Dataset Open Access

A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation

Koppa, Akash; Rains, Dominik; Hulsman, Petra; Poyatos, Rafael; Miralles, Diego G.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nmm##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Deep learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Hybrid Modeling</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Evaporation</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Evaporative Stress</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Transpiration</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">GLEAM</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Machine Learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Earth System Modeling</subfield>
  </datafield>
  <controlfield tag="005">20220121134856.0</controlfield>
  <controlfield tag="001">5886608</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Hydro-Climate Extremes Lab (H-CEL), Ghent University</subfield>
    <subfield code="0">(orcid)0000-0003-0768-4209</subfield>
    <subfield code="a">Rains, Dominik</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Hydro-Climate Extremes Lab (H-CEL), Ghent University</subfield>
    <subfield code="0">(orcid)0000-0002-9764-3357</subfield>
    <subfield code="a">Hulsman, Petra</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain</subfield>
    <subfield code="0">(orcid)0000-0003-0521-2523</subfield>
    <subfield code="a">Poyatos, Rafael</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Hydro-Climate Extremes Lab (H-CEL), Ghent University</subfield>
    <subfield code="0">(orcid)0000-0001-6186-5751</subfield>
    <subfield code="a">Miralles, Diego G.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1478247925</subfield>
    <subfield code="z">md5:2e3ce593336da4d6a02c4157aea8809b</subfield>
    <subfield code="u">https://zenodo.org/record/5886608/files/data_figures_hybrid_paper.zip</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">27593519117</subfield>
    <subfield code="z">md5:5ae99fea254d871265699289443dc7cf</subfield>
    <subfield code="u">https://zenodo.org/record/5886608/files/output_hybrid_model_output.zip</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2022-01-21</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire_data</subfield>
    <subfield code="o">oai:zenodo.org:5886608</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Hydro-Climate Extremes Lab (H-CEL), Ghent University</subfield>
    <subfield code="0">(orcid)0000-0001-5671-0878</subfield>
    <subfield code="a">Koppa, Akash</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">869550</subfield>
    <subfield code="a">DOWN2EARTH: Translation of climate information into multilevel decision support for social adaptation, policy development, and resilience to water scarcity in the Horn of Africa Drylands</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">715254</subfield>
    <subfield code="a">Do droughts self-propagate and self-intensify?</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This repository contains the datasets used in the research article &amp;quot;A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation&amp;quot;.&lt;/p&gt;

&lt;p&gt;The repository contains the following files: 1) Input - contains all the processed input used for training the deep learning models and the datasets used for creating the figures in the article. 2) Output - contains the final deep learning models and the outputs (evaporation and transpiration stress factor) outputs from the hybrid model developed in the study.&lt;/p&gt;

&lt;p&gt;Formats: All scripts are in the programming language Python. The datasets are in HDF5 and NetCDF file formats.&lt;/p&gt;

&lt;p&gt;The codes related to the research article and deep learning model are available in the following repository: https://github.com/akashkoppa/StressNet&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5220752</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5886608</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">dataset</subfield>
  </datafield>
</record>
1,016
6,513
views
downloads
All versions This version
Views 1,016468
Downloads 6,513541
Data volume 182.1 TB12.6 TB
Unique views 864422
Unique downloads 289165

Share

Cite as