Report Open Access
Rannou, Emilie;
Benichoux, Alexis;
Forgeas, Rémi;
Gaillard, Simon;
Mary, Jérémie;
Trinh, Minh;
TURINICI, Gabriel;
Waxin, Emilie
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">artificial intelligence</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">deep learning</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">generative adversarial networks</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">GAN</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">variational auto-encoders</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">VAE</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">fake news</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">algorithms</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">neural networks</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">deep fakes</subfield> </datafield> <controlfield tag="005">20220118014853.0</controlfield> <controlfield tag="001">5865875</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Yubo</subfield> <subfield code="a">Benichoux, Alexis</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">France Business Services Center</subfield> <subfield code="a">Forgeas, Rémi</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">New York</subfield> <subfield code="a">Gaillard, Simon</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Université de Lille</subfield> <subfield code="a">Mary, Jérémie</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">New York</subfield> <subfield code="a">Trinh, Minh</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Universite Paris Dauphine - PSL</subfield> <subfield code="0">(orcid)0000-0003-2713-006X</subfield> <subfield code="a">TURINICI, Gabriel</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">WE Avocats</subfield> <subfield code="a">Waxin, Emilie</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">5064873</subfield> <subfield code="z">md5:2c0e6d8da95ed6bab6db63c85be17f32</subfield> <subfield code="u">https://zenodo.org/record/5865875/files/Deep_Fake_report_en_v3.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-10-01</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-ai_ml</subfield> <subfield code="o">oai:zenodo.org:5865875</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Ekimetrics</subfield> <subfield code="a">Rannou, Emilie</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Deepfakes & Algorithms: Threat or Opportunity?</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-ai_ml</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Nowadays, deepfakes appear to be a manipulation tool whose impact on society is still poorly understood. Their existence and use raise many legal and ethical questions. Despite the laws and governance rules that may be implemented in response, the inability to detect a deepfake remains a fundamental concern. As technology continues evolving, it becomes more and more complicated to identify a fake. Developing a European knowledge on tools for detecting fakes and authenticating originals appears urgent. To answer this challenge, the latest Praxis report, Deepfakes &amp; Algorithms, makes twelve recommendations around four major strategic pillars:<br> - Making Europe a leader in the fight against deepfakes<br> - Strengthening the responsibility of platforms at the European level<br> - Building a regulatory environment adapted to an efficient fight against deepfakes<br> - Protecting citizens from the impact of deepfakes</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.5865874</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.5865875</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">report</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 372 | 372 |
Downloads | 112 | 112 |
Data volume | 567.3 MB | 567.3 MB |
Unique views | 353 | 353 |
Unique downloads | 102 | 102 |