Dataset Open Access
Koppa, Akash;
Rains, Dominik;
Hulsman, Petra;
Poyatos, Rafael;
Miralles, Diego G.
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.5886608</identifier> <creators> <creator> <creatorName>Koppa, Akash</creatorName> <givenName>Akash</givenName> <familyName>Koppa</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5671-0878</nameIdentifier> <affiliation>Hydro-Climate Extremes Lab (H-CEL), Ghent University</affiliation> </creator> <creator> <creatorName>Rains, Dominik</creatorName> <givenName>Dominik</givenName> <familyName>Rains</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-0768-4209</nameIdentifier> <affiliation>Hydro-Climate Extremes Lab (H-CEL), Ghent University</affiliation> </creator> <creator> <creatorName>Hulsman, Petra</creatorName> <givenName>Petra</givenName> <familyName>Hulsman</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9764-3357</nameIdentifier> <affiliation>Hydro-Climate Extremes Lab (H-CEL), Ghent University</affiliation> </creator> <creator> <creatorName>Poyatos, Rafael</creatorName> <givenName>Rafael</givenName> <familyName>Poyatos</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-0521-2523</nameIdentifier> <affiliation>CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain</affiliation> </creator> <creator> <creatorName>Miralles, Diego G.</creatorName> <givenName>Diego G.</givenName> <familyName>Miralles</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-6186-5751</nameIdentifier> <affiliation>Hydro-Climate Extremes Lab (H-CEL), Ghent University</affiliation> </creator> </creators> <titles> <title>A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2022</publicationYear> <subjects> <subject>Deep learning</subject> <subject>Hybrid Modeling</subject> <subject>Evaporation</subject> <subject>Evaporative Stress</subject> <subject>Transpiration</subject> <subject>GLEAM</subject> <subject>Machine Learning</subject> <subject>Earth System Modeling</subject> </subjects> <dates> <date dateType="Issued">2022-01-21</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="Dataset"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5886608</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5220752</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>This repository contains the datasets used in the research article &quot;A Deep Learning-Based Hybrid Model of Global Terrestrial Evaporation&quot;.</p> <p>The repository contains the following files: 1) Input - contains all the processed input used for training the deep learning models and the datasets used for creating the figures in the article. 2) Output - contains the final deep learning models and the outputs (evaporation and transpiration stress factor) outputs from the hybrid model developed in the study.</p> <p>Formats: All scripts are in the programming language Python. The datasets are in HDF5 and NetCDF file formats.</p> <p>The codes related to the research article and deep learning model are available in the following repository: https://github.com/akashkoppa/StressNet</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/869550/">869550</awardNumber> <awardTitle>DOWN2EARTH: Translation of climate information into multilevel decision support for social adaptation, policy development, and resilience to water scarcity in the Horn of Africa Drylands</awardTitle> </fundingReference> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/100010661</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/715254/">715254</awardNumber> <awardTitle>Do droughts self-propagate and self-intensify?</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 1,013 | 467 |
Downloads | 6,513 | 541 |
Data volume | 182.1 TB | 12.6 TB |
Unique views | 861 | 421 |
Unique downloads | 289 | 165 |