Towards Management of Chains of Trust
for Multi-Clouds with Intel SGX

Houssem Kanzari and Marc Lacoste

Orange Labs

{houssem.kanzari, marc.lacoste}@Qorange.com

ABSTRACT

In multi-cloud infrastructures, despite the great diversity of current
isolation technologies, a federating model to manage trust across layers
or domains is still missing. Attempts to formalize trust establishment
through horizontal and vertical Chains of Trust (CoTs) still lack a precise
supporting technology. This paper is a first step towards reconciling the
two standpoints towards a broader trust management framework. We
consider the horizontal, single-layer case, focusing on Intel SGX as
promising isolation technology. We propose a protocol for establishing
trust between a chain of Intel SGX enclaves, both when they are located
on the same and on remote platforms. Preliminary evaluation of an
OpenSGX implementation shows our protocols present encouraging
scalability results.

1. INTRODUCTION

In current multi-cloud infrastructures, trust management and isolation
might be two sides of the same coin. Protection concerns come from the
high level of vulnerability found both in multiple untrusted layers and
heterogeneous network security domains.

For single clouds, trust management and isolation were considered so
far largely orthogonally. This is due to the considered threat model,
capturing where attacks were understood to come from. Thus, security
objectives were either: (1) to protect the infrastructure from malicious
VMs (or VMs from one another) assuming a trusted infrastructure
operated by the provider (isolation); or (2) to protect customer VMs
from an untrusted cloud infrastructure, where some layers or security
domains could be compromised (trust management).

In a multi-cloud infrastructure, some clouds might be considered trusted
(e.g., private clouds). Others might be less worthy of trust (e.g., public
clouds). A comprehensive security framework might thus need to
address both objectives simultaneously.

Solutions to reach the first security objective have been extensively ex-
plored, both from the system side [9] and the network side [7]]. Though,
it became rapidly clear that the trusted infrastructure assumption could
not hold due to its complexity (e.g., administrative domain) and many
vulnerabilities — insider attacks [4] being rather the real threat in terms
of data security and privacy. Even assuming a trusted cloud provider,
a malicious administrator has normally enough permissions to steal and
modify sensitive customer information. Misconfigured device drivers
and side-channel attacks are also major infrastructure isolation threats.

Different classes of solutions have thus also been proposed to meet
the second security objective, addressing both trust management and
isolation. For instance: virtualization architectures based on a trusted
layer [3, 8], cryptographic schemes to compute over encrypted data [[10],
hardware-based trusted execution environments [5|] or secure virtual
enclaves [2]]. Those isolation technologies each have their limitations in
terms of performance, scalability, or compatibility with cloud platforms.

Beyond such diversity, two elements seem to be missing for a com-
prehensive trust management and isolation framework for multi-clouds.
A first requirement is to establish and verify the integrity of the link

*This work is partially supported by the EU H2020 project SUPER-
CLOUD (grant No. 643964) and Swiss Secretariat for Education,
Research and Innovation (contract No. 15.0091).

between a virtual machine (VM) and hardware resources. The Trusted
Computing Group introduced the Chain of Trust (CoT) abstraction:
integrity of a component may be verified by following the CoT to a
root of trust (RoT), usually a tamperproof hardware element such as a
TPM. Abbadi et al. defined a model to describe CoTs in a multi-cloud
infrastructure, both vertically (across layers) and horizontally (across
domains) [[1]. However, it remains unclear how to map this model to
concrete cloud isolation technologies.

A second requirement is to guarantee secure execution of VMs with
hardware protection even if some intermediate infrastructure layers are
compromised. Intel’s Software Guard Extensions (SGX) [2] through the
enclave abstraction for a secure computation unit provides significant
enhancements compared to previous isolation solutions (e.g., [5]): it
guarantees VM security even if the hypervisor is completely com-
promised, reducing the TCB only to the CPU chip. This isolation
technology could provide a starting point towards a comprehensive
security framework handling both types of CoT, and supporting multiple
isolation technologies. However, it remains unclear how enclaves can be
chained together practically.

In this paper, we propose protocols for establishing trust between chains
of Intel SGX enclaves. Our protocols formalize horizontal (single
layer) CoT establishment for multi-cloud infrastructures according to
the model of [1f], both when enclaves are located on the same and on
remote Intel SGX platforms. We implemented our attestation protocols
on the OpenSGX [6] Intel SGX emulator. Preliminary evaluation
results tend to show our protocols could scale to large CoTs, thus being
applicable to realistic multi-cloud infrastructures.

This paper is organized as follows. Sections [2] and [3] provide some
background on CoTs in a multi-cloud infrastructure and on Intel SGX.
Sections [] and [5] describe the protocols and their implementation.
Finally, Section[6|presents some experimental results.

