
Traballo de Fin de Grao que presenta 

D. Hugo González Labrador

para a obtención do Título de Graduado en Enxeñaría Informática

CERNBox:
 Petabyte-Scale Cloud Synchronisation and Sharing Platform

Xuño, 2016

Traballo de Fin de Grao Nº: EI15/16-029

Titor/a:  Arno Formella
Área de coñecemento:  Linguaxes e Sistemas Informáticos

Departamento:  Informática
 

UNIVERSIDADE 
DE VIGO

ESCOLA SUPERIOR  DE ENXEÑARÍA INFORMÁTICA 



	



A distributed system is one in which the failure of a computer

you didn’t even know existed can render your own computer unusable.

Leslie Lamport



	



Acknowledgements

I would like to thank all of the people who supported and helped me with
the thesis and with the development of CERNBox.

First of all, I’d like to thank my supervisor PhD. Arno Formella for his guid-
ance and his valuable feedback on my work. I would also like to thank him
for giving me the freedom that I had with regard to the topic of the thesis
and also for giving me the opportunity to work in his research group since
three years ago. Furthermore, I want to thank him for his extraordinary ob-
servation of small details and also for having his door always open whenever
I ran into problems. Second, I’d like to thank my CERN’s supervisor, PhD.
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1 Background

At CERN (Organisation europénne pour la recherche nucléaire), physicists and engineers are
probing the fundamental structure of the universe. They use the world’s largest and most com-
plex scientific instruments to study the basic constituents of matter — the fundamental particles.
The particles are made to collide together at close to the speed of light. The process gives the
physicists clues about how the particles interact, and provides insights into the fundamental
laws of nature.

The instruments used at CERN are purpose-built particle accelerators and detectors, for in-
stance the Large Hadron Collider (LHC) is the biggest. Accelerators boost beams of particles
to high energies before the beams are made to collide with each other or with stationary tar-
gets. Detectors observe and record the results of these collisions. Founded in 1954, the CERN
laboratory sits astride the Franco-Swiss border near Geneva. It was one of Europe’s first joint
ventures and now has 21 member states.

CERN is also the birthplace of the World Wide Web. The main site at Meyrin has a large
computer facility containing powerful data processing facilities, primarily for experimental data
analysis; because of the need to make these facilities available to researchers elsewhere, it has
historically been a major wide area networking hub

The LHC experiments produce over 30 petabytes of data per year. Archiving vast quantities of
data is an essential function at CERN. Magnetic tapes are used as the main long-term storage
medium. Often people wonder why CERN still use tape, as it is an old-fashioned technology.
Tape is actually a very sophisticated storage material and it can store huge volumes of data. For
example, the data which was stored on thousands of reels for the 1990’s OPAL1 experiment
now fit on one of today’s cartridges. Tape is inexpensive, compact, doesn’t consume much
electricity, and is durable for long-term storage. With the data tsunami from the LHC, being
able to quickly retrieve petabytes of stored data is essential for physicists to make ground-
breaking discoveries. CERN has more than 130 Petabytes of stored data (the equivalent of 700
years of full HD-quality movies).

Besides tape infrastructure, CERN has a parallel data storage system called EOS, a disk-based
service providing a low latency storage infrastructure for physics users. The main target area
for the service are physics data analysis with use cases often characterised by many concurrent
users.

CERN IT-DSS (renamed to IT-ST in 2016) is the group that ensures a coherent development and
operation of the storage services at CERN for all aspects of physics data. The group is divided
into three sections: IT-DSS-TAB (Tapes, Archives and Backups Section), IT-DSS-FDO (File
systems and Disk Operations Section) and IT-DSS-DT (Design and Transitions Section).

The FDO section operates and supports the storage and file system services for physics. During
the year 2015 I was working inside this section as a Technical Student under the supervision of
PhD. Jakub T. Mościcki for the CERNBox project, core of this thesis.

During this period at CERN, I was involved into the whole lifecycle of the CERNBox ser-
vice, from requirements, design, implementation, deployment, and user support. My main role
was the integration of an open source component called ownCloud with EOS, the disk storage
for the LHC, to provide synchronisation and share capabilities for scientific and engineering
use-cases. Besides pure development, I have also participated in various events: I was invited
by ownCloud to their development event [10] to give a presentation to their development teams
about scalability problems found on ownCloud, I have spoken at CERN IT Auditorium a couple
of times [9, 11, 12] to present the CERNBox service and I collaborated in other international

1OPAL was one of the major experiments at CERN before LHC era.
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2 INTRODUCTION CERNBox

conferences [15]. As parallel tasks to the main job, I acted as a technical advisor to ownCloud ,
as an active member on the Géant group dedicated to the development of the OpenCloudMesh2

project and as an active member on the IETF Internet Storage synchronisation mailing list3. I
was also co-author of a couple of technical publications [14, 13] about CERNBox and CERN
storage during this period and I also helped to organise the first Workshop for Cloud Synchro-
nisation and Sharing Services held at CERN on November 2014.

2 Introduction

Cloud computing introduces a different way to communicate to computer services, from email
communications to the usage of social networks. Within this paradigm, the heavy and hard job
has been moved from the client to remote servers, converting the client into a thin client for
promoting mobility and network pervasiveness.

Cloud storage is a special type of cloud service with the primary goal of providing a pervasive
and coherent access to data from a variety of devices. The usage of cloud storage services
like DropBox has been very successful because they provide a convenient way for people to
synchronize and share their data across different devices. However, the adoption of these pro-
prietary solutions has some potential problems:

• Off-premise deployments: data is outside the control of your organisation with some-
what unclear business and security policies.

• Closed source code: the application logic is hidden, without the possibility to customize
or optimize the code base.

• Unclear service level: the data confidentiality and jurisdiction may be at risk.

To handle these problems, in the last five years, some open source solutions came to play the
synchronisation and share game. The most popular products are ownCloud, SeaFile, Power-
Folder and Pydio, which provide open source and on-premise solutions to online cloud storage.
These products offer the synchronisation and share layer on top of different storage backends
like local storages, network storages like NFS or object storages like Amazon S3.

A problem that has not yet been solved by any open or closed source project is the possibility
to give the end user a performant and integrated access to existing data repositories without
having to migrate the data or replacing the user work flows.

In order to clarify this problem to the reader Figure 1 shows the architecture found on most
synchronisation platforms of today like DropBox or ownCloud.

The usual work flow in this scenario is the following:

1. The user accesses her data interacting with the server using a wide range of available
devices like smart phones, desktop synchronisation clients, or a browser.

2. The data is saved to the storage for future use.

2
https://oc.owncloud.com/opencloudmesh.html

3
https://datatracker.ietf.org/wg/iss/charter/
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2 INTRODUCTION CERNBox

Figure 2 shows an advanced architecture, where the storage can be accessed by the user and
also by third party services.

In this scenario, the previous use case is still there (see green circles), but also a new use case
that is explained below using the infrastructure common at CERN.

1. Other service unrelated to the synchronisation and share server, in this example the data
pumping service of the Atlas detector, writes data to the storage.

2. The end user, a physicist, uses analysis tools to interpret the raw data kept in the storage
to create new results.

3. The synchronisation and share server connects to the same storage used by the detector.

4. The results of the analysis will appear automatically in the synchronisation clients of
the user. Moreover, now the user can share its data with his colleges.

Figure 1: Common architecture of a synchronisation and Share Platform
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Figure 2: Advanced architecture: CERNBox

The next sections will focus on the challenges that need to be addressed in order to move from
the basic architecture of Figure 1 to the advanced architecture found on Figure 2.

3 Related work

3.1 ownCloud

At the time of the discussion to chose the FSS platform (2014) for the CERNBox project,
the following open source projects were analysed: ownCloud, SyncAny, Pydio, SeaFile and
PowerFolder.

Pidyo was discarded due to the lack of synchronisation and mobile clients at that time, SyncAny
did not have a web application and the project looked like dead at that time, SeaFile’s git-based
synchronisation algorithm was too complex to implement in EOS and PowerFolder was only
partial open source. ownCloud was the most promising option as it had desktop synchronisation
clients for all major operative systems, a web application and an active and big open source
community.

Another reason for this selection was due to the feedback received from a survey done by
SWITCH4 among its users to choose their favourite open source alternative to DropBox, and
ownCloud was the winner.

Yet another factor that contributed to the election of ownCloud was the small investment needed
for having enterprise support and licenses for up to 10000 users. The cheap cost for the enter-
prise version of the software is due to the agreement between ownCloud and GÉANT5 in order

4SWITCH is the swiss national research and education network organisation, SWITCH
also manages the educational networks among Swiss universities and research facilities, and
the links to other (non Swiss) university networks.

5GÉANT is the pan-European data network for the research and education community.
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to boost research facilities and universities that rely on ownCloud as their on-premise file syn-
chronisation and share solution with the ability to protect sensitive data or research and to
manage data at scale.

3.2 Synchronisation

The number of File synchronisation and Share (FSS) services has grown over the last years and
the product catalog is now wider and more diverse than ever. For such reason the synchronisa-
tion with these cloud providers is done with multiple synchronisation clients. For example, to
synchronise data with DropBox one has to use the DropBox synchronisation client, to Google
Drive with the Drive client and to ownCloud with ownCloud clients and so on. Each software
vendor has its own synchronisation protocol, thus making it very difficult to use one synchro-
nisation client to talk to multiple cloud providers with the same underlying synchronisation
protocol. Over recent years there have been studies that analysed these synchronisation proto-
cols [4, 2, 3, 5, 16, 1].

The ownCloud Synchronisation Protocol (OSP) is a good candidate for cloud file synchroni-
sation because it relies on the well known WebDAV standard [21, 8]. It is documented6 and
compliant with the protocol so it can be tested with the SmashBox tool7.

The OSP is a state-based synchronisation protocol with a cycle of three clearly defined phases
[7] that are triggered periodically:

• Discovery phase: its objective is to collect metadata on the remote server to build a tree
of remote changes to be compared with the local tree that represents the state of the
synchronisation client.

• Reconciliation phase: given the remote and local trees, the ownCloud synchronisation
Client has to decide what to do with each file based on the collected metadata. The
result of this phase is a propagation list that specifies what to do to make the two sets
the same.

• Propagation phase: it is the how-to-do-it phase. This phase executes the jobs to achieve
the required changes specified in the propagation list.

OSP uses WebDAV as the underlying protocol for synchronisation but it has been extended
with new attributes to improve efficiency. Theses extensions are as follows:

• File ID: it is an unique identifier that is attached to a resource (the concept is similar to
an inode number — it points to an structure that represents a filesystem object) and it
does not change when resources are moved to another location. This identifier is needed
to track remote moves in the synchronisation clients to perform a local rename instead
expensive delete and download operations.

