
A Microscopic Human-Inspired
Adaptive Cruise Control for Eco-Driving

Marco Mirabilio, Alessio Iovine, Elena De Santis, Maria Domenica Di Benedetto, Giordano Pola

I. INTRODUCTION

Adaptive Cruise Controls (ACCs) are nowadays becoming
a reality thanks to the effort dedicated to their development
in the last decades (see [1], [2], [3]). The objective of
ACCs is to offer a safe and comfortable transportation with
reduced congestion, emissions and travel time. Since the
first works on ACCs, human factors such as comfort or
safety perception in a control-oriented framework (see [4])
were taken into account. The controllers were first designed
according to some performance or stability-based criteria
and secondly adapted to human characteristics by parameter
modifications. More recently, there has been a paradigm
shift and the main criterion for the design of ACCs tools
is the correct human driving representation. Our work lies
in this research line, and extends some previous results
presented in [5], where a human-inspired hybrid automaton
(see [6]) for ACC was proposed. Moreover, we address the
problem of computing the optimal speed, acceleration and
fuel consumption (also known as eco-driving, as in [7],
[8]) in a single-lane car-following scenario, in a Vehicle-
to-Vehicle (V2V) communication framework.

II. MODELING

Fig. 1. Reference framework.

We consider N vehicles with length L ∈ R+ (R+ =
(0,+∞)) on a single lane road (see Fig.1), sorted by location
and indexed by n ∈ {1, ..., N}, where n = 1 denotes the
first vehicle on the lane. We suppose that each vehicle can
be described by a triple integrator, discretized with sampling
time τ , where the control input is the acceleration variation
(jerk), that allows for a smoother acceleration profile. If kτ ,
k ∈ N denotes the k-th sampling time, then the variables
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describing the evolution of vehicle n, are the longitudinal
position (pn(k) ≥ 0, [m]), speed (0 ≤ vn(k) ≤ vmax, [m/s])
and acceleration (|an(k)| ≤ amax, [m/s

2]).
Let the pair (n, n + 1), n = 1, ..., N − 1, denote leader

vehicle (n) and follower vehicle (n+1). Then the follower’s
state vector is defined as

xn+1(k) =


xn+1
1 (k)
xn+1
2 (k)
xn+1
3 (k)
xn+1
4 (k)

 =


pn(k)− pn+1(k)
vn(k)− vn+1(k)

an+1(k)
vn(k)

 (1)

In the following we omit the index n + 1, for notational
simplicity. For the first vehicle of the cluster we assume that
there exists a virtual leader n = 0, such that v0(k) = vmax

and a0(k) = 0 ∀k ∈ N.
Physical and legal limits lead to the following constrained

set X ⊆ R4 of feasible states for x(k):

X =
{
x ∈ R4 : x1 ≥ s, |x2| ≤ vmax, |x3| ≤ amax, 0 ≤ x4 ≤ vmax

}
(2)

with vmax, amax > 0 and where s is the minimum distance
to be kept in order to avoid collision.

The discrete-time evolution of the continuous state is
described by

x(k + 1) = Ax(k) +Buu(k) +Bdd(k) + Ee(x(k)) (3)

where

A =

 1 τ 0 0
0 1 −τ 0
0 0 1 0
0 0 0 1

 , Bu =

 0
0
τ
0

 , Bd =

 0
τ
0
τ

 , E =

 0
τ
0
0

 ,
|u(k)| ≤ umax, umax > 0, is the jerk of vehicle n+1; e(x) =
c1+c2(x4−x2)2, c1, c2 > 0, is a nonlinear term representing
friction (see [9]); d(k) = an(k) is the acceleration of the
vehicle ahead modeled as a bounded disturbance |d(k)| ≤
amax, .