2. CHAINS OF TRUST IN A MULTI-CLOUD
2.1 Multi-Cloud Infrastructure Model

Abbadi et al. proposed a simple architectural model to manage trust in a
distributed cloud [[1] (see Figure E])

Application Domain

Application Backend Application midd\e-l\erl

Hosted at /,_——’————_‘———_\\ Hosted at
virtual Virtual Layer virtual
domain \‘______—________/ domain
Virtual Domain Virtual Domain
Application DBMS Appl 1 middle-tier
'—::;}:g:lt Virtual Domain Virtual Domain }_;‘:7?:;‘;;‘

domain domain

Physical Layer

Physical Domain-1

Physical Domain-2

Figure 1: Multi-cloud infrastructure model

Vertically, the infrastructure is modeled as several layers, software
and hardware containing resources. The physical layer consists of
computing (CPU, memory) and storage hardware resources. The
virtual layer contains the VMs (virtual CPU and memory) and virtual
storage. The application layer leverages virtualized resources to run
applications. One or several virtualization layers manage allocation of
host resources among VM instances.

Horizontally, the infrastructure is seen as a federation of provider
domains that manage resources within a given perimeter, and according
to a common policy. To simplify, we assume domains are layer-
specific. Domain federations group together domains in each layer. In
reality, the infrastructure is two-dimensional, with cross-cutting layers
and domains.

2.2 Chains of Trust

Several techniques enable one party to establish trust in an unknown
entity: direct interaction, trust negotiation, reputation, and trust rec-
ommendation and propagation. Most of these establish trust based on
identity. In a cloud context, establishing trust is rather based on both
identities and properties.

Measure
HW
Firmware Hypervisor
Root of Trust
oL L/ L Tl L/
Attest

Figure 2: CoT concept

In a Chain of Trust (CoT), the links between elements of the chain
represent confidence between two entities: a Trustor and a Trustee. To
establish this confidence, an assertion is needed in order to demonstrate
that a piece of software has been properly instantiated on the platform.
This process is know as attestation: it provides a Trustor with an
authentic and fresh copy of the properties of a Trustee. Thus, the Trustor
can make timely decision of the ability of the Trustee to operate in
certain state.

A Root of Trust (RoT) is a component that must always behave in the
expected manner: its misbehavior cannot be detected. The RoT set
includes at least the minimal set of functions enabling a description of
the platform characteristics that affect its trustworthiness.

A CoT provides an iterative means to extend the trust boundary from
the RoT set to extend the collection of trustworthy functions. Typically,
a CoT could be built as follows. The first element of the CoT (RoT)
should be established from a trusted entity or an entity that is assumed to
be trusted, e.g., a tamper-evident hardware chip. The RoT then measures
the trust status of the CoT second element. As the verifier trusts the RoT,
the verifier also trusts the RoT measurement of the second element that is
now fully part of the CoT. This process is continued to other elements of
the CoT (see Figure[2). This approach may be extended to manage trust
relationships in the cloud using CoTs that may cross layers (vertically)
or domains (horizontally).

2.3 A Simple Model for Horizontal CoTs

In a single layer, and for a single resource, a CoT may be captured
by a triple comprising: (1) a sequence of elements in the chain
sq. < xo,x1,..,Tn > Where x is any component contributing to the
CoT; (2) an initial trust function it f for the RoT (z¢) : itf(xo) €
{trusted, assumedtrusted}; and (3) a set of trust functions stf to
extend trust over the next element in the CoT [1]:

Vi € [1.n],Vf € stf, f(zi—1,z;) == true)

3. INTEL SGX

Intel’s Software Guard Extensions (SGX) is an extension to Intel
architecture for generating protected software containers, referred to as
enclaves. Inside an enclave, software code, data, and stack are protected
by hardware-enforced access control policies that prevent attacks against
the enclave content.

3.1 SGX Principles

cPU System Memory
Enclave
Memary ®
Encryption Access from
Engine QS/VM
® Encrypted

Code/Data

Snooping

Figure 3: SGX isolated execution

SGX allows part of an application code to run isolated inside an enclave
(see Figure @) The enclave region of the main memory is encrypted.
The content is only decrypted inside the CPU using processor-specific
keys. The TCB (Trusted Computing Base) is restricted to the CPU
and the application running inside the enclave. Even an adversary
with extensive control over the hardware cannot access or modify the
enclave. The enclave is protected from other software running in the
host, including the OS and the hypervisorﬂ

In the SGX model, sensitive data is protected within applications.
Thanks to this technology, an application may defend its own secrets
with a high level of security: even a malware subverting the OS, the
VMM, the BIOS, or device drivers cannot steal application secrets.

