There is a newer version of this record available.

Conference paper Open Access

A pilot study towards the implementation of perceptual and motor adaptation in robots

Antonj, Matilde; Zonca, Joshua; Lastrico, Linda; Casadio, Maura; Sciutti, Alessandra


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Human-robot interaction</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Adaptation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Shared perception</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Human kinematics</subfield>
  </datafield>
  <controlfield tag="005">20220325124729.0</controlfield>
  <controlfield tag="001">5900619</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Zonca, Joshua</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Lastrico, Linda</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Casadio, Maura</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Sciutti, Alessandra</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">804926</subfield>
    <subfield code="z">md5:c88833b14b64f6872ae7373da6afec27</subfield>
    <subfield code="u">https://zenodo.org/record/5900619/files/file.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-10-10</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-irim3d-2021</subfield>
    <subfield code="o">oai:zenodo.org:5900619</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Antonj, Matilde</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A pilot study towards the implementation of perceptual and motor adaptation in robots</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-irim3d-2021</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">The aim of our study is to understand the
perceptual and motor mechanisms of adaptation underlying
human-robot interaction. Our long-term goal is to develop
novel models of adaptation that could be implemented in robots
to enhance human-robot collaboration. Realizing adaptive
robots would be fundamental not only in the biomedical field for
assistance and rehabilitation, but also in industrial settings to
improve human-robot cooperation. In the current paper, we
present a pilot experiment aimed at exploring perceptual and
motor strategies adopted by participants who try to adapt their
perception to that of a robot with different prior sensory
Experience.</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5900618</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5900619</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
63
33
views
downloads
All versions This version
Views 6346
Downloads 3323
Data volume 26.0 MB18.5 MB
Unique views 4030
Unique downloads 3121

Share

Cite as