Dataset Open Access
Koppa, Akash;
Rains, Dominik;
Hulsman, Petra;
Poyatos, Rafael;
Miralles, Diego G.
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/9fde1609-b011-43c5-b55a-478422a180ed/data_figures_hybrid_paper.zip" }, "checksum": "md5:2e3ce593336da4d6a02c4157aea8809b", "bucket": "9fde1609-b011-43c5-b55a-478422a180ed", "key": "data_figures_hybrid_paper.zip", "type": "zip", "size": 1478247925 }, { "links": { "self": "https://zenodo.org/api/files/9fde1609-b011-43c5-b55a-478422a180ed/output_hybrid_model_output.zip" }, "checksum": "md5:5ae99fea254d871265699289443dc7cf", "bucket": "9fde1609-b011-43c5-b55a-478422a180ed", "key": "output_hybrid_model_output.zip", "type": "zip", "size": 27593519117 } ], "owners": [ 248830 ], "doi": "10.5281/zenodo.5886608", "stats": { "version_unique_downloads": 289.0, "unique_views": 422.0, "views": 468.0, "version_views": 1016.0, "unique_downloads": 165.0, "version_unique_views": 864.0, "volume": 12577719435017.0, "version_downloads": 6513.0, "downloads": 541.0, "version_volume": 182053795808120.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.5886608", "conceptdoi": "https://doi.org/10.5281/zenodo.5220752", "bucket": "https://zenodo.org/api/files/9fde1609-b011-43c5-b55a-478422a180ed", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.5220752.svg", "html": "https://zenodo.org/record/5886608", "latest_html": "https://zenodo.org/record/5886608", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.5886608.svg", "latest": "https://zenodo.org/api/records/5886608" }, "conceptdoi": "10.5281/zenodo.5220752", "created": "2022-01-21T11:06:50.894611+00:00", "updated": "2022-01-21T13:48:56.684328+00:00", "conceptrecid": "5220752", "revision": 4, "id": 5886608, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.5886608", "description": "<p>This repository contains the datasets used in the research article "A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation".</p>\n\n<p>The repository contains the following files: 1) Input - contains all the processed input used for training the deep learning models and the datasets used for creating the figures in the article. 2) Output - contains the final deep learning models and the outputs (evaporation and transpiration stress factor) outputs from the hybrid model developed in the study.</p>\n\n<p>Formats: All scripts are in the programming language Python. The datasets are in HDF5 and NetCDF file formats.</p>\n\n<p>The codes related to the research article and deep learning model are available in the following repository: https://github.com/akashkoppa/StressNet</p>", "language": "eng", "title": "A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation", "license": { "id": "CC-BY-4.0" }, "relations": { "version": [ { "count": 2, "index": 1, "parent": { "pid_type": "recid", "pid_value": "5220752" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "5886608" } } ] }, "grants": [ { "code": "869550", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::869550" }, "title": "DOWN2EARTH: Translation of climate information into multilevel decision support for social adaptation, policy development, and resilience to water scarcity in the Horn of Africa Drylands", "acronym": "DOWN2EARTH", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } }, { "code": "715254", "links": { "self": "https://zenodo.org/api/grants/10.13039/501100000780::715254" }, "title": "Do droughts self-propagate and self-intensify?", "acronym": "DRY-2-DRY", "program": "H2020", "funder": { "doi": "10.13039/501100000780", "acronyms": [], "name": "European Commission", "links": { "self": "https://zenodo.org/api/funders/10.13039/501100000780" } } } ], "keywords": [ "Deep learning", "Hybrid Modeling", "Evaporation", "Evaporative Stress", "Transpiration", "GLEAM", "Machine Learning", "Earth System Modeling" ], "publication_date": "2022-01-21", "creators": [ { "orcid": "0000-0001-5671-0878", "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", "name": "Koppa, Akash" }, { "orcid": "0000-0003-0768-4209", "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", "name": "Rains, Dominik" }, { "orcid": "0000-0002-9764-3357", "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", "name": "Hulsman, Petra" }, { "orcid": "0000-0003-0521-2523", "affiliation": "CREAF, E08193 Bellaterra (Cerdanyola del Vall\u00e8s), Catalonia, Spain", "name": "Poyatos, Rafael" }, { "orcid": "0000-0001-6186-5751", "affiliation": "Hydro-Climate Extremes Lab (H-CEL), Ghent University", "name": "Miralles, Diego G." } ], "access_right": "open", "resource_type": { "type": "dataset", "title": "Dataset" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.5220752", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 1,016 | 468 |
Downloads | 6,513 | 541 |
Data volume | 182.1 TB | 12.6 TB |
Unique views | 864 | 422 |
Unique downloads | 289 | 165 |