3.2 SGX Attestation Capabilities

SGX features allows building a CoT based on three elements:

e A RoT for storage materialized by the sealing keys for the enclave
software to encrypt and integrity-protect data.

e A RoOT for measurement captured by two measurement regis-
ters, MRENCLAVE and MRSIGNER. MRENCLAVE returns an
identity for the enclave code and datﬂ MRSIGNER returns
an identity of an authority over the enclave. These values are
recorded when the enclave is built, and are finalized before
enclave execution begins. Only the TCB has write access to
these registers to reflect accurately the identities available when
attesting and sealing.

o A RoT for reporting, equivalent to the report mechanism provided
by EREPORT and EGETKEY instructions: an evidence structure
called REPORT is returned, cryptographically bound to the hard-
ware for consumption by attestation veriﬁenﬁ

With Intel SGX, a trustor can gain confidence that the correct software
is securely running within an enclave on the trustee. For this, the
SGX architecture produces an attestation assertion that conveys: the
identities of the software environment being attested, details of any
non-measurable state (e.g. the mode the software environment may be
running in), data which the software environment wishes to associated
with itself and a cryptographic binding to the platform TCB making the
assertion.

To build a CoT, enclaves will need to authenticate one another. The
EREPORT instruction provided by the SGX architecture will be useful
for this purpose. When invoked by an enclave, EREPORT creates a
signed structure, known as a REPORT. The REPORT structure contains
the identities of the two enclaves, the attributes associated with the
source enclave, the trustworthiness of its hardware TCB, additional
information to pass on to the target enclave (e.g., USERDATA), and a
message authentication code (MAC) tag.

'SGX does not address attacks where an enclave-isolated application
legitimately communicates with a corrupt process outside the enclave
sending purposely formatted data to crash the application.

“This identity is a digest of information related to the enclave (e.g., code,
data, memory mapping, security flags).

3The REPORT binds the verifier enclave identity with a symmetric key
called Report Key, that is only shared between the verifier enclave and
the SGX implementation.

3.3 OpenSGX: An Open Platform for SGX

OpenSGX [6] is a fully functional, instruction-compatible Intel SGX
emulator to explore the software/hardware design space. It is also a
platform to develop enclave programs, providing additional OS com-
ponents, such as an enclave program loader/packager, and debug and
performance monitoring tools.

Enclave Program

Application Program

Measurement
Reports
| Encryption keys‘
SGX Lib
SGX System

Enclave Call

Mode
Switch [SGX OS Emulation

SGX
QEMU SGX Instruction

Figure 4: OpenSGX design overview

A packaged program (Wrapper) runs together with the Enclave Program
together as a single process in the same virtual address space. Figure[]
shows the memory state of an active Enclave Program (grayed boxes are
isolated enclave pages). As Intel SGX uses privileged instructions to
initialize and set up enclaves, OpenSGX introduces a set of system calls
to service requests from the Wrapper program.

4. COT ATTESTATION PROTOCOLS

Building a CoT implies a series of mutual attestations between neigh-
boring elements of the chain to build persistent links of confidence.
Depending whether elements of the chain belong to enclaves within
the same SGX platform or to remote platforms, two attestation sub-
protocols have been specified: intra-platform attestation and remote
attestation respectively — a complete CoT establishment being a com-
position of the two protocols.

4.1 Intra-Platform Attestation Protocol

This protocol establishes trust between two enclaves (A and B) on the
same Intel SGX platform. Each enclave authenticates the other. The
protocol confirms they both run on the same platform according to the
SGX security model. The protocol steps are the following, where A is
the Trustee and B is the Trustor (see Figure [3):

Enclave B Enclave A

:Trustor(Challenger) Trustee(Target)

I
|
|
Start Server :
|
|

Send MRENCLAVE

EREPORT on
MRENCLAVE=>Report

Send Report

EGETKEY=>Report key
: Report key =>Recompute MAC
Extract MAC from report

Check? (recomputed MAC =
received MAC)

I Send result

Figure 5: Intra-platform attestation

1. Enclave A obtains the identity of enclave B (MRENCLAVE
value).

2. Enclave A invokes the EREPORT instruction to create a signed
REPORT sent to enclave B (using the previous MRENCLAVE
value) over the untrusted communication channel.

3. When it receives this REPORT, Enclave B calls the EGETKEY to
retrieve its Report Key, re-computes the MAC over the REPORT
structure, and compares the result with the MAC attached to the
REPORT. A match in MAC values means that enclave A runs on
the same platform as enclave B.

