Curve with slope changing from +ve to -ve	Reactive form of Ce ^{IV} in the low and high [H ⁺] are different
Effect of Ce ^{III} sulphate	No effect	Slow step of reaction is not reversible
Acrylonitrile	Viscous liquid	Free radical intermediate

tivity. This leads to two rate laws

$$k_{1} = \frac{k'[S][H^{+}]}{K_{3}[HSO_{4}^{-}] + [H^{+}]} \text{ and}$$
$$k_{1} = \frac{k''K_{3}[S][HSO_{4}^{-}]}{K_{3}[HSO_{4}^{-}] + [H^{+}]}$$

A plot of k_1^{-1} vs $[H^+]^{-1}$ in low $[H^+]$ and that of k_1^{-1} vs $[H^+]$ in higher $[H^+]$ are linear. This is in conformity with the suggested mechanism. From the slopes and intercepts of these plots we have, at $[S] = 4 \times 10^{-2} M$ and $[HSO_4^-] = 0.25 M$, k' = 1.56, k'' = 0.33 and $k_3 = 14$.

The activation energy value is consistent with oxidation via splitting of the O–H bond and the large negative activation entropy indicates a mechanism involving H⁺, Ce⁴⁺ species and the substrate in the activated complex.

Experimental

Stock solutions of ceric ammonium sulphate and 858

	ct of [Reactant] _o on [·]		
O	rder Rate Constant ($(k_1)^*$	
$[H_2SO_4] = 0.25 \text{ mol } dm^{-3}$, temp. = 308 K, $\lambda = 360 \text{ nm}$			
$\times 10^3 [Ce^{IV}]_o$	$\times 10^2$ [Catechol] _o	$\times 10^3 k_1 (s^{-1})$	
mol dm ⁻³	mol dm ⁻³		
2.02	1.5	1.45	
2.02	2.0	2.10	
2.02	3.0	2.80	
2.02	4.0	4.14	
1.01	4.0	4.10	
0.05	4.0	4.15	
*Danna duaihilitu	101		

Reproducibility, $\pm 4\%$.

TABLE 4 – EFFECT OF [HSO₄] AND [H⁺] ON k_1

 $[Ce^{IV}] = 2.02 \times 10^3 \text{ mol dm}^{-3}$, $[Catechol] = 4.0 \times 10^2 \text{ mol dm}^{-3}$, $[H_2SO_4] = 0.25 \text{ mol dm}^{-3}$, temp. = 308 K

[HSO ₄] mol dm ⁻³	[H ⁺] mol dm ⁻³	$\times 10^{3} k_{1}$ s ⁻¹
0.25	0.25	4.14
0.35	0.25	3.57
0.45	0.25	2.90
0.25	0.50	7.70
0.25	· 1.5	13.33
0.25	1.5	8.60
0.25	2.0	7.14
0.25	3.0	6.25
0.25	4.0	5.40

catechol (both B.D.H.) were prepared in 0.5 M H₂SO₄ and the solutions were standardised with Mohr's salt and KBrO₃-KBr mixture respectively.

Potentiometric titrations were carried out with a Systronics 355 pH meter using Pt-saturated calomel electrode combination. The uv absorbance was measured on a SICO-SPEC GL 200 spectrophotometer. Constant temperature was maintained in a thermostat $(\pm 0.05^{\circ})$.

References

- 1. R. L. YADAV and R. G. VERMA, *I. Indian Chem. Soc.*, 1981, 58, 768.
- R. S. SINGH, P. N. JHA and R. K. PRASAD, Proc. Nat. Scad. Sci., 1985, 57, 271.
- T. J. HARDWICK and E. ROBERTSON, Can. J. Chem., 1951, 29, 828.