It interconnects national research and education networks (NRENs) across Europe, enabling
collaboration on projects ranging from biological science to earth observation and arts and
culture.

6OSP, Jakub T. Mościcki and Klass Freitag, https://github.com/cernbox/sma
shbox/blob/master/protocol/protocol.md

7Smashbox is a framework for end-to-end testing of the core storage functionality of an
ownCloud-based service installation through the ownCloud Synchronisation Protocol.
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• ETag: it is an opaque unique identifier that is given to all resources to identity versions
of the resource. As a consequence, when a resource ever changes, it is assigned a new
ETag that has not been previously used. Whenever an ETag changes, all the ancestor
directories up to the home directory of the user update their own ETag to reflect the
path of changes. This propagation allows clients to construct a partial tree with just the
changed branches.

• Mtime: the modification time of a resource. This attribute is also propagated like the
ETag along the path to solve a corner case when a synchronisation client looses its
synchronisation journal and has to decide which file to kept in case of conflict.

3.3 Sharing

The other dimension of a FSS platform is Sharing. These platforms usually offer two ways of
sharing data: by a public share (also known as link share) or by internal sharing.

Public sharing means creating a link to a particular resource (either a file or a directory) that
is sent to other people usually not registered in the FSS platform. This way of sharing is
very useful to export internal data to third parties without granting them full access to the
FSS platform. On the other hand, internal sharing only allows share to users of the FSS. This
latter form of sharing usually allows to share to groups, increasing the benefits of collaboration
between departments or work groups. Both forms of sharing allow to share a resource, but
what happens when the resource is moved or renamed? This question highlights the decision
that FSS platforms must deal with, and there are two possibilities to address it:

• DropBox allows you to share a file or folder, but as soon as you move or rename it the
share is lost8, consequently having to re-share the moved resource with previous users.
This approach reduces user usability but increases the scalability of the system as it does
not have to update share information after a rename or move.

• Google Drive and ownCloud use a permanent file identifier for the resources, therefore
the resource is referenced by an id and not by path like in the previous case, thus re-
names or moves do not lose the share. This approach increases usability but decreases
performance, as the system has to update the share information in an atomic way when
the resource is moved or renamed.

4 CERNBox

CERNBox is a cloud synchronisation service for end-users: it allows syncing and sharing files
on all major mobile and desktop platforms (Linux, Windows, MacOSX, Android, iOS) aiming
to provide offline availability to any data stored in the CERN EOS infrastructure. There is a high
demand in the community for an easily accessible cloud storage solution such as CERNBox.
Integration of the CERNBox service with the EOS storage back-end is the next step towards
providing ’synchronisation and sharing‘ capabilities for scientific and engineering use-cases.
CERNBox achieves the integration of ’synchronisation and sharing‘ capabilities with the LHC
data analysis tools and transfer services. IT-DSS introduces CERNBox, a synchronisation and
sharing service, to promote a new integrated way of accessing data for scientific research.

8Why did my shared link stop working?, https://www.dropbox.com/help/45
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The core of CERNBox is a synchronisation and sharing system based on components provided
by the ownCloud open software stack. CERNBox provides a service layer on top of storage
systems already provided by IT-DSS. This allows coherent data access policies to be applied
and for service levels compatible with CERN standards to be defined. CERNBox offers various
modern ways to access cloud storage:

• FUSE access9: the storage can be mounted as a filesystem. This is very important for
computers inside the computer centre that do not have graphical interfaces but do a lot
of batch job processing.

• WebDAV10: the storage is accessible through WebDAV enabled clients like Finder for
OSX, Windows Network Drives for Windows or third-party tools like CyberDuck.

• XROOTD11: the storage can be accessed through high optimised data transfer protocols
for doing efficient data analysis.

• synchronisation client: this is a component, integrated in the user desktop environment,
which keeps one (or more) local folders in synchronisation with the central storage
server. Users can work on their devices without connectivity and the synchronisation
client reconciles changes when the network connectivity is restored. This component is
the one that enables the access to offline data with eventual consistency12.

• Direct web access: via any web browser the user can upload/download/remove files and
share them with other users. Some extensions (available as application plugins in the
ownCloud server) provide added functionality such as easing the access to certain types
of files (e.g. image viewers).

• Mobile devices: given the fact that most web traffic comes from mobile devices, access
to data from these devices is a must. CERNBox provides mobile and tablet applications
for Android and IOS.

In 2014 a pilot service was deployed (NFS storage as backend) which was operated with min-
imal operational effort. This service demonstrated a growing demand for file synchronisation
and sharing, and reinforced the assumption on the potential popularity of such a service. It was
observed a constant increase of the number of users of the pilot service (several tens of new
users weekly) both from the physics community and from other communities such as the gen-
eral laboratory services and the accelerator departments. The type of usage was consequently
broad, ranging from the synchronisation of data files (ROOT analysis files), arbitrary work files
to office documents shared with colleagues.

9Filesystem in Userspace is an operating system mechanism for Unix-like computer operat-
ing systems that non-privileged users create their own filesystems without editing kernel code.
This is achieved by running filesystem code in user space while the FUSE module provides
only a bridge to the actual kernel interfaces.

10Web Distributed Authoring and Versioning (WebDAV) is an extension of the Hypertext
Transfer Protocol (HTTP) that allows clients to perform remote Web content authoring opera-
tions.

11XRootD software framework is a fully generic suite for fast, low latency and scalable data
access, which can serve natively any kind of data, organised as a hierarchical filesystem-like
namespace, based on the concept of directory

12Eventual consistency is a consistency model used in distributed computing to achieve high
availability that ,informally, guarantees that, if no new updates are made to a given data item,
eventually all accesses to that item will return the last updated value.
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The next step is to federate CERNBox with CERN disk storage system, EOS. This integration
effort is the core of this thesis. The current usable capacity of EOS is about 70 PiB with proven
capabilities in terms of performance (designed to support LHC analysis) and reliability (geo-
graphically distributed replicas). CERNBox could become the main entry point for the entire
CERN data store: users will selectively access or synchronise data with their devices while
their entire data storage is accessible online by the batch jobs for massive data processing or
for the creation of large data archives. The choice of EOS allows for the distribution of large
user quotas (presently 1 TiB per user). A preliminary survey of use cases suggests that users
at CERN will benefit (on top of the standard synchronisation and sharing) from the seamless
access of data at different levels (home directories, group spaces) in a shared way. The “discon-
nected operations” provided by the synchronisation client is an important feature. In the future
other activities may benefit from a synchronisation client becoming a one-way synchronisation
agent between the data acquisition and the central services. For example small experiments
need to develop ad-hoc scripts and procedures to upload data from their acquisition system to
the CERN central data store: a one-way synchronisation client will be a fundamental simplifi-
cation. One should note that the current client synchronisation behaviour does not yet support
this mode (removal of files from the client will remove the same files in the central repository).
These are general use cases and are more widely applicable than in the High-Energy Physics
workflows. CERNBox can satisfy them in a pretty straightforward way: pictures from surveys
in the field, readings of devices or upload of data from a remote machine (sensors, etc).

The ownCloud software provides the possibility of using any filesystem (and more recently
some object store systems) for hosting user data. Files are stored in a straightforward directory
structure. Metadata (in particular, the one controlling the synchronisation) are stored in a re-
lational database which ultimately controls the behaviour of the synchronisation clients. In its
core implementation ownCloud assumes that the backend filesystem is visible only via the own-
Cloud servers: this is clearly incompatible with allowing users to directly access their data (via
POSIX commands like cp, mv and rm). ownCloud also allows an ’External Storage Access‘,
unfortunately this solution does not scale well: the whole directory tree on the external storage
must be scanned periodically for updates and integration of independent storage systems in the
way attempted by ownCloud is operationally complex. The need of a relational database is also
incompatible with a scale-out system of the size that is needed at CERN.

However, because of the state-based nature of ownCloud synchronisation algorithm and straight-
forward filesystem organisation in the ownCloud backend server, it is possible to adapt EOS to
conform to the ownCloud synchronisation protocol.

The solution to the database problem is simply to remove it and delegate its functionality to
EOS itself, since EOS is a shared filesystem with a hierarchical namespace. The key piece of
information for the ownCloud synchronisation algorithm is a unique tag (called ETAG) to iden-
tify file updates and detect conflicting changes. This is now coherently handled and provided
as an extended attribute by the EOS namespace (as a combination of inode number and the
content checksum). It is important to highlight that the synchronisation client is left completely
unchanged to not break the compatibility with standard clients developed by ownCloud for sev-
eral platforms. The ownCloud web server has been adapted using a set of plugins to integrate
it with EOS and the performance has been increased thanks to modifications to the core. These
modifications will be explained in detail in next sections as they are the fundamental sections
of this thesis: design of a petabyte-scale synchronisation and share platform.

EOS presents a WebDAV interface (with ownCloud protocol extensions) to the synchronisation
clients. The data streams (file upload and download) are redirected to EOS storage nodes while
the metadata operations (file removal, directory rename, etc) are handled by the EOS head node.
This ’out-of-band‘ handling of traffic solves the potential data transfer bottleneck of having all
transfers channeled through the ownCloud server. The ownCloud server is used to manage
sharing and web access exclusively.
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Last but not least, CERNBox may help a variety of different profiles at CERN:

• Administration: people working in non-technical areas like financial, human resources
and legal departments. These people will get the most out of CERNBox thanks to
the sharing capabilities in order to have a document collaboration service and inter-
department document exchanges.

• Engineers: people working in technical areas like civil, mechanical, or technology de-
partments. These people are abroad most of the time, so they will benefit from the
offline capabilities of the service, allowing them to use their data without the need of
network connectivity.

• Physicists: people working on theoretical or applied physics. It will contribute to the
collaboration within different physic groups but also to make easy to obtain results di-
rectly from the experiments, enhancing the productivity via novel workflows thanks to
the combined capabilities of ownCloud and EOS. Integration of CERNBox with physics
workflows will be covered in Section 5.3.

4.1 Problems To Solve

This section focuses on explaining in detail the problems that shall be addressed when moving
from a common synchronisation and share architecture to an advanced one that exports the
underlying storage to the end user.

Although CERNBox uses ownCloud, the design problems presented here are related to any
synchronisation and sharing platform that uses a database for keeping the namespace, i.e; that
uses an architecture similar to the one shown in Figure 3.

Figure 3: Basic architecture in detail showing the lacking of direct access to the
storage

Inside this architecture there are three main components:
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• A SQL database: the primary goal is to be used as a filesystem namespace.13 When
the storage is a local file system then the database is used as a cache, thus needing a
synchronisation job that is explained later. On the other hand, when the underlying
storage is an object store, it becomes a critical component, because if the database is
lost, the user looses all his files.