4. Mutual authentication is achieved by Enclave B creating a RE-
PORT for enclave A, using the MRENCLAVE value from the
REPORT it just received.

5. This REPORT is sent to enclave A that can then verify it in
a similar manner to confirm that enclave B runs on the same
platform as enclave A.

4.2 Remote Attestation Protocol

In case of remote platforms, SGX enables a special enclave called the
Quoting Enclave to be remotely created. This enclave verifies REPORTs
from other enclaves on the remote platform using the intra-platform
attestation protocol described above. It then replaces the MAC in those
REPORTSs with a new MAC computed with the private key of the verifier
enclave using a dedicated asymmetric cryptographic scheme. The output
of this process is called a QUOTE.

The protocol steps are the following (see Figure [6):

Remote Application

:Quoting Enclave

| :Trustor(Challenger)

| Trustee(Target) |

I
|
|
Start Server |
|
|
1

Send Challenge
Generate
Ephemeral key

Generate
manifest

|

|

|

|

|

} Send generated key |
|

|

|

|

manifest=>Report |
|

Send report
EGETKEY=>Report key

Report key =>Recompute MAC

Extract MAC from report

Check? (recomputed MAC =
received MAC)

Make and sigh QUOTE

1
|
|
|
|
|
|
|
|
|
|
|
|
| EREPORT on
|
|
|
|
|
|
|
|
|
|
|
! Send QUOTE

Send QUOTE
Verify
QUOTE

Figure 6: Remote attestation

1. Initially, the Trustor enclave establishes communication with the
remote target (Trustee) ﬂ

2. The Trustor issues a challenge to the target to obtain proof the
Trustee can join the CoT. The challenge contains a nonce for
liveness purposes. It also contains the Quoting Enclave identity.

3. The target enclave generates an ephemeral public key for the
Trustor to use in further communications with the target, and
sends the key to the Quoting Enclave.

4. The target enclave generates a manifest that includes a response to
the challenge issued in Step 2. A hash of this manifest is included
as USERDATA for the EREPORT instruction that will generate a
REPORT binding the manifest to the enclaveﬂ

“The trustor start a TCP/IP socket server and the Trustee connects to it.
In our protocol, we rely to an asymmetric signing scheme provided by
Intel SGX for trust establishment and for further communication we use
a dedicated key (the ephemeral key) created on the fly for this purpose.
Attacking the channel could always be possible in principle.

By Step 1, the Trustee knows the Trustor is in a remote platform:
the REPORT must then be transmitted to the Quoting Enclave for
verification and QUOTE construction. This is possible as the Quoting
Enclave identity is contained in the challenge generated in Step 2.

Interface for creating keys, signing reports, and checking report integrity:
cot_getkey
cot_getreport
cot_check

Interface for managing communication channels:
cot_make_server
cot_connect_server
cot_read_sock/cot_write_sock
cot_make_quote

report with the newly created RSA key.

Interface for attestation:
cot_intra_attest_challenger
a target enclave in the same SGX platform.
cot_intra_attest_target
cot_remote_attest_challenger

Invoked by an enclave. Allows to create a cryptographic key needed for signing a report.
Takes a generated SGX key. Create, then sign a report.
Takes a Report Key. Computes a MAC and compare it with MAC in received report.

Start a server socket, wait for connection, and return a descriptor.

Wrap the connection procedure of a target element to connect with an already started server.

Customized read/write socket procedures to be used by enclaves programs during attestation.

Perform secure hash of the report, generate RSA key for future communications between remotely attested elements, sign the

Called by a challenger enclave. Perform the previously described intra-platform attestation protocol to get an attestation from

Called by the target enclave. Perform steps expected by the target role to respond to an attestation request.
Called by the challenger enclave. Start attestation with a remote target enclave specified by an IP address. Perform steps

described in the challenger side of the remote attestation protocol.

cot_remote_attest_target

Called by the target enclave. Response to an attestation requested by a remote challenger enclave specified by an IP address.

Perform steps described in the target side of the remote attestation protocol.

cot_remote_attest_quote

Called by the quoting enclave co-located with the target enclave. Compute secure hash of received report from target enclave,
generate RSA key to send them back to the target.

Table 1: Framework interfaces

5. The target enclave then sends the REPORT to the Quoting Enclave
for verification and signing.

6. Playing the role of challenger for the target enclave, the Quoting
Enclave retrieves its Report Key using the EGETKEY instruc-
tion and verifies the REPORT. The Quoting Enclave creates the
QUOTE structure, signs it, and returns it to the target enclave.

