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Abstract:
Background:
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Methods:
The usual mathematical rules were used. Examples are presented to illustrate the methods developed
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Results:
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It is possible to detect necessary condition relationships (within a dataset).
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1. Introduction

Nature or objective reality as such is sometimes determined by changes, by processes or by events
et cetera which occur independently and outside of human mind and consciousness too. In this
context, there are events (i. e. At) at a certain Bernoulli trial (or period or point in space-time) t
which must be present, which must be given in order for another event (i. e. Bt) to occur at the
same Bernoulli trial (or period or point in space-time) t. To put it in exaggerated terms, there are
objective and real necessary conditions which exist independently and outside any human mind and
consciousness. In simple terms, necessary conditions have traditionally been discussed especially by
philosopher’s. Bluntly said, let us now consider a simple example. At most, it is appropriate to make
it clear again that sufficient amounts of gaseous oxygen or air as such at these days is a necessary
condition for humans being alive. In other words, human beings require air to live or having air to
breathe is a necessary condition for survival. Broadly speaking, without air (i. e. gaseous oxygen)
no human life. The relationship between air and human survival is independent of human mind and
consciousness, it is independent of the fact whether a single human being knows something about this
relationship et cetera. Thus far, in order for human beings to stay alive, it is necessary that there is
enough gaseous oxygen or air given. In this context it doesn’t matter whether a single human being is
healthy or sick, young or old, tiny or small, rich or poor et cetera. Every single human being require
sufficient amounts of air to survive. However, even if air or gaseous oxygen given at certain amounts
is a necessary condition for human life, air is by no means a sufficient condition, i.e. it does not,
by itself, i.e. alone, suffice for human life. Theoretically, relating such a basic natural processes with
mathematical reasoning is more than meaningful, it is necessary under different aspects. It is imperative
to consider that the use of mathematics does not produce the relationship of a necessary condition, such
a relationship is already given in nature. Still, how can we express mathematically the relationship of a
necessary condition? In order to obtain a logically consistent and more adequate mathematical picture
of a necessary condition, it is appropriate to consider several points of view. The (scientific) concept
of a necessary condition appears to be as old as human mankind itself. Historically, Aristotle himself
was one of the first forerunners of a theoretical concept of a necessary condition. Anicius Manlius
Torquatus Severinus Boetius (ca. 477–524 AD), a Roman senator and philosopher of the early 6th
century, elaborated among other authors, in his book De consolatione philosophiae on the necessary
condition too. What, then, from the standpoint of classical logic, mathematics and probability theory
or bio-statistics, is a necessary condition?
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2. Material and methods

Scientific knowledge and objective reality are deeply interrelated. Seen by light, grey is never merely
simply grey, and many paths may lead to climb up a certain mountain. In the following of this paper, we
will reanalyse the relationship between oxygen and human survival in many ways and under different
circumstances to reach the main goal.

2.1. Methods

Definitions should help us to provide and assure a systematic approach to a mathematical formulation
of the relationship of a necessary condition. It also goes without the need of further saying that a
definition must be logically consistent and correct.

2.1.1. Random variables

Let a random variable(Gosset, 1914) X denote something like a function defined on a probability
space, which itself maps from the sample space(Neyman and Pearson, 1933) to the real numbers.

2.1.2. Expectation of a Random Variable

Definition 2.1 (The First Moment Expectation of a Random Variable). Summaries of an entire dis-
tribution of a random variable(see Kolmogorov, 1950, p. 22 ) X, such as the expected value, or average
value, are useful in order to identify where X is expected to be without describing the entire distribu-
tion. For practical and other reasons, we shall limit ourselves here to discrete random variables, while
the basic properties of the expectation value of a random variable X will not be investigated. Thus far,
let X be a discrete random variable with the probability p(X). The first moment expectation value (see
Huygens and van Schooten, 1657, Kolmogorov, 1950, LaPlace, 1812, Whitworth, 1901) of X, denoted
by E(X), is a number defined as follows:

E (X)≡ p(X)×X (1)

The first moment expectation value squared of a random variable X follows as

E (X)2 ≡ p(X)×X× p(X)×X

≡ p(X)× p(X)×X×X

≡ (p(X)×X)2

(2)

Definition 2.2 (The Second Moment Expectation of a Random Variable). The second(see Kol-
mogorov, 1950, p. 42 ) moment expectation value (or more or less arithmetic mean) of a (large)
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number of independent realizations of a random variable X follows as:

E
(
X2)≡ p(X)×X2

≡ (p(X)×X)×X

≡ E (X)×X

≡ X×E (X)

(3)