• A Web Application Server: is the piece of the system that deals with synchronisation
and sharing. It has a direct connection both to the storage and to the database, thus every
data and metadata operation is sent to it. Furthermore, it enforces access control lists
alongside the database to perform sharing.

• Storage: is the part of the system that keeps the user files, the data. Modern synchronisa-
tion and share platform can use a variety of different storages ranging from local filesys-
tems to object storages. This flexibility if achieved using an abstract virtual filesystem
interface14.

The goal with CERNBox is to offer novel functionalities to the scientific community and to
export the underlying storage to the user is a key challenge to achieve it.

Using out-of-the-box synchronisation and share platform this is not possible due to two main
constraints inherent in these systems:

• Lack of direct access to the storage: if the storage is modified by external actors, then the
database that contains the namespace will not be in synchronisation with the data kept in
the storage. As a consequence of this, users will be presented with cached information,
therefore time-dependant jobs cannot be done in this system.

A workaround solution to limit this problem is to kept a background synchronisation
process that aims to maintain both sets synchronised. As a result of this, the performance
of the system will be degraded as the number of users and files start to increase. This
workaround was not viable for CERNBox, a system that could reach up to 10000 users
and handles petabytes of data.

• Missing Access Control List consistency: the web server and the database are responsi-
ble for enforcing the access to shared data, that is, to guarantee a security policy inde-
pendently of the access path.

When operations are done against the web server, the security policy is guaranteed. On
the other hand, when the storage is accessed behind the web server, this policy is not
fulfilled, creating an insecure system.

Figure 3 highlights the problem of lacking direct access to the storage through two use cases
(green and blue circles).

13A filesystem namespace provides a level of indirection to route filenames with the same
name to the correct storage, thus making it possible to distinguish between identical identifiers.

14A virtual filesystem is an abstraction layer on top of a more concrete filesystem. The
purpose of a VFS is to allow client applications to access different types of concrete filesystems
in a uniform way. A VFS can, for example, be used to access local and network storage devices
transparently without the client application noticing the difference.
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Figure 4: Basic architecture in detail showing ACL inconsistency problem.

The first use case (green circles) shows Alice uploading two files (A and B) through the web
server. The web server will save these two files into the storage and then upload the information
about the files (path, size, mtime ...) in the database. Notice here the non-atomic operation.
After the operation finishes, files are stored both in the namespace and in the storage.

In the second use case (blue circles), Bob, a user able to access the storage by other means,
puts a file C into the storage. After this file is put, Bob will not be able to see this file through
the web server because a synchronisation job has to be triggered to insert it into the database
at some point in the future. The synchronisation job is very inefficient as it has to scan all user
storage and compare it with the state kept in the database to reconcile both sets of information.

The problem of inconsistent access control list is shown in Figure 4.

Alice (green circles) shares a folder ”/photos” with a fileID of 123 with Bob and the share
information is kept in the database. Bob is only able to access Alice’s shared data through the
web browser, as the storage has no notion of sharing.

A possible solution to these problems is presented in the next section.

4.2 A Solution

Figure 5 shows an alternative architecture to solve the lack of direct access to the storage.
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Figure 5: Advanced architecture in detail showing how the direct access to the
storage problem is solved relying on the storage as the only namespace.

The main change presented in this architecture is the removal of the database that contains the
namespace. As a consequence, the background synchronisation job is avoided. This produces
a better experience to end users, as they will not see cached data anymore. Regarding Figure
5, Alice (green circles) uploads two files (A and B) through the web server. These files are
saved just into the storage, that now is also a namespace. Now if Bob (blue circles) puts file C
directly into the storage, then this file can be seen from the web server without having to wait
for a synchronisation job.

The other problem to overcome is the access control inconsistency. Figure 6 shows the way this
problem has been solved.
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Figure 6: Advanced architecture in detail showing how the ACL inconsistency
problem is solved using the storage as the security policy engine.

Alice (green circles) shares the folder ”photos” with fileID 123 with Bob. This information is
keep in the storage. Bob (blue circles) is now able to access Alice’s folder from the storage. This
is possible, because the storage is enforcing the security policy, thus allowing a homogeneous
access to share data independently of the access path.

4.3 Architecture

CERNBox implements the advanced architecture shown in Figure 5 and Figure 6 using EOS
and ownCloud.

Figure 7 shows a complete view of the architecture implemented in CERNBox.
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Figure 7: CERNBox architecture

This architecture implements the advanced model using the following components:

• EOS, the LHC Disk Storage: EOS is used as the storage for the CERNBox service. It
provides a replicated data store with different ways to access the data: through a FUSE
mount, through XROOTD protocol and through the WebDAV protocol. To have the
same view from the synchronisation clients, from the web access and from FUSE or
XROOTD clients, EOS storage extends the standard WebDAV protocol to include the
synchronisation semantics used by ownCloud (see Section 3.2), therefore a change made
using the EOS command line interface, the data dumped by the LHC or the results of an
analysis will be synchronised automatically to an end user computer through ownCloud
synchronisation clients.

• NGINX load balancer and Quality of Service Server: NGINX is used to apply some
QoS criteria to synchronisation clients, web access, and WebDAV clients. The desktop
synchronisation clients and WebDAV pure clients requests are redirected by NGINX
directly to EOS to obtain the best performance for data synchronisation. Mobile de-
vices, the web application and Share operations use the ownCloud REST API. As a
consequence, these types of requests are redirected to the ownCloud server.

• ownCloud Web Server: the ownCloud stack is used to implement the web server pro-
posed in the advanced model for a synchronisation and share platform. The ownCloud
Web Server has a direct connection to EOS thanks to the development of a storage plu-
gin that uses the EOS library to perform operations to EOS in an efficient way. The
development of this plugin is explained in Section 4.4.

Besides the core components, Figure 7 also shows different clients making use of EOS as a
shared storage system. The clients shown in the picture are the following:

• ownCloud Desktop Synchronisation Clients: these are the components needed to syn-
chronise automatically the data kept on EOS to the end user local machine. They also
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allow sharing of local files without having to share through the web application in latest
versions. As these components are a critical part of the system extensive testing and val-
idation of their behaviour have been carried out using the SmashBox Testing Framework
developed as part of the CERNBox project.

• ownCloud Mobile Clients: these are the components that allow to access EOS’s data
from mobiles devices like smartphones and tablets. They do not synchronise data au-
tomatically as the storage capacity of these devices is less than the one expected for
desktop machines.

• Web Application: the ownCloud server offers a web application to allow universal ac-
cess to the data from any device anywhere to give an alternative to desktop or mobile
applications. The web application also offers a set of highly useful applications like a
text editor or an image viewer. As an example of this, a user modifying a text file in the
browser will see these changes synchronised to all the clients he has.

• Pure WebDAV Clients: EOS offers a WebDAV interface extended with ownCloud se-
mantics. Therefore, multiple existing DAV clients can be connected to EOS to access
the data in a straightforward way. Commonly used clients are the ones already built
in the Operative Systems (Finder for MacOSX and Network Drives for Windows) or
third-party products like CyberDuck15.

• EOS CLI: EOS provides a command line tool to interact with the data and access extra
features like trash bin and version support among a vast range of other features. Usually,
EOS administrators make heavy use of this tool to control EOS’ behaviour: configuring
replicas, master-slave layouts, setting user quotas or adding more space to the whole
cluster.

• LHC: the LHC has a lot of services to deal with data dumping when collisions happen in
one of the four main detectors (Alice, CMS, Atlas and LHCb). Some of these services
dump data directly to EOS to save data at very high speeds. Usually, the LHC dumping
services make use of high performance data transfer protocols like XROOTD to write
data to EOS.

• FUSE access: EOS provides a FUSE interface, so users could mount a particular re-
mote directory in EOS as a local folder in their workstation. The fact of having remote
resources in a local folder allows the use of tools for data analysis only work in local
filesystems. As a consequence, physicists could use analysis frameworks like ROOT
to analyse the raw data that have been dumped from the collisions. This is one of the
innovative use cases that CERNBox provides to the scientific community, the ability to
interact with high valuable data in a non-disruptive and automatic way.

This section provides a high level view of the CERNBox architecture. Next sections will focus
on addressing in detail the developments done to have the direct access to the storage and
homogeneous access to shared data features.

4.4 Direct Access to Underlying Storage

The main development effort is integrating ownCloud, which provides synchronisation and
sharing layers, with EOS, the storage backend. To have a direct access to the storage, EOS and

15Cyberduck is an open source client for FTP and SFTP, WebDAV, OpenStack Swift, and
Amazon S3, available for Mac OS X and Windows (as of version 4.0) licensed under the GPL

19 of 62



4 CERNBOX CERNBox

ownCloud have been modified to support the use cases of a FSS platform. In the case of EOS,
it has been modified to implement the ownCloud synchronisation protocol. See Section 3.2 and
Appendix B to obtain more information about these modifications.

ownCloud has to be modified and extended in order to use EOS as the underlying filesystem.
ownCloud was developed with the assumption of having always access to a local filesystem, but
this is not always the case. On June 2014, ownCloud added support for remote object storages
like OpenStack Swift and Amazon S3. EOS is neither a local filesystem nor an object storage,
therefore using it out-of-the-box was not possible and ownCloud has to be modified to use it.

Files

OC

Cache

OCP

ObjectStore ObjectStore

Files
Storage

<<interface>>
Storage

<<interface>>
Storage

<<abstract>>
Common

Cache

Local
ObjectStoreStorage

<<interface>>
IObjectStore

Swfit

Figure 8: OC class diagram showing the classes involved when dealing with
the storage

Figure 8 shows the different classes and interfaces involved in the ownCloud system regard-
ing to the storage ( ’OC‘ refers to ownCloud private namespace and ’OCP‘ refers to public
ownCloud namespace). The starting point in this diagram is the OCP\Files\Storage inter-
face. This interface defines a series of methods to implement a filesystem (see Figure 41 for
more details). The drawback of this interface is that it is based on the assumption of imple-
menting only local filesystems, thus it specifies methods like ’fopen‘ and ’opendir‘, uncon-
ceivable when dealing with remote storages. This interface is then extended in the private
\OC\Files \Storage \Storage interface class (see Figure 42). This interface mainly introduces
the ”getCache” method to retrieve the \OC\Files\Cache\Cache component that deals with the
namespace in order to perform metadata operations. Notice that the Cache component is not
implementing an interface neither living in the public namespace, therefore making it impossi-
ble to write custom Caches without patching the system. This Cache (see Figure 44 for more
details) is designed to talk exclusively to SQL databases, making it more difficult to adapt it
to other databases. The latter Storage interface is implemented partially in the abstract class
\OC\Files\Storage\Common. This is the core class for the storage, as local filesystems or
object store implementations are extensions of it. The class \OC\Files\Storage\Local imple-
ments a local filesystem and the class \OC\Files\ObjectStore\ObjectStoreStorage an object
storage. Given the fact that OC\Files\Storage\Common implements a local filesystem, own-
Cloud decision was to implement an object storage on top of local filesystems. This is radically
wrong as remote object storages do not have the extended capabilities of local filesystems. This
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decision lead ownCloud having to adapt local filesystem methods like ’fopen‘ and ’opendir‘ to
remote operations through inefficient hacks like staging files in a temporary storage.