7. The target enclave forwards the QUOTE structure and any associ-
ated manifest of supporting data to the Trustor enclave.

8. The Trustor uses verifies that the QUOTE was generated by an au-
thentic SGX Quoting Enclave using the asymmetric cryptographic
scheme already mentioned. After checking manifest integrity, the
Trustor checks the validity of the response the initial challenge.

140

135

Million CPU Cycles

130

125

2 3 4 5 6 7 8 9 10

CoT size

Figure 7: CoT establishment overhead

5. IMPLEMENTATION

The OpenSGX project provides mainly customized libc, lightweight
cryptographic libraries and basic wrapper functions for SGX instruc-
tions. Our implementation is based on those libraries. It provides a user
API to build, verify and study CoTs.

For attestation, SGX allows creating cryptographic keys (EGETKEY)
and cryptographic reports (EREPORT) to check the integrity of an
enclave during exchanges with other enclaves. We thus specify an
interface to create keys, get reports from SGX, and check integrity of
reports by comparing the computed report with a received one (see
Table [I). An additional interface manages communication channels
between elements of a CoT such as network connections between
enclaves, and reading/writing to/from enclaves. Finally, a user API
is defined based on previously established APIs to perform the main
attestation protocol operations. Several procedures are distinguished
depending on the type of SGX platform (local or remote) and on the
attestation role (challenger or target).

6. EVALUATION

OpenSGX includes performance monitoring features. As it is software-
emulated, it cannot provide accurate performance figures. Yet, it may
give an idea of potential performance issues. To evaluate the scalability
of our protocols, we studied the impact of the number of elements
during the establishment of a CoT. We measured the number of CPU
cycles consumed by enclaves programs throughout the chain. To capture
the effect of the CoT size on computation overhead, we ran the CoT
establishment protocol with varying chain sizes (2-10). Results are
shown in Figure

We can distinguish a start-up offset (~ 120 Mcycles) uncorrelated with
the CoT size due to some common OpenSGX-related initialization steps.
The CoT establishment computation overhead appears as sublinear in
terms of CoT size. Those results would tend to show that the proposed
protocols could be scalable to larger CoT sizes. This trend could be
explained by concurrent execution of attestation between neighboring
enclaves, effective remaining costs being due to propagating synchro-
nization throughout the CoT.

7. CONCLUSION

Intel SGX is a serious candidate for isolated software execution, trust
delegation and trust management in general. Preliminary scalability
results suggest that a hardware RoT could be a cloud-friendly ap-
proach. While further enhancements of such techniques need to be
followed closely, their wider adoption remains dependent on the will
of chipmakers to provide necessary support in terms of APIs. The
proposed CoT-building protocols are a first step towards distributed trust
management for a plurality of enclaves. Future work includes: (1)
extending our framework to manage CoT vertically across infrastructure
layers; and (2) integration with a security self-management framework
for distributed clouds.

REFERENCES

[1] I. Abbadi. Clouds Trust Anchors. In TrustCom’12.

[2] F. McKeen et al. Innovative Instructions and Software Model for Isolated
Execution. In HASP, 2013.

[3] F. Zhang et al. CloudVisor: Retrofitting Protection of Virtual Machines in
Multi-tenant Cloud with Nested Virtualization. In SOSP’11.

[4] 1. Khan et al. A Protocol for Preventing Insider Attacks in Untrusted
Infrastructure-as-a-Service Clouds. IEEE Transactions on Cloud Comput-
ing, PP(99):1-1, 2016.

[5] J. McCune et al. Flicker: An Execution Infrastructure for TCB
Minimization. In Eurosys’08.

[6] P.Jain et al. OpenSGX: An Open Platform for SGX Research. In NDSS’16.

[7] S.Bergeretal. TVDc: Managing Security in the Trusted Virtual Datacenter.
SIGOPS Oper. Syst. Rev., 42(1):40—47, 2008.

[8] S. Butt et al. Self-Service Cloud Computing. In CCS’12.

[9] T. Garfinkel et al. Terra: A Virtual Machine-Based Platform for Trusted
Computing. SIGOPS Oper. Syst. Rev., 37(5):193-206, 2003.

[10] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can Homomorphic
Encryption Be Practical? In CCSW’11.

	Introduction
	Chains of Trust in a Multi-Cloud
	Multi-Cloud Infrastructure Model
	Chains of Trust
	A Simple Model for Horizontal CoTs

	Intel SGX
	SGX Principles
	SGX Attestation Capabilities
	OpenSGX: An Open Platform for SGX

	CoT Attestation Protocols
	Intra-Platform Attestation Protocol
	Remote Attestation Protocol

	Implementation
	Evaluation
	Conclusion