Definition 2.3 (The n-th Moment Expectation of a Random Variable). The n-th(see Barukčić,
2020a, 2021c) moment expectation value of a (large) number of independent realizations of a random
variable X follows as:

E (Xn)≡ p(X)×Xn

≡ (p(X)×X)×Xn-1

≡ E (X)×Xn-1

(4)

2.1.3. Probability of a Random Variable

The probability p(X) of a random variable X follows as (see equation 1)

p(X)≡ E (X)

X

≡ E (X)×E (X)

E (X)×X
≡ E (X)2

E (X2)

(5)

2.1.4. Variance of a Random Variable

Definition 2.4 (The Variance of a Random Variable). Johann Carl Friedrich Gauß (1777-1855) in-
troduced the normal distribution and the error of mean squared in his 1809 monograph(see Gauß,
Carl Friedrich, 1809). In the following, Karl Pearson (1857-1936) coined the term “standard de-
viation”in 1893. Pearson is writing: “Then σ will be termed its standard-deviation (error of mean
square).”(see Pearson, 1894, p. 80). Finally, the term variance was introduced by Sir Ronald Aylmer
Fisher (1890-1962) in the year 1918.

“The ... deviations of a ... measurement from its mean ... may be ... measured by the standard
deviation corresponding to the square root of the mean square error ... It is ... desirable in
analysing the causes ... to deal with the square of the standard deviation as the measure of

variability. We shall term this quantity the Variance... ”

(see Fisher, Ronald Aylmer, 1919, p. 399)

The deviation of a random variable X from its population mean or sample mean E(X) has a central
role in statistics and is one important measure of dispersion. The variance (see Kolmogorov, 1950, p.
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42 ), the second central moment of a distribution, is the expectation value of the squared deviation of
a random variable X from its own expectation value E(X) and follows as (see equation 3):

σ (X)2 ≡ E
(
X2)−E (X)2

≡ (X×E (X))−E (X)2 (6)

Based on equation 6, it is
E
(

X2
)
≡ E (X)2 +σ (X)2 (7)
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2.1.5. Bernoulli distribution

A single event distribution is more or less a discrete probability distribution of any random variable X
which takes a certain (observer independent) single value Xt at a Bernoulli trial(Uspensky, 1937, p.
45) (period of time) t with the probability p(Xt). The same random variable X takes a certain single
anti value Xt at a Bernoulli trial (period of time) t with the probability 1-p(Xt). There are conditions in
nature where a random variable X can take only the values either +0 or +1. Under these conditions, the
random variable X takes the value 1 with probability p(Xt = +1) and the value 0 with probability q(X t =
+0) = 1− p(X t =+1) while the single event distribution passes over into the Bernoulli distribution,
named after Swiss mathematician Jacob Bernoulli(Bernoulli, 1713). Less formally, many times, the
Bernoulli distribution is represented by a (possibly not biased) coin toss where 1 and 0 would represent
‘heads’and ‘tails’(or vice versa), respectively. However, the relationship between random variables
(Gosset, 1914) can be investigated by many (Gosset, 1908) methods, including the tools of probability
theory, too.

Definition 2.5 (Two by two table of single event random variables).

The two by two or contingency table which has been introduced by Karl Pearson(Pearson, 1904b) in
1904 harbours still a large variety of topics and debates. Central to this is the problem to apply the laws
of classical logic on data sets, which concerns the justification of inferences which extrapolate from
sample data to general facts. Nevertheless, a contingency table is still an appropriate theoretical model
too for studying the relationships between random variables, including Bernoulli(Bernoulli, 1713) (i.e.
+0/+1) distributed random variables existing or occurring at the same Bernoulli trial (Uspensky, 1937)
(period of time) t.

In this context, let a random variable A at the Bernoulli trial (Uspensky, 1937) (period of time) t,
denoted by At, indicate a risk factor, a condition, a cause et cetera and occur or exist with the probability
p(At) at the Bernoulli trial (Uspensky, 1937) (period of time) t. Let E(At) denote the expectation value
of At. In general it is

p(At)≡ p(at)+ p(bt) (8)

The expectation value E(At) follows as

E (At)≡ At× p(At)

≡ At× (p(at)+ p(bt))

≡ (At× p(at))+(At× p(bt))

≡ E (at)+E (bt)

(9)

Under conditions of +0/+1 distributed Bernoulli random variables it is

E (At)≡ At× p(At)

≡ (+0+1)× p(At)

≡ p(At)

≡ p(at)+ p(bt)

(10)

Furthermore, it is
p(At)≡ p(ct)+ p(dt)≡ (1− p(At)) (11)
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The expectation value E(At) is given as