Figure 9: Ceph stack

An alternative architecture that ownCloud could use in future releases is the one used by Ceph16

as shown in Figure 9. In this drawing the low level service is an object store with very basic
operations like ”readObject”, ”writeObject” and ”listObjects”. On top of this basic service S3
and Swift RESTFul APIs are created along with a POSIX compliant local filesystem.

Returning to the ownCloud storage discussion, the \OC\Files\ObjectStore\ObjectStoreStorage
class uses an implementation of the \OCP\Files\ObjectStore\IObjectStore (see Figure 43 for
extra details). Based on the design shown, EOS cannot be plugged in out-of-the-box imple-
menting an interface or extending an existing class. The first problem is that EOS is not a local
filesystem, therefore extending from \OC\Files\Storage\Common or \OC\Files\Storage\Local
is worthless. The remaining alternative is to use the \OC\Files\ObjectStore\ObjectStoreStorage
with a custom implementation of the \OCP\Files\ObjectStore\IObjectStore. From a prelim-
inary point of view this looks like a posible solution, but there are two constraints with these
classes:

1. Although the OC\Files\ObjectStore\ObjectStoreStorage class adapts local filesystem
methods to remote ones using inefficient operations, it still relies on the
\OC\Files\Cache\Cache class to perform metadata operations, thus imposing the sys-
tem to use a SQL database to maintain the namespace.To achieve the direct access to
the storage the database is removed from the whole architecture as shown in Figure 5.

2. The \OC\Files\ObjectStore\ObjectStoreStorage implements the ”mkdir” operation talk-
ing just to the Cache without notifying the implementation of the
\OCP\Files\ObjectStore\IObjectStore. This is okay for a pure object store but not for
EOS, as EOS is a hierarchical remote shared storage.

16Ceph is an object storage based free software storage platform that stores data on a single
distributed computer cluster, and provides interfaces for object-, block- and file-level storage.
Ceph aims primarily to be completely distributed without a single point of failure, scalable to
the exabyte level, and freely available.
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To overcome these problems a series of patches are implemented to have direct access to EOS.

In the first place, the OC\Files\ObjectStore\ObjectStoreStorage has been modified to propa-
gate methods like ’mkdir‘ to the \OCP\Files\ObjectStore\IObjectStore. In the second place,
the latter interface has been extended with the ’mkdir‘ method and a custom implementation of
the IObjectStore interface, \OC\Files\ObjectStore\EOS, has been created. Finally, the ’get-
Cache‘ method of the ObjectStoreStorage class has been overwritten to a use custom cache, the
\OC\Files\Cache\EosCache class. This class provides all the metadata needed by ownCloud
from EOS (Figure 40 shows the metadata kept by ownCloud in the database). EOS can replace
the ownCloud SQL namespace because it addresses the two requirements for an ownCloud
namespace:

• Unique resource ID for all resources within the namespace: For being able to scale
every resource (either file or folder) is identified by an unique resource ID. This ID is
required to handle remote moves in the synchronisation client to avoid expensive delete
and download operations. EOS can be configured to have unique IDs in the namespace
(combination of inode and checksum), thus addressing the remote move problem.

• Propagation of resource modification bottom-up in the namespace: When a resource
is modified, its modification must be propagated bottom-up to the top level directory
to help the synchronisation client to scale (avoiding the recursive traversal of all the
namespace for discovering changes). Usually, the attributes used for reflecting the mod-
ification of a resource are the mtime (modification time) or ETag, but a custom one can
be used also. EOS can be configured to propagate modifications in the namespace.
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Figure 10: CERNBox class diagram showing the classes involved when dealing
with the EOS storage
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The design behind CERNBox storage model is shown in Figure 10, where blue boxes represent
new classes and red boxes represent ownCloud classes that must be modified to use EOS. This
diagram has several new classes:

1. \OC\Files\Cache\EosCache (see Figure 46 for further details): this new class is re-
sponsible for dealing with metadata operations against EOS instead of connecting to a
SQL database. The connection to EOS MGM is done using system calls to the EOS
CLI.

2. \OC\Files\ObjectStore\Eos (see Figure 45 for further details)): this class implements
the modified
\OCP\Files\ObjectStore\IObjectStore interface to make data transfers in and out to
EOS. It uses system calls to connect to the ’xrootd‘ binaries to start data transfers.

3. \OC\Files\ObjectStore\EosParser (see Figure 47 for further details): this class is re-
sponsible for parsing the stdout and stderr of system calls to EOS to marshal returned
data into PHP data types.

4. \OC\Files\ObjectStore\EosProxy (see Figure 51 for further details): this class is re-
sponsible for translating ownCloud’s paths like ’files/photos‘ to EOS’s paths like ’/eos/user-
s/l/labrador/photos‘ and viceversa.

5. \OC\Files\ObjectStore\EosCmd (see Figure 48 for further details): this class is re-
sponsible for making system calls to the EOS CLI binary.

6. \OC\Files\ObjectStore\EosReqCache (see Figure 49 for further details): this class im-
plements a cache that is valid for one request. This class caches expensive calls to EOS
to avoid network round trips.

7. \OC\Files\ObjectStore\EosUtil (see Figure 50 for further details): this class contains
helper functions to support the EOS integration.
Figures 11, 12, and 13 show the differences of performing namespace operations us-
ing the ownCloud SQL namespace and CERNBox EOS namespace from a high level
perspective.

SELECT `fileid`, `storage`, `path`, `parent`, `name`, `mimetype`, 
`mimepart`,`size`, `mtime`,`storage_mtime`, `encrypted`, 
`unencrypted_size`, `etag`, `permissions` FROM `*PREFIX*filecache` 
WHERE `storage` = storageOf(hugo) AND
 `path_hash` = hashOf(/hugo/photos)

ownCloud SQL Namespace

eos -r hugo it file info /eos/example/h/hugo/photos -m

CERNBox EOS Namespace

Figure 11: Differences between ownCloud and CERNBox on getting metadata
by path

SELECT `fileid`, `storage`, `path`, `parent`, `name`, `mimetype`, 
`mimepart`, `size`, `mtime`,`storage_mtime`, `encrypted`, 
`unencrypted_size`, `etag`, `permissions` 
FROM `*PREFIX*filecache` WHERE `fileid` = 123

ownCloud SQL Namespace

eos -r hugo it file info inode:123 -m

CERNBox EOS Namespace

Figure 12: Differences between ownCloud and CERNBox on getting metadata
by ID
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SELECT `fileid`, `storage`, `path`, `parent`, `name`, `mimetype`, 
`mimepart`, `size`, `mtime`, `storage_mtime`, `encrypted`, 
`unencrypted_size`, `etag`, `permissions` FROM `*PREFIX*filecache` 
WHERE `parent` = idOf(photos) ORDER BY `name` ASC'

ownCloud SQL Namespace

eos -r hugo it find /eos/example/h/hugo/photos --fileinfo --maxdepth 1

CERNBox EOS Namespace

Figure 13: Differences between ownCloud and CERNBox on getting contents
of a folder

4.5 Homogeneous Access to Shared Data

To achieve the architecture presented in Figure 6, ownCloud has to be modified to propagate
share information to EOS to have an homogeneous access to shared data.

ownCloud keeps share information in an SQL table with the schema shown in Figure 14. The
meaning of each field is as follows:

• id: it is an unique identifier to reference the share.

• share type: specifies if the share is a link share or internal share (either individual or
group share).

• uid owner: the user who shared the resource.

• parent: ownCloud supports re-sharing, thus this identifies the parent of the share.

• item type: specifies the type of resource like file or directory.

• item source: references the file ID of the storage. ownCloud uses a permanent ID for
shares (see 3.3).

• item target: the name users receiving the share will see.

• file source: idem to item source 17.

• file target: idem to item taget.

• permissions: specifies reading and writing permissions for the share.

• stime: specifies the time the share was created.

• accepted: indicates if the share was accepted or not 18.

• expiration: specifies the due data for link shares.

• token: specifies the secure unique token for a link share.

• mail send: indicates if an email was sent after sharing a resource.

17ownCloud allows to share calendars and other abstract resources, but these are not consid-
ered in CERNBox.

18ownCloud has a special share type called Federated Cloud share, that is a link share be-
tween two ownCloud instances, hence the requirement to accept or deny a share in the remote
instance.
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Figure 14: ownCloud share table SQL schema

CERNBox uses this database table with a subtle change; because the data type used in EOS to
keep track of the file IDs is an unsigned integer of 64 bits. The current ownCloud share schema
has a data type of signed 32 bit integer for the file source and item source columns, so it would
be truncated. To avoid this problem, the schema is modified to have an unsigned big integer for
the file source and item source columns.

Besides storing the share information in these SQL tables, CERNBox propagates it to EOS
to have a consistent view of shared resources independently of the access path (see Figure 6
to obtain an overview of the design). Unfortunately, ownCloud does not provide a plug-in
mechanism to control share behaviour, thus having to modify the OC\Share\Share core class
to achieve it. Figure 15 shows the core classes that were modified to propagate the information
to EOS. Red boxes represent modified private core classes and blue boxes represent new classes
(see Figure 50, 51 and 47 to get a detailed specification of EosUtil, EosProxy and EosParser
respectively).
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Figure 15: ownCloud share class diagram

The OC\Share\Share class has been modified to trigger share permissions kept in the SQL
table to EOS ACL attributes. EOS ACls are defined only on the directory level via extended
attributes19. An example ACLs could be ’sys.acl=”u:hugo:rw, egroup:cernbox-team:r‘. This
ACl grants read and write permissions to user after each new share, update, or deletion EOS
ACLs are updated accordingly through EOS commands (’eos attr set sys.acl=”...” /eos/exam-
ple/l/labrador/photos‘). An important aspect of this design is that permissions are not read from
the database, but from EOS, i.e ’eos attr ls /eos/example/l/labrador/photos‘. This makes it pos-
sible to modify ACLs directly from EOS and see the results from CERNBox clients and the
web application immediately. Figures 16 and 17 show how share ACLs are set and retrieved
from EOS.