Following the framework established in [5], we define the
functions TE : R4 → R, TR : R4 → R and TS : R4 → R,
that represent different time headways needed to stop the
vehicle in different scenarios, to partition the set X with
respect to the human perception [10], [11], [5]. Then, for
each pair (n, n+ 1) a simplified microscopic hybrid model
[6] is developed, whose discrete states are associated with the
partition of X . In particular, this partition is used to define
domain and transition conditions of the discrete states, that
are listed in the following:

1) q1: Free driving. The leader vehicle is either too far
away or faster or both.

2) q2: Following I. The follower is closing in on the
vehicle.
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3) q3: Following II. The speed difference is large and the
distance is not.

4) q4: Closing in. The distance from vehicle n is close to
the unsafe one.

The continuous dynamics (3) is associated to each discrete
state.

III. CONTROL DESIGN

For a generic vehicle n, the control action u(k) is the
acceleration variation (jerk). Given a fixed prediction horizon
Nj ∈ N for every qj ∈ Q, at each time k, the control law
is determined by implementing an MPC algorithm to solve
an optimization problem that depends on the current discrete
state qj . The cost function Jj associated to qj is defined as:

Jj =
1

2

ỹT (Nj)Pj ỹ(Nj) +Mj

Nj∑
h=0

exp
(
wT (h)PC

j z(h)
) (4)

+
1

2

Nj−1∑
h=0

(
ỹT (h)Gj ỹ(h) + uT (h)Rju(h)

)
where ỹ = y − yr, y = [x1 x2 x3 x4 − x2]T and yr =
[∆S 0 0 vdes], ∆S and vdes are the desired distance and
velocity. z, w, exp

(
wT (h)PC

j z(h)
)
, PC

j ∈ {P
C+
j , PC−

j }
are operators that describe fuel-consumption/emission [12],
[13]. Matrices Pj and Gj are semidefinite positive and
Rj ,Mj ≥ 0.

IV. SIMULATIONS AND CONCLUSIONS

Simulations have been performed using Matlab-Simulink
and the optimization toolbox Yalmip (see [14]). Two cases of
leader-follower scenario have been considered which differ
for the fact that in one (named case 1) the consumption is
optimized and in the other it is not (named case 2). The
initial conditions are x1(0) = 60, x2(0) = −10, x3(0) = 0,
x4(0) = 5 and u(0) = 0. In figure (2) we show the speed
profile of the leader and the resulting profiles of the follower
in both cases, while in figure (3) we report the distance
profile evolution between the two vehicles. Our results show
that in both cases the follower is able to satisfy safety
conditions. Moreover, with the introduction of the emission
term, a smoother profile and a lower fuel consumption are
obtained. Future research will address the combination of the
MPC algorithm with the proposed hybrid automaton. More-
over, the proposed approach will be extended by including
macroscopic quantities.

REFERENCES

[1] J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and
automated vehicles: State of the art and future challenges,” Annual
Reviews in Control, vol. 45, pp. 18 – 40, 2018.

[2] K. Bengler, K. Dietmayer, B. Farber, M. Maurer, C. Stiller, and
H. Winner, “Three Decades of Driver Assistance Systems: Review
and Future Perspectives,” IEEE Intelligent Transportation Systems
Magazine, vol. 6, no. 4, pp. 6–22, winter 2014.

[3] P. Ioannou and C. Chien, “Autonomous intelligent cruise control,”
Vehicular Technology, IEEE Transactions on, vol. 42, no. 4, pp. 657–
672, Nov 1993.

[4] M. Elbanhawi, M. Simic, and R. Jazar, “In the Passenger Seat:
Investigating Ride Comfort Measures in Autonomous Cars,” IEEE
Intelligent Transportation Systems Magazine, vol. 7, no. 3, pp. 4–17,
2015.

0 10 20 30 40 50 60

Time [s]

0

5

10

15

20

25

S
p
e
e
d
 [
m

/s
]

Speed profile

Leader

Follower fuel opt.

Follower no fuel opt.

Fig. 2. Speed profile of the leader (blue line), of the follower in the case
1 (red line) and in the case 2 (dotted line)
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Fig. 3. Inter-vehicular distance in case 1 (red line) and case 2 (dotted line)
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