E (At)≡ At× (1− p(At))

≡ At× (p(ct)+ p(dt))

≡ (At× p(ct))+(At× p(dt))

≡ E (ct)+E (dt)

(12)

Under conditions of +0/+1 distributed Bernoulli random variables we obtain

E (At)≡ At× (1− p(At))

≡ (+0+1)× (1− p(At))

≡ (1− p(At))

≡ p(ct)+ p(dt)

(13)

Let a random variable B at the Bernoulli trial (Uspensky, 1937) (period of time) t, denoted by Bt,
indicate an outcome, a conditioned, an effect et cetera and occur or exist with the probability p(Bt) at
the Bernoulli trial (Uspensky, 1937) (period of time) t. Let E(Bt) denote the expectation value of Bt.
In general it is

p(Bt)≡ p(at)+ p(ct) (14)

The expectation value E(Bt) is given by the equation

E (Bt)≡ Bt× p(Bt)

≡ Bt× (p(at)+ p(ct))

≡ (Bt× p(at))+(Bt× p(ct))

≡ E (at)+E (ct)

(15)

Under conditions of +0/+1 distributed Bernoulli random variables it is

E (Bt)≡ Bt× p(Bt)

≡ (+0+1)× p(Bt)

≡ p(Bt)

≡ p(at)+ p(ct)

(16)

Furthermore, it is
p(Bt)≡ p(bt)+ p(dt)≡ (1− p(Bt)) (17)

The expectation value E(Bt) is given by the equation

E (Bt)≡ Bt× (1− p(Bt))

≡ Bt× (p(bt)+ p(dt))

≡ (Bt× p(bt))+(Bt× p(dt))

≡ E (bt)+E (dt)

(18)
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Under conditions of +0/+1 distributed Bernoulli random variables it is

E (Bt)≡ Bt× (1− p(Bt))

≡ (+0+1)× (1− p(Bt))

≡ (1− p(Bt))

≡ p(bt)+ p(dt)

(19)

Let p(at)= p(At ∧ Bt) denote the joint probability distribution of At and Bt at the same Bernoulli trial
(period of time) t. In general, it is

E (at)≡ E (At∧Bt)

≡ (At×Bt)× p(At∧Bt)

≡ (At×Bt)× p(at)

(20)

Under conditions of +0/+1 distributed Bernoulli random variables, it is

E (at)≡ E (At∧Bt)

≡ (At×Bt)× p(At∧Bt)

≡ ((+0+1)× (+0+1))× p(At∧Bt)

≡ p(At∧Bt)

≡ p(at)

(21)

Let p(bt)= p(At ∧ ¬Bt) denote the joint probability distribution of At and not Bt at the same Bernoulli
trial (period of time) t. In general, it is

E (bt)≡ E (At∧¬Bt)

≡ (At×¬Bt)× p(At∧¬Bt)

≡ (At×¬Bt)× p(bt)

(22)

Under conditions of +0/+1 distributed Bernoulli random variables, it is

E (bt)≡ E (At∧¬Bt)

≡ (At×¬Bt)× p(At∧¬Bt)

≡ ((+0+1)× (+0+1))× p(At∧¬Bt)

≡ p(At∧¬Bt)

≡ p(bt)

(23)

Let p(ct)= p(¬ At ∧ Bt) denote the joint probability distribution of not At and Bt at the same Bernoulli
trial (period of time) t. In general, it is

E (ct)≡ E (¬At∧Bt)

≡ (¬At∧Bt)× p(¬At∧Bt)

≡ (¬At∧Bt)× p(ct)

(24)
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Under conditions of +0/+1 distributed Bernoulli random variables, it is

E (ct)≡ E (¬At∧Bt)

≡ (¬At×Bt)× p(¬At∧Bt)

≡ ((+0+1)× (+0+1))× p(¬At∧Bt)

≡ p(¬At∧Bt)

≡ p(ct)

(25)

Let p(dt)= p(¬At ∧ ¬Bt) denote the joint probability distribution of not At and not Bt at the same
Bernoulli trial (period of time) t. In general, it is

E (dt)≡ E (¬At×¬Bt)

≡ (¬At×¬Bt)× p(¬At∧¬Bt)

≡ (¬At×¬Bt)× p(dt)

(26)

Under conditions of +0/+1 distributed Bernoulli random variables, it is

E (dt)≡ E (¬At∧¬Bt)

≡ (¬At×¬Bt)× p(¬At∧¬Bt)

≡ ((+0+1)× (+0+1))× p(¬At∧¬Bt)

≡ p(¬At∧¬Bt)

≡ p(dt)

(27)

In general, it is
p(at)+ p(bt)+ p(ct)+ p(dt)≡+1 (28)

Table 1 provide us with an overview of the definitions above.