EOS Console [root://localhost] |/eos/eoslia/users/l/labrador/> attr -r set sys.acl=u:labrador:rw /eos/eoslia/users/l/labrador/photos
success: set attribute sys.acl="u:labrador:rw" in directory /eos/eoslia/users/l/labrador/photos/

eos attr set sys.acl

Figure 16: Setting share ACLs in EOS

EOS Console [root://localhost] |/eos/eoslia/users/l/labrador/> attr ls photos
sys.acl="u:labrador:rw"
sys.forced.checksum="adler"
sys.forced.maxsize="10000000000"
sys.recycle="/eos/lia/proc/recycle/"

eos attr ls

Figure 17: Obtaining share ACLs in EOS

19CERNBox only allows to share folders via internal sharing as EOS does not support ACLs
on individual files.
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4.6 Data Ownership

In a typical web application the user running the web server (usually apache or www-data) is
the one that owns the files created through the web server. ownCloud runs on top of common
web servers like Apache and Nginx, thus the ownership of files created in ownCloud are owned
by the user running the web server. To increase security and give users full control of their data
CERNBox files are owned by the logged-in user. Figure 18 highlights this difference.

root@e5ce26450a82:/var/www/html/data/test/files# ls -l                        
drwxr-xr-x 2 www-data www-data    4096        Aug 16 12:31 Documents
-rw-r--r--  1    www-data www-data    2242192  Aug 16 12:31 manual.pdf

ownCloud file ownership

EOS Console [root://eosexample.cern.ch/] |/eos/user/o/ourense/> ls -l
-rw-r--r--       ourense  it            4096        Aug 16 12:31 Documents
-rw-r--r-- 1    ourense  it           2242192  Aug 16 12:31 manual.pdf

CERNBox file ownership

Figure 18: ownCloud and CERNBox differences in data ownership.

4.7 Native File Versioning

ownCloud provides an application for handling versions of files. Using this application, every
time a file is updated, a version is created. The versioning application expires old versions
automatically to make sure that the user does not run out of space. This pattern is used to delete
old versions20:

• For the first 10 seconds ownCloud keeps one version every 2 seconds

• For the first minute ownCloud keeps one version every 10 seconds

• For the first hour ownCloud keeps one version every minute

• For the first 24 hours ownCloud keeps one version every hour

• For the first 30 days ownCloud keeps one version every day

• After the first 30 days ownCloud keeps one version every week

The versions are adjusted along this pattern every time a new version gets created. The version
application never uses more that fifty percent of the user’s currently available free space. If the
stored versions exceed this limit, ownCloud deletes the oldest versions until it meets the disk
space limit again.

ownCloud versions application does not take into consideration the underlying filesystem,
therefore if the storage already provides file versioning, there would be two versioning pro-
cesses running for the same purpose. EOS provides file versioning so CERNBox takes advan-
tage of this instead using the generic Versioning App. To use EOS versioning instead own-
Cloud’s, a new CERNBox Versioning application is developed using ownCloud’s Application
Framework21.

Figures 19 and 20 show a high level overview of EOS versioning features.

20
https://doc.owncloud.org/server/8.2/admin_manual/configura

tion_files/file_versioning.html

21https://doc.owncloud.org/server/8.0/developer manual/app/index.html
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EOS Console [root://localhost] |/eos/eoslia/users/l/labrador/> ls -la
drwxrwsr-+   1 root     root                0 Apr 25 13:24 .
drwxrwsr-+   1 root     root                0 Apr 25 13:24 ..
drwxrwsr-x   1 root     root                0 Apr 25 13:35 .sys.v#.passwd
-rw-------   1     root     root          2046 Apr 25 13:35 passwd

EOS Console [root://localhost] |/eos/eoslia/users/l/labrador/> file versions passwd
-rw-r-----   1 root     root             2046 Apr 25 13:29 1461583758.00000008
-rw-------   1 root     root             2046 Apr 25 13:35 1461584120.0000000f
-rw-------   1 root     root             2046 Apr 25 13:35 1461584153.00000010
-rw-------   1 root     root             2046 Apr 25 13:51 1461585099.00000019
-rw-------   1 root     root             2046 Apr 25 13:51 1461585101.0000001a
-rw-------   1 root     root             2046 Apr 25 13:51 1461585103.0000001b
-rw-------   1 root     root             2046 Apr 25 13:51 1461585104.0000001c

eos versions list

Figure 19: Listing versions of files using EOS versions commands

EOS Console [root://localhost] |/eos/eoslia/users/l/labrador/> file versions passwd 1461583758.00000008
success: staged '/eos/eoslia/users/l/labrador/.sys.v#.passwd/1461583758.00000008' back to '/eos/eoslia/users/l/labrador/passwd' - the previous file is 
now '/eos/eoslia/users/l/labrador/.sys.v#.passwd/1461584153.00000010

eos versions restore

Figure 20: Restoring previous versions of a file using EOS versions commands

4.8 Native Recycle Bin

ownCloud provides another application for handling deleted files. Using this application, every
time a file is deleted, it is moved to a special directory that acts like a trash bin22. To ensure that
users do not run over their storage quotas, the Deleted Files application allocates a maximum
of fifty percent of users currently available free space to deleted files. If deleted files exceed
this limit, ownCloud deletes the oldest files (files with the oldest timestamps from when they
were deleted) until it meets the storage usage limit again. ownCloud checks the age of deleted
files every time new files are added to the deleted files. By default, deleted files stay in the trash
bin for 180 days. The ownCloud server administrator can adjust this value in the config.php file
by setting the ’trashbin retention obligation‘ value. Files older than the ’trashbin retention -
obligation‘ value will be deleted permanently. Additionally, ownCloud calculates the maximum
available space every time a new file is added. If the deleted files exceed the new maximum
allowed space ownCloud will expire old deleted files until the limit is met once again.

Again, ownCloud Deleted Files application does not take into consideration the capabilities of
the underlying filesystem. Modern filesystems (either local or object storages) offer some kind
of recycle bin functionality, and EOS is not an exception. EOS provides first-class support for
recycling files and Figures 21, 22 and 23 show a high level overview of its recycling features.
To use EOS recycling features instead ownCloud’s, a new CERNBox Deleted application is
developed using ownCloud’s Application Framework.

22
https://doc.owncloud.org/server/8.2/user_manual/files/dele

ted_file_management.html
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EOS Console [root://localhost] |/eos/eoslia/users/l/labrador/> recycle ls
# Deletion Time            UID      GID      SIZE         TYPE          RESTORE-KEY      RESTORE-PATH                                                    
# ==========================================================================================
Mon Apr 25 13:27:24 2016   root     root     2046         file          0000000000000008 /eos/eoslia/users/l/labrador/passwd 

eos recycle ls

Figure 21: Listing deleted files using EOS recycling commands

EOS Console [root://localhost] |/eos/eoslia/users/l/labrador/> recycle restore 0000000000000008
success: restored path=/eos/eoslia/users/l/labrador/passwd

eos recycle restore

Figure 22: Restoring deleted files using EOS recycling commands

EOS Console [root://localhost] |/eos/eoslia/users/l/labrador/> recycle purge
success: purged 0 bulk deletions and 1 individual files from the recycle bin!

eos recycle purge

Figure 23: Permanently deleting of deleted files using EOS recycling com-
mands

4.9 Scalability Issues

ownCloud itself has problems related to scalability due to some design flaws. This section
focuses on two major scalability problems found while developing the CERNBox.

4.9.1 Redundant Expensive Calls

ownCloud does not rely on system call errors to handle the logic of an operation. If someone
ask you to perform the removal of a file named ’/tmp/deleteme.txt‘, the common approach is to
run ’rm /tmp/deleteme.txt‘ and expect a 0 error code meaning success. If the error code is not
0, then maybe the file is not found (error code = 2) or you do not have enough permissions to
perform such operation (error code = 3). ownCloud way to removing that file is the following:

• Does the file exist? ownCloud performs this operation to see if the file is there.

• Do we have permission to delete it? ownCloud performs this operation to see if we can
remove the file.

• Delete it

The problem with this approach is that the first two operations talk to the namespace, thus
requiring two network round trips to check the status of the file and one to really remove the
file. In order to mitigate this problem, CERBox uses a request cache (see Figure 49 for more
details) that caches an operation if it occurs more that once per request.
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4.9.2 File Target Creation

As explained in Section 4.5, the values of the file target fields inside the SQL database is the
name the receiver of the share will be in his user tree. ownCloud behaviour is to have unique
file names across different storages. When sharing a resource with somebody, to create the file
target (like a symbolic link) in the target user virtual file system, all the storages registered for
the target user are scanned to check if there is already a file with the given file name. This check
is really costly if the user has lot of files or if she has received lots of shares. Furthermore, there
is even a worse scenario, sharing to a group as the scan must be triggered for all the members
inside the group. This causes an explosion of expensive scanning operations that limit the
scalability of the product.

CERNBox solves this problem creating a unique file name across different storages. For such
purpose, the already existing file ID of a resource is appended to the target file name, for
example: imagine a scenario where user A has a folder called ’photos‘ with a file ID of ’123‘.
When user A shares this folder with user B, this file will appear in the shared storage of user B
as ’photos (#123)‘. This approach also helps to avoid having duplicated shared data, as the file
ID is unique for all the resources.

4.9.3 Inefficient Handling of Requests

ownCloud’s internal logic flow for handling requests always triggers the mounting of storages
for the logged in user, independent of the operation being done. For example: the web ap-
plication triggers periodically a hearth beat operation to check if the server is still alive. This
operation does not need to use any storage, but storages are mounted anyway, thus consuming
resources without need. There is not any clean solution at the time of this writing for this prob-
lem without having to modify the internal request flow. ownCloud will improve the request
flow using the Dependency Injection pattern to just use what is required for every request.

5 CERN Services Integration

CERNBox does not just offer the same use cases as DropBox, it goes a step further to provide
integration with already existing services and workflows inside the organisation.

5.1 SSO

Signing-on to a service such as e-mail involves entering a username and password: the creden-
tials. What happens behind the scenes when credentials are entered is called authentication:
the computing service in question establishes who is the owner of a valid account and gives
access to it. Managing who gets access to which computing services, and with what privileges,
is called authorisation. Typically, the service manager authorises the access and privileges of
individuals and groups. For authorisation to work, information about individuals has to be asso-
ciated with the groups they belong to and roles they play in the organisation – a process known
as identity management. This ultimately involves information managed by the organisation’s
human resources service. This situation is summarised in Figure 24.
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Figure 24: An overview of the identity management system at CERN, and the
players involved.

