Dataset Open Access

A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation

Koppa, Akash; Rains, Dominik; Hulsman, Petra; Poyatos, Rafael; Miralles, Diego G.


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/9fde1609-b011-43c5-b55a-478422a180ed/data_figures_hybrid_paper.zip"
      }, 
      "checksum": "md5:2e3ce593336da4d6a02c4157aea8809b", 
      "bucket": "9fde1609-b011-43c5-b55a-478422a180ed", 
      "key": "data_figures_hybrid_paper.zip", 
      "type": "zip", 
      "size": 1478247925
    }, 
    {
      "links": {
        "self": "https://zenodo.org/api/files/9fde1609-b011-43c5-b55a-478422a180ed/output_hybrid_model_output.zip"
      }, 
      "checksum": "md5:5ae99fea254d871265699289443dc7cf", 
      "bucket": "9fde1609-b011-43c5-b55a-478422a180ed", 
      "key": "output_hybrid_model_output.zip", 
      "type": "zip", 
      "size": 27593519117
    }
  ], 
  "owners": [
    248830
  ], 
  "doi": "10.5281/zenodo.5886608", 
  "stats": {
    "version_unique_downloads": 289.0, 
    "unique_views": 422.0, 
    "views": 468.0, 
    "version_views": 1016.0, 
    "unique_downloads": 165.0, 
    "version_unique_views": 864.0, 
    "volume": 12577719435017.0, 
    "version_downloads": 6513.0, 
    "downloads": 541.0, 
    "version_volume": 182053795808120.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.5886608", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.5220752", 
    "bucket": "https://zenodo.org/api/files/9fde1609-b011-43c5-b55a-478422a180ed", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.5220752.svg", 
    "html": "https://zenodo.org/record/5886608", 
    "latest_html": "https://zenodo.org/record/5886608", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.5886608.svg", 
    "latest": "https://zenodo.org/api/records/5886608"
  }, 
  "conceptdoi": "10.5281/zenodo.5220752", 
  "created": "2022-01-21T11:06:50.894611+00:00", 
  "updated": "2022-01-21T13:48:56.684328+00:00", 
  "conceptrecid": "5220752", 
  "revision": 4, 
  "id": 5886608, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.5886608", 
    "description": "<p>This repository contains the datasets used in the research article &quot;A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation&quot;.</p>\n\n<p>The repository contains the following files: 1) Input - contains all the processed input used for training the deep learning models and the datasets used for creating the figures in the article. 2) Output - contains the final deep learning models and the outputs (evaporation and transpiration stress factor) outputs from the hybrid model developed in the study.</p>\n\n<p>Formats: All scripts are in the programming language Python. The datasets are in HDF5 and NetCDF file formats.</p>\n\n<p>The codes related to the research article and deep learning model are available in the following repository: https://github.com/akashkoppa/StressNet</p>", 
    "language": "eng", 
    "title": "A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "relations": {
      "version": [
        {
          "count": 2, 
          "index": 1, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "5220752"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "5886608"
          }
        }
      ]
    }, 
    "grants": [
      {
        "code": "869550", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::869550"
        }, 
        "title": "DOWN2EARTH: Translation of climate information into multilevel decision support for social adaptation, policy development, and resilience to water scarcity in the Horn of Africa Drylands", 
        "acronym": "DOWN2EARTH", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "715254", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::715254"
        }, 
        "title": "Do droughts self-propagate and self-intensify?", 
        "acronym": "DRY-2-DRY", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Deep learning", 
      "Hybrid Modeling", 
      "Evaporation", 
      "Evaporative Stress", 
      "Transpiration", 
      "GLEAM", 
      "Machine Learning", 
      "Earth System Modeling"
    ], 
    "publication_date": "2022-01-21", 
    "creators": [
      {
        "orcid": "0000-0001-5671-0878", 
        "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", 
        "name": "Koppa, Akash"
      }, 
      {
        "orcid": "0000-0003-0768-4209", 
        "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", 
        "name": "Rains, Dominik"
      }, 
      {
        "orcid": "0000-0002-9764-3357", 
        "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", 
        "name": "Hulsman, Petra"
      }, 
      {
        "orcid": "0000-0003-0521-2523", 
        "affiliation": "CREAF, E08193 Bellaterra (Cerdanyola del Vall\u00e8s), Catalonia, Spain", 
        "name": "Poyatos, Rafael"
      }, 
      {
        "orcid": "0000-0001-6186-5751", 
        "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", 
        "name": "Miralles, Diego G."
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.5220752", 
        "relation": "isVersionOf"
      }
    ]
  }
}
1,016
6,513
views
downloads
All versions This version
Views 1,016468
Downloads 6,513541
Data volume 182.1 TB12.6 TB
Unique views 864422
Unique downloads 289165

Share

Cite as