Table 1. The two by two table of Bernoulli random variables

Conditioned Bt
TRUE FALSE

Condition TRUE p(at) p(bt) p(At)
At FALSE p(ct) p(dt) p(At)

p(Bt) p(Bt) +1
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2.1.6. Binomial random variables

The binomial distribution with parameters n and p has been developed by the Swiss mathematician
Jakob Bernoulli (1655-1705) in a proof published in his 1713 book Ars Conjectandi (see Bernoulli,
1713) Part 1. In probability theory and statistics, the probability of getting exactly k successes in n
independent Bernoulli trials is given by the probability mass function as

p(X t = k)≡
(

n
k

)
· pk ·qn−k (29)

is
(n

k

)
= n!

k!(n−k)! the binomial coefficient while the cumulative distribution function is given as

p(X t ≤ k)≡ 1− p(X t > k)≡
k

∑
t=0

(
n
t

)
· pt ·qn−t (30)

or as

p(X t > k)≡ 1− p(X t ≤ k)≡ 1−
k

∑
t=0

(
n
t

)
· pt ·qn−t (31)

Furthermore, it is

p(X t < k)≡ 1− p(X t ≥ k)≡
k−1

∑
t=0

(
n
t

)
· pt ·qn−t (32)

or

p(X t ≥ k)≡ 1− p(X t < k)≡ 1−
k−1

∑
t=0

(
n
t

)
· pt ·qn−t (33)

The binomial distribution is the mathematical foundation of a binomial test. The random variable Xt
is counting for different things. The discrete geometric (see Feller, 1950, p. 61) distribution describes
under certain circumstances the number of Bernoulli trials needed to get one success. The probability
that the first occurrence of success requires k independent trials, each with success probability p, is
given by the equation

p(X t = k)≡ p ·qk−1 (34)

The negative (see Fisher, 1941, Haldane, 1941) binomial probability is a discrete probability distribu-
tion which defines the number of successes (k) in a sequence of independent and identically distributed
Bernoulli trials (n) before a specified (non-random) number of failures (denoted r) occurs. The proba-
bility mass function of the negative binomial distribution is

p(X t = r)≡
(

k+ r−1
k−1

)
pk ·qr (35)

where k is the number of successes, r is the number of failures, and p is the probability of success.

Definition 2.6 (Expectation value and variance of a binomial random variable).
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The variance(see Pearson, 1904a, p. 66) of the binomial distribution with parameters n, the number
of independent experiments each asking a yes–no question and p, the probability of a single event, is
defined in contrast to Pearson (see Barukčić, Ilija, 2022) as

σ (X t)
2 ≡ N×N× p(X t)× (1− p(X t)) (36)

Definition 2.7 (Two by two table of Binomial random variables).

Let a, b, c, d, A, A, B, and B denote expectation values. Under conditions where the probability of an
event, an outcome, a success et cetera is constant from Bernoulli trial to Bernoulli trial t, it is

A = N×E (At)

≡ N× (At× p(At))

≡ N× (p(At)+ p(Bt))

≡ N× p(At)

(37)

and

B = N×E (Bt)

≡ N× (Bt× p(Bt))

≡ N× (p(At)+ p(ct))

≡ N× p(Bt)

(38)

where N might denote the population or even the sample size. Furthermore, it is

a≡ N× (E (At))≡ N× (p(At)) (39)

and
b≡ N× (E (Bt))≡ N× (p(Bt)) (40)

and
c≡ N× (E (ct))≡ N× (p(ct)) (41)

and
d ≡ N× (E (dt))≡ N× (p(dt)) (42)

and
a+b+ c+d ≡ A+A≡ B+B≡ N (43)

Table 2 provide us again an overview of a two by two table of Binomial random variables.
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Table 2. The two by two table of Binomial random variables

Conditioned Bt
TRUE FALSE

Condition TRUE a b A
At FALSE c d A

B B N

2.1.7. Independence

Definition 2.8 (Independence).

In general, an event At at the Bernoulli trial t need not but can be independent of the existence or
of the occurrence of another event Bt at the same Bernoulli trial t. Mathematically, independence
(Kolmogoroff, 1933, Moivre, 1718) in terms of probability theory is defined at the same (period of)
time t (i.e. Bernoulli trial t) as

p(At∧Bt)≡ p(At)× p(Bt)

≡

N
∑

t=1
(At∧Bt)

N
≡ N× (p(at))

N
≡ 1− p(At | Bt)≡ 1− p(At ↑ Bt)

(44)

2.1.8. Dependence

Definition 2.9 (Dependence).