Several years ago in the course of an average working day a typical CERN user would have
to authenticate many times using many different credentials. First a login and password were
required to unlock the Windows desktop, then the user had to type in another login and pass-
word to unlock the Linux desktop or session. Credentials were also needed to read e-mails, use
administrative applications, and submit a CHEP presentation on Indico23, for example.

The aim of the CERN authentication service is to provide a single sign-on for CERN applica-
tions, using a unique central account database.

The CERN Single Sign On (SSO) infrastructure provides different authentication methods, with
different security levels:

• Classic web forms, where users type in the login and password. Depending on the
browser features, the login and password can be saved locally for later use.

• Windows integrated authentication. The current Windows session token is reused to au-
thenticate the user, without having to retype credentials. The security of Windows desk-
top sessions has also been increased by deploying a strong screen-lock policy: screen
savers with password locking forced on all Windows desktops with a short time out, to
avoid users leaving their screens unlocked for long periods of time.

• Certificates. Authentication can be made using a certificate provided by the CERN Cer-
tification Authority (CA) or any Grid-trusted CA member. Depending on the security
level required, SmartCard tokens with pin codes can also be used.

The calling application can select all or some of the authentication methods. For example, to
ensure maximum verification, experiment controls can request operators to authenticate only
with certificates on SmartCards.

23The Indico tool allows to manage complex conferences, workshops and meetings.
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The single-sign-on infrastructure can also provide information about the user needed for the
calling applications. All account information associated with the user is returned to the calling
application, such as name, e-mail address and building. Membership of groups and mailing lists
is also returned, so that the calling application can rely on central group membership to handle
access control. Instead of a ”per application dedicated role system” we now have a centrally
managed group management on which all applications can rely.

CERNBox will use the SSO service to authenticate users. The technology used to do the SSO
process will be Shibboleth as it is the only supported by Apache that can interact with CERN
SSO.

Shibboleth is an open-source project that provides Single Sign-On capabilities and allows sites
to make informed authorisation decisions for individual access of protected online resources in
a privacy-preserving manner.

Shibboleth is a standards based, open source software package for web single sign-on across or
within organisational boundaries. It allows sites to make informed authorisation decisions for
individual access of protected online resources in a privacy-preserving manner.

The Shibboleth software implements widely used federated identity standards, principally the
OASIS Security Assertion Markup Language (SAML), to provide a federated single sign-on
and attribute exchange framework. A user authenticates with his or her organisational cre-
dentials, and the organisation (or identity provider) passes the minimal identity information
necessary to the service provider to enable an authorisation decision. Shibboleth also provides
extended privacy functionality allowing a user and their home site to control the attributes re-
leased to each application.

At its core Shibboleth works in the same way as every other web-based Single Sign-on (SSO)
system. What distinguishes Shibboleth from other products in this field is its adherence to
standards and its ability to provide SSO support to services outside of a user’s organisation
while still protecting their privacy.

The main elements of a web-based SSO system are:

• Web Browser - represents the user within the SSO process.

• Resource - contains restricted access content that the user wants.

• Identity Provider (IdP) - authenticates the user.

• Service Provider (SP) - performs the SSO process for the resource.

In CERNBox the ‘Resource’ to grant access is the CERNBox Server, the Identity Provider is
the CERN SSO service and the Service Provider is Shibboleth.

These are the Single Sign-on Steps:

• Step 1: User accesses the Resource
The user starts by attempting to access the protected resource. The resource monitor
determines if the user has an active session and, discovering that they do not, directs
them to the service provider in order to start the SSO process.

• Step 2: Service Provider issues Authentication Request
The user arrives at the Service Provider which prepares an authentication request and
sends it to the Identity Provider. The Service Provider software is generally installed on
the same server as the resource.
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• Step 3: User Authenticated at Identity Provider

When the user arrives at the Identity Provider, it checks to see if the user has an existing
session. If they do, they proceed to the next step. If not, the Identity Provider authen-
ticates them (e.g. by prompting for, and checking, a username and password) and the
user proceeds to the next step.

• Step 4: Identity Provider issues Authentication Response

After identifying the user, the Identity Provider prepares an authentication response and
sends it and the user back to the Service Provider.

• Step 5: Service Provider checks Authentication Response

When the user arrives with the response from the Identity Provider, the Service Provider
will validate the response, create a session for the user, and make some information
retrieved from the response (e.g. the user’s identifier) available to the protected resource.
After this, the user is redirected to the resource.

• Step 6: Resource returns Content

As in Step 1, the user is now trying again to access the protected resource, but this time
the user has a session and the resource knows who they are. With this information the
resource will service the user’s request and send back the requested data.

With this integration, CERNBox service will offer users the CERN standard authentication
strategy.

5.2 E-Groups

The use of groups in a FSS platform is a really good feature, as it allows to share a resource with
a group, not just with individual users, thus achieving a new level of collaboration. ownCloud
offers the possibility to create user groups or retrieve them from an LDAP/AD service, but the
way ownCloud handles groups is very inefficient due to their design of a shared namespace.
Imagine a scenario where there is an group called cern-staff that has 10 000 members inside.
When somebody wants to share some folder with this group, ownCloud queries the LDAP
service for the list of members inside this e-group and then inserts a row in the SQL database
per member of the group, thus having 10 000 new rows in the database.

To mitigate this problem CERNBox relies on e-groups. E-groups is the interface to manage
groups at CERN. An e-group is managed by an owner and administrators. They have the same
level of permissions. The owner or administrators add members, and then the e-group can be
used as a mailing list or to grant access to different CERN resources (web sites, DFS folders,
INDICO events, DFS folders etc). There are couple of ways to access e-groups, but the common
way is to query them through LDAP/AD queries. To avoid the problem of inserting as much
rows as members in the group, CERNBox just keeps the group name in the database (1 row)
and group resolution is made on the fly when the user logs in the service.

5.3 JSROOT: Visualisation of physics data

ROOT is a framework for data processing, born at CERN, at the heart of the research on high-
energy physics. Every day, thousands of physicists use ROOT applications to analyse their data
or to perform simulations. With ROOT you can save user’s data (and any C++ object) in a
compressed binary form in a ROOT file. The object format is also saved in the same file: the
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ROOT files are self-descriptive. Even in the case the source files describing the data model are
not available, the information contained in a ROOT file is always readable. ROOT provides a
data structure, the tree, that is extremely powerful for fast access of huge amounts of data –
orders of magnitude faster than accessing a normal file. Data can also be generated following
any statistical distribution and model, making it possible to simulate complex systems. Results
can be displayed with histograms, scatter plots, fitting functions, etc.

The ROOT team has developed a Javascript tool called JSROOT to visualise the content of
ROOT files in the browser. JavaScript ROOT aims to provide interactive ROOT-like graphics
in web browsers. Object data can be read from binary ROOT files (offline) or received from
ROOT applications running THttpServer (online). It is successor of JSRootIO project.

As EOS is the primary disk storage for physics data at CERN, CERNBox is the right place to
embed the JSROOT tool and offer a new way of accessing physics data. ownCloud offers a flex-
ible framework to develop custom applications. CERNBox takes advantage of this framework
to integrate the JSROOT tool directly into the ownCloud user interface as shown in Figures 25
and 26.

Figure 25: Using JSROOT inside CERNBox UI to plot data in 2D
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Figure 26: Using JSROOT inside CERNBox UI to plot a 3D model

5.4 NBViewer: Visualisation of interactive analysis

The Notebook (also called Jupyter Notebook or IPython Notebook) is a web application that
allows to create documents that contain live code, equations, visualisations and explanatory
text. Uses include: data cleaning and transformation, numerical simulation, statistical mod-
elling, machine learning and much more. The Notebook has support for over 40 programming
languages, including those popular in Data Science such as Python, R, Julia and Scala.

The ROOT team at CERN started a project called Root as a Service (ROOTaaS) to integrate
NoteBook with ROOT technology. This new infrastructure will allow to use ROOT in the cloud,
from a simple browser. This system will store data to EOS, therefore CERNBox becomes
the main entry point for sharing and syncing of NoteBooks files. CERNBox does not just
offer an application to visualise ROOT files as explained in the previous section, it also offers
an application called NBViewer to visualise the NoteBooks24. Figures 27 and 28 show an
overview of the displaying capabilities.

24The creation of the NoteBook is done by ROOTaaS, CERNBox just offers a visualisation
layer.
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Figure 27: Using NBViewer inside CERNBox UI to display a NoteBook

Figure 28: Using NBViewer inside CERNBox UI to display another NoteBook
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6 Deployment and service metrics

6.1 Deployment

CERNBox uses a variety of open source products and infrastructure. The production service
that has been running since 2015 relies on a set of servers located in the CERN Computer
Centre at Geneva. These servers are bare metal servers (not virtualised) and live under a critical
area, thus having redundant power supplies and UPSes25 in case an outage occurs. EOS has
50 percent of the servers in the same computer centre and the other half in Budapest. The
specifications for both CERNBox and EOS servers are outlined in Table 1.

Server Component Value

EOS Master MGM RAM 256 GiB
CPU E5-2630 v3@2.4Ghz

EOS Slave MGM RAM 256 GiB
CPU E5-2630 v3@2.4Ghz

FST Server RAM 128 GiB
CPU E5-2630 v3@2.4Ghz
Disk 24 X 6TiB SaS/6Gib/s HBA

CERNBox Master Apache WebServer RAM 32 GiB
CPU E5-2630 v3@2.4Ghz

CERNBox Hot-spare Apache WebServer RAM 32 GiB
CPU E5-2630 v3@2.4Ghz

CERNBox Master NGINX RAM 32 GiB
CPU E5-2630 v3@2.4Ghz

CERNBox Hot-spare NGINX RAM 32 GiB
CPU E5-2630 v3@2.4Ghz

Table 1: CERNBox and EOS servers

6.2 Service Usage

EOS is the CERN disk storage for physics data and it has more than 140 PiB deployed, operates
more than 1300 storage nodes and uses more than 40000 disks. The space used at EOS is
divided in instances, often by experiment and use cases on. EOS has 6 different instances (see
Figure 29) with different number of files (see Figure 35).

25An uninterruptible power supply, also uninterruptible power source, UPS or battery/fly-
wheel backup, is an electrical apparatus that provides emergency power to a load when the
input power source fails.
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Figure 29: EOS instances with raw deployed capacity
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Figure 30: EOS file number distribution

The EOS instance where CERNBox currently operates is in EOSUSER (access to other in-
stances is planned). EOSUSER is the EOS space reserved for general purpose storage, fulfill-
ing the same uses cases as using DropBox and also offering new workflows using new tools as
explained in Section 5.

Table 2 shows the CERNBox service numbers on the EOSUSER instance.

Users 4074
Number of files 55 Million
Number of directories 7.2 Million
Quota 1TiB/user
Used Space 104 TiB
Deployed Space 1.3 PiB

Table 2: CERNBox service numbers

CERNBox service can be accessed from a variety of clients from all major operative systems.
Figure 31 shows the distribution of clients in the three major operating systems: OSX, Unix
and Windows.
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Figure 31: Distribution of operative systems from CERNBox desktop clients

Figures 32 and 33 show the worldwide geolocation of CERNBox users before Christmas hol-
idays and during holidays respectively. Figure 34a and 34b show the geolocation for centre
Europe.

40 of 62



6 DEPLOYMENT AND SERVICE METRICS CERNBox

Figure 32: Geolocation of CERNBox users before Christmas holidays world-
wide

Figure 33: Geolocation of CERNBox users during Christmas holidays world-
wide
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(a) Before Christmas holidays (b) During Christmas holidays

Figure 34: Geolocation of CERNBox users in centre Europe
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Figure 35: EOS file number distribution

Figures 36 and 37 show plots of different operations over the last 6 months of the production
service
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Figure 37: EOS plot showing the rate of different HTTP/WebDAV operations
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6.3 Successful stories

6.3.1 E-Science

CIMA foundation26 along with UNOSAT27 and UNITAR28 are involved in the project to de-
velop a global Flood Early Warning System (flooding is the most common and widespread
hazard worldwide) with the following objectives:

• Improve disaster response planning with timely identification of potential affected areas,
in particular for critical areas of the world with lack of data.

• Support humanitarian actors during flood emergency with data and analysis.

• Guide satellite image acquisition to overcome delays due to the triggering process of
satellite imagery.

With support of CERN IT department, the operational use of the modelling chain has been
tested using a variery of CERN computing facilities: data have been uploaded to EOS through
CERNBox to be handled from the batch system to model the forecast. The key features that
CERNBox offers to this project are:

• Enabling non-experts to easily use CERNBox for data transfers.

• Powerful integration with the batch system

• Simplicity to share data with collaborators.

6.3.2 CERN Press Office

In March 2015, LHC Run 2 started. Run 2 of the LHC follows a 2-year technical stop that
prepared the machine for running at almost double the energy of the LHC’s first run. With
this new energy level, the LHC will open new horizons for physics and for future discoveries.
During the day of 28 of April, media around the world were waiting for the CERN Press Office
to release information about the start of the run. The CERN Press team contacted the IT-DSS
group to use CERNBox as the service to gather LHC 2 run information and share it with media
around the world through protected link shares. The setup and work flow for this scenario were
the following:

26Non-profit research organisation fostering training, scientific research and technological
development within the fields of Civil Protection, Disaster Risk Reduction and Biodiversity.

27UNOSAT is a technology-intensive programme delivering imagery analysis and satellite
solutions to relief and development organisations within and outside the UN system to help
make a difference in critical areas such as humanitarian relief, human security, strategic territo-
rial and development planning.

28The United Nations Institute for Training and Research (UNITAR) is a principal training
arm of the United Nations, working in every region of the world. It empowers individuals,
governments and organisations through knowledge and learning to effectively overcome con-
temporary global challenges.
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• Photographers of the CERN Press team uploaded their photos to a shared CERNBox
account to gather photos from different places.

• Editors of the CERN Press team prepared footages with the photos available in CERN-
Box and uploaded these large videos (around 50GiB) using XROOTD clients directly
to EOS, making them available from CERNBox.

• The CERN Press team shared a folder containing videos footages with members of
different media partners across the globe.

6.4 Future uses cases

There are two ongoing research projects alongside the development of CERNBox: a worldwide
Research and Development Network using EOS Word-Wide and the Future Home Directory for
CERN users.

6.4.1 EOS Worldwide Deployment

The EOS and CERNBox projects are both open source, therefore they are just not limited to
be used inside CERN. There are a couple of organisations that are studying to implant EOS
in their service offerings and others that already started to use it. There are two organisations
that have a working EOS instance: ASGC29 and AARNET30. Figure 38 shows different EOS
instances.

Figure 38: EOS worldwide deployments

29ASGC (Academia Sinica Grid Computing Centre) is the only Worldwide LHC Computing
Grid Tier-1 Centre in Asia.

30AARNET is the Australian Academic and Research Network provides Internet services to
the Australian education and research communities and their research partners.
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6.4.2 Future Home Directory ($HOME)

A home directory is a file system directory on a multi-user operating system containing files for
a given user of the system. The specifics of the home directory (such as its name and location)
is defined by the operating system involved; for example, in Unix systems is often located at
’/home/<username>‘ and can be referred with the ’$HOME‘ environmen variable or just with
’~‘.

The AFS (Andrew File System) Service provides networked file storage for CERN users, in
particular home directories, work spaces and project spaces. The AFS Service is based on
OpenAFS, an open-source distributed filesystem which provides a client-server architecture for
location-independent, scalable, and secure file sharing.

EOS is under study to see if it can replace the current AFS service to offer home directories,
work and project spaces. Using EOS as the home directory will open new ways to access data:
from the web through CERNBox Web UI, from desktop synchronisation clients, WebDAV
clients and so on. Figure 39 shows an overview of data access paths using EOS as the user
home directory storage.

EOS
web access

browser and mobile

offline access

online access

direct access

(HTTP, WebDAV, XROOT)

Sync client

WebDAV & FUSE

Batch Service
WLCG

LHC

$HOME

Laptops, PCs
& mobiles devices

Figure 39: EOS home directory accesses
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7 Conclusion

CERNBox is an innovative service with a fast user growing rate and positive feedback. The in-
tegration with the LHC petabyte storage and with existing workflows makes CERNBox unique.
CERNBox also brings data closer to users with the same easiness as commercial services; fur-
thermore it provides new ways to interact with data (see Sections 5.3 and 5.4). The running
period of CERNBox and EOS has shown that it is an innovative platform for scientific comput-
ing with proven scalability and performance. The good experience in running CERNBox and
the encouraging user feedback confirm our initial assumptions on the actual need of a cloud
storage service for file synchronisation and sharing targeted to scientific communities. More
importantly this service has the potential to become a central place for user data access since
it addresses a number of issues, such as mobility and multi-platform access. It is an innovative
service for sharing data between users and we expect this to become an environment that could
fit physicists, engineers and general laboratory staff. We believe that CERNBox system could
provide new communities an entry point for ’big data‘ activities as discussed in recent cloud
storage events.

8 Future research

From our point of view the most important challenge is to use ownCloud out-of-the-box without
having to apply patches and hacks to make it working with EOS. Fortunately, steps to solve this
issue have started since beginning of year 2016 to make ownCloud 9 easier to integrate with
EOS 31 thanks to a new design of ownCloud’s internal architecture. However, release 9 did not
meet at 100% the expectations we had, therefore more research needs to be made to obtain a
more flexible design that allows seamless integration with EOS.

The development of CERNBox brought a series of ideas and designs to use the storage filesys-
tem as the primary source from data retrieval without having to use a SQL database. These
features currently apply to EOS, but they could be applied to a broader range of storage sys-
tems; this is the idea behind the ClawIO project32.

31
https://owncloud.org/blog/owncloud-server-9-0-released/

https://opensource.com/business/16/3/cern-and-owncloud

32http://clawio.github.io

48 of 62

https://owncloud.org/blog/owncloud-server-9-0-released/
https://opensource.com/business/16/3/cern-and-owncloud


A SOFTWARE DIAGRAMS CERNBox

A Software diagrams

Figure 40: ownCloud file cache data model
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OCP

Files

getId(): string
mkdir(path: string): bool
rmdir(path: string): bool
opendir(path: string): resource
is_dir(path: string): bool
stat(path: string): array
filetype(path: string): string
filesize(path: string): int
isCreatable(path: string): bool
isReadable(path: string): bool
isUpdatable(path: string): bool
isDeletable(path: string): bool
isSharable(path: string): bool
getPermissions(path: string): int
file_exists(path: string): bool
filemtime(path: string): int
file_get_contents(path: string): string
file_put_contents(path: string): bool
unlink(path: string): bool
rename(path1: string, path2: string): bool
copy(path1: string, path2:string): bool
fopen(path, mode: string): resource
getMimeType(path: string): string
hash(type, path: string, raw: bool): string
free_space(path:string): int
search(query: string): array
touch(path: string, mtime: int): bool
getLocalFile(path: string): string
getLocalFolder(path: string): string
hasUpdated(path: string, mtime: int): bool
getETag(path: string): string
isLocal(): bool
instanceOfStorage(class: class): bool
getDirectDownload(path:string): array   

<<interface>>
Storage

Figure 41: \OCP\Files\Storage
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OC

Files

Cache

Storage

getCache(path: string, storage: Storage): Cache
getScanner(path: string, storage: Storage): Scanner
getOwner(path: string): string
getWatcher(path: string, storage: Storage): Watcher
getStorageCache(): Storage

<<interface>>
Storage

Cache Watcher Scanner

OCP

Files

<<interface>>
Storage

Figure 42: \OC\Files\Storage\Storage

Files

OCP

ObjectStore

getStorageId(): string
readObject(urn: string): resource
writeObject(urn: string, stream: resource)
deleteObject(urn: string) 

<<interface>>
IObjectStore

Figure 43: \OCP\Files\ObjectStore\IObjectStore
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OC

Files

Cache

_construct(storage: \OC\Files\Storage\Storage)
adjustStorageId(storageId: int)\
getNumericId(): int
getStorageId(numericId: int): string
getNumericStorageId(storageId: string): int
exists(storageId: int): bool
remove(storageId: int)

Storage

_construct(storage: \OC\Files\Storage\Storage)
getNumericStorageId(): int
getMimeTypeId(mime: string): int
getMimeType(id: int): string
loadMimetypes(id: int)
get(file:string): array
getFolderContents(folder: string): array
getFolderContentsById(fileId: int): array
put(file: string, data: array): int
update(file: string, data: array): int
buildParts(data: array): array
getId(file: string): int
getParentId(file: string): int
inCache(file: string): bool
remove(file: string)
getSubFolders(entry: array): array
removeChildren(entry: array)
move(source: string, target: string)
clear()
getStatus(file: string): int
search(pattern: string): array
searchByMime(mimetype: string): array
searchByTag(tag: string, userId: string): array
correctFolderSize(path: string, data: array)

partial: array
storageId: string
storageCache: Storage

Cache

calculateFolderSize(path: string, entry: array): 
int
getAll(): array
getIncomplete(): array
getPathById(id: int): string
getById(id: int): array
normalize(path: string): string

Storage

<<interface>>
Storage

Figure 44: \OC\Files\Cache\Cache
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OC

Files

ObjectStore

_construct(params: array)
getStorageId(): string
writeObject(urn: string, stream: stream)
readObject(urn: string): stream
deleteObject(urn: string)
mkdir(urn: string)
rename(from, to: string)

partial: array
storageId: string
storageCache: Storage

Eos

Figure 45: \OC\Files\ObjectStore\Eos
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OC

Files

Cache

_construct(storage: \OC\Files\Storage\Storage)
getNumericStorageId(): int
getMimeTypeId(mime: string): int
getMimeType(id: int): string
loadMimetypes(id: int)
get(file:string): array
getFolderContents(folder: string): array
getFolderContentsById(fileId: int): array
put(file: string, data: array): int
update(file: string, data: array): int
buildParts(data: array): array
getId(file: string): int
getParentId(file: string): int
inCache(file: string): bool
remove(file: string)
getSubFolders(entry: array): array
removeChildren(entry: array)
move(source: string, target: string)
clear()
getStatus(file: string): int
search(pattern: string): array
searchByMime(mimetype: string): array
searchByTag(tag: string, userId: string): array
correctFolderSize(path: string, data: array)

partial: array
storageId: string
storageCache: Storage

EosCache

calculateFolderSize(path: string, entry: array): 
int
getAll(): array
getIncomplete(): array
getPathById(id: int): string
getById(id: int): array
normalize(path: string): string

Figure 46: \OC\Files\Cache\EosCache
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OC

Files

ObjectStore

static parseFileInfoMonitorMode(line_to_parse: string) : array
static parseRecycleLsMonitorMode(line_to_parse: string): array
static parseMember(line_to_parse: string): array

EosParser

Figure 47: \OC\Files\ObjectStore\EosParser

OC

Files

ObjectStore

static exec(commas: string)

EosCmd

Figure 48: \OC\Files\ObjectStore\EosCmd
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OC

Files

ObjectStore

static init()
static getUidAndGid(username): array
static setUidAndGid(username: string, data: array)
static getFileId(id:string): array
static setFileId(id: string, data: array)
static getMeta(ocPath: string): array
static setMeta(ocPath: string, data: array)
static getFileByEosPath(eosPath:string): array
static setFileByEosPath(eosPath: string, data: array)
static getOwner(eosPath: string): array
static setOwner(eosPath:string, data: array)
static getEGroups(username: string): array
static setEGroups(username: string, data: array)
static dontUseCache()

EosReqCache

Figure 49: \OC\Files\ObjectStore\EosReqCache
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OC

Files

ObjectStore

static putEnv()
static getEosMgmUrl(): string
static getEosPrefix(): string
static getEosProjectPrefix(): string
static getEosProjectMapping(): array
static getEosMetaDir(): string
static getEosRecycleDir(): string
static getEosHideRegex(): string
static getEosVersionRegex(): string
static getBoxStagingDir(): string
static getOwner(eosPath: string) string
static getEosRole(eosPath: string, rootAllowed: bool): array
static getUidAndGid(username: string): array
static getStorageId(eosPath: string): string
static addUserToAcl(from, to: string, fileId: int, ocPerm, type: string): bool
static changePermAcl(from, to: string, fileId: int, permissions: int, type: string): bool
static getAclPermissions(from, to: string, fileId: int): array
static toOcAcl(sysAcl: string): array
static toEosAcl(ocAcl: int): string
static toEosPerm(ocPerm: int): string
static toOcPerm(eosPerm: string): int
static getFileById(id: int): array
static getFileByEosPath(eosPath: string): array
static isMemberOfEGroup(username, group): bool
static getMimeType(path, type: string): string
static propagatePermissionXToParent(filedata: array, to, type: string): bool
static getEGroups(username: string): array
static createVersion(eosPath: string): bool
static getVersionsFolderIDFromFileID(id: int, createVersion: true): int
static getFileMetaFromVersionsFolderID(id: int): int
static getProjectNameForUser(username: string): string
static isProjectURIPath(uri_path: string): bool
static isSharedURIPath(uri_path: string): bool

EosUtil

Figure 50: \OC\Files\ObjectStore\EosUtil
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OC

Files

ObjectStore

static getUsernameFromStorageId(storageId: int): string
static toEos(ocPath: string, storageId: int): string
static toOc(eosPath: string): string

EosProxy

Figure 51: \OC\Files\ObjectStore\EosProxy
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B EOS: The LHC Disk Storage

The following information has been mainly extracted from the publication ’EOS as the present
and future solution for data storage at CERN‘ [17].

EOS is an open source distributed disk storage system in production since 2011 at CERN.
Development focus has been on low-latency analysis use cases for LHC1 and non- LHC exper-
iments and life-cycle management using JBOD2 hardware for multi PB storage installations.
The EOS design implies a split of hot and cold storage and introduced a change of the tradi-
tional HSM3 functionality based workflows at CERN.

The 2015 deployment brings storage at CERN to a new scale and foresees to breach 100 PB
of disk storage in a distributed environment using tens of thousands of (heterogeneous) hard
drives. EOS has brought to CERN major improvements compared to past storage solutions by
allowing quick changes in the quality of service of the storage pools. This allows the data centre
to quickly meet the changing performance and reliability requirements of the LHC experiments
with minimal data movements and dynamic reconfiguration. For example, the software stack
has met the specific needs of the dual computing centre set-up required by CERN and allowed
the fast design of new workflows accommodating the separation of long-term tape archive and
disk storage required for the LHC Run II.

EOS is based on three components: management server, message queue and file storage ser-
vices. All components are currently implemented as plug-ins for the xrootd storage server.
Figure 52 show EOS architecture.

Figure 52: EOS architecture

A fundamental concept of EOS is to use a set of single disks (JBOD) as storage media without
the need to build local RAID arrays. All storage nodes are divided into groups and within one
group files are placed using file-level network RAID algorithms. The currently implemented
algorithm is RAID-1(N) where (N) is the number of replicas for each file. Dual and multiple
parity RAID algorithms are also considered. The storage cluster is self-healing: missing repli-
cas are recreated on the fly. For RAID-1(N) at least one replica has to be accessible to guarantee
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file availability. The used redundancy algorithm defines the quality of service in terms of file
availability in case of single or multiple disk failures. File systems can be migrated online
between nodes to simplify life-cycle management. The namespace is a common bottleneck in
storage systems. In EOS it is implemented as a pluggable component which can be exchanged
easily. The current implementation is built on in-memory hash maps. The required central-
ity makes a trade-off between scalability and latency allowing to scale out read open requests.
Write open scaling is possible by splitting the namespace (see Figure 53). This limitation is
sightly compensated by the fact that roughly only one quarter of all requests are indeed write
requests according to 2010 LHC data.

Figure 53: High Availability and Scale-Out overview

The hierarchical in-memory namespace is built on top of the google sparse hash implementa-
tion, which has a minimal size overhead for each hash entry. Every creation, modification and
deletion of meta data of files and directories is stored in a sequential change-log file. On startup
the change-log file is read and the in-memory hash maps are rebuilt. After repetitive meta data
updates on files obsolete meta data records accumulate in the change-log file. EOS provides a
tool to compact the change-log files by removing obsolete records. The namespace provides
two views: a directory view and a file system view.

The directory view provides a familiar tree structure. The file system view allows to list all file
ID-number on a particular file system. Keeping all meta data in memory is the fastest possible
solution. The size is limited by the amount of available memory. The startup time is correlated
to the in-memory size and the amount of change-log entries. A typical namespace uses 1 GB
of memory for 1 million files. Size variations are dominated by the average length of file base
names.

To obtain further details about EOS, there are some publications available [18, 19, 17, 14, 13,
6, 20].

Documentation to install and configure EOS can be found at the following url:
http://eos.readthedocs.org/en/latest/.
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[15] JT Mościcki, H González Labrador, and M Lammana. “Cloud Storage
for (Big and Small) Science”. 15th TF-Storage Meeting. 2014 (cit. on
p. 6).

[16] P. Mrowczynski. “Benchmarking and testing ownCloud, Seafile, Drop-
box and CERNBox using smashbox”. Cloud Services for Synchronisa-
tion and Sharing (CS3). 2016 (cit. on p. 9).

[17] AJ Peters, EA Sindrilaru, and G Adde. “EOS as the present and future
solution for data storage at CERN”. In: Journal of Physics: Conference
Series. Vol. 664. 4. IOP Publishing. 2015, p. 042042 (cit. on pp. 59, 60).

[18] Andreas J Peters and Lukasz Janyst. “Exabyte scale storage at CERN”.
In: Journal of Physics: Conference Series. Vol. 331. 5. IOP Publishing.
2011, p. 052015 (cit. on p. 60).

[19] Andreas-Joachim Peters, Elvin Alin Sindrilaru, and Philipp Zigann. “Eval-
uation of software based redundancy algorithms for the EOS storage sys-
tem at CERN”. In: Journal of Physics: Conference Series. Vol. 396. 4.
IOP Publishing. 2012, p. 042046 (cit. on p. 60).

[20] Elvin-Alin Sindrilaru, Andreas-Joachim Peters, and Dirk Duellmann. “Archiv-
ing tools for EOS”. In: Journal of Physics: Conference Series. Vol. 664.
4. IOP Publishing. 2015, p. 042049 (cit. on p. 60).

[21] E James Whitehead Jr and Meredith Wiggins. “WebDAV: IEFT standard
for collaborative authoring on the Web”. In: Internet Computing, IEEE
2.5 (1998), pp. 34–40 (cit. on p. 9).

62 of 62


	Background
	Introduction
	Related work
	ownCloud
	Synchronisation
	Sharing

	CERNBox
	Problems To Solve
	A Solution
	Architecture
	Direct Access to Underlying Storage
	Homogeneous Access to Shared Data
	Data Ownership
	Native File Versioning
	Native Recycle Bin
	Scalability Issues
	Redundant Expensive Calls
	File Target Creation
	Inefficient Handling of Requests


	CERN Services Integration
	SSO 
	E-Groups
	JSROOT: Visualisation of physics data
	NBViewer: Visualisation of interactive analysis

	Deployment and service metrics
	Deployment
	Service Usage
	Successful stories
	E-Science
	CERN Press Office

	Future uses cases
	EOS Worldwide Deployment
	Future Home Directory ($HOME)


	Conclusion
	Future research
	Software diagrams
	EOS: The LHC Disk Storage