The dependence of events (Barukčić, 1989, p. 57-61) is defined as

p

At∧Bt∧Ct∧ . . .︸                 ︷︷                 ︸
n

≡
n

√
p(At)× p(Bt)× p(Ct)× . . .︸                                 ︷︷                                 ︸

n

(45)
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2.1.9. Relative risk (RR)

Relative risk (RRnc)

Definition 2.10 (Relative risk (RRnc)).

The degree of association between the two binomial variables can be assessed by a number of very
different coefficients, the relative (Cornfield, 1951, Sadowsky et al., 1953) risk is one(Barukčić, 2021d)
of them. In general, relative risk RRnc, which provides some evidence of a necessary condition, is
defined as

RR(At,Bt)nc ≡

p(at)

p(At)

p(ct)

p(NotAt)

≡ p(at)× p(NotAt)

p(ct)× p(At)

≡ N× p(at)×N× p(NotAt)

N× p(ct)×N× p(At)

≡ at× (NotAt)

ct×At

≡ EER(At,Bt)

CER(At,Bt)

(46)

That what scientist generally understand by relative risk is the ratio of a probability of an event oc-
curring with an exposure versus the probability of an event occurring without an exposure. In other
words,

relative risk = (probability(event in exposed group)) / (probability(the same event in not exposed
group)).

A RR(At,Bt) = +1 means that exposure does not affect the outcome or both are independent of each
other while RR(At,Bt) less than +1 means that the risk of the outcome is decreased by the exposure.
In this context, an RR(At,Bt) greater than +1 denotes that the risk of the outcome is increased by
the exposure. Widely known problems with odds ratio and relative risk are already documented in
literature.

Relative risk (RR (sc))

Definition 2.11 (Relative risk (RR (sc))).

The relative risk (sc), which provides some evidence of a sufficient condition, is calculated from the
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point of view of an outcome and is defined as

RR(At,Bt)sc ≡

p(at)

p(Bt)

p(bt)

p(NotBt)

≡ p(at)× p(NotBt)

p(bt)× p(Bt)

≡ N× p(at)×N× p(NotBt)

N× p(bt)×N× p(Bt)

≡ at× (NotBt)

bt×Bt

≡ OPR(At,Bt)

CPR(At,Bt)

(47)

Relative risk reduction (RRR)

Definition 2.12 (Relative risk reduction (RRR)).

RRR(At,Bt)≡
CER(At,Bt)−EER(At,Bt)

CER(At,Bt)

= 1−RR(At,Bt)

(48)

Vaccine efficacy (VE)

Definition 2.13 (Vaccine efficacy (VE)).

Vaccine efficacy is defined as the percentage reduction of a disease in a vaccinated group of people as
compared to an unvaccinated group of people.

V E (At,Bt)≡ 100× (1−RR(At,Bt))

≡ 100×
(

CER(At,Bt)−EER(At,Bt)

CER(At,Bt)

)
(49)
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Historically, vaccine efficacy has been designed to evaluate the efficacy of a certain vaccine by Green-
wood and Yule in 1915 for the cholera and typhoid vaccines(Greenwood and Yule, 1915) and best
measured using double-blind, randomized, clinical controlled trials. However, the calculated vaccine
efficacy is depending too much on the study design, can lead to erroneous conclusions and is only of
very limited value.

Experimental event rate (EER)

Definition 2.14 (Experimental event rate (EER)).

EER(At,Bt)≡
p(at)

p(At)
=

at

at +bt
(50)

Definition 2.15 (Control event rate (CER)).

CER(At,Bt)≡
p(ct)

p(At)
=

ct

ct +dt
(51)

Absolute risk reduction (ARR)

Definition 2.16 (Absolute risk reducation (ARR)).

ARR(At,Bt)≡
p(ct)

p(At)
− p(at)

p(At)

=
ct

ct +dt
− at

at +bt

=CER(At,Bt)−EER(At,Bt)

(52)

Absolute risk increase (ARI)

Definition 2.17 (Absolute risk increase (ARI)).

ARI (At,Bt)≡
p(at)

p(At)
− p(ct)

p(At)

= EER(At,Bt)−CER(At,Bt)

(53)
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Number needed to treat (NNT)

Definition 2.18 (Number needed to treat (NNT)).

NNT (At,Bt)≡
1

CER(At,Bt)−EER(At,Bt)
(54)

An ideal number needed to treat(Cook and Sackett, 1995, Laupacis et al., 1988), mathematically the
reciprocal of the absolute risk reduction, is NNT = 1. Under these circumstances, everyone improves
with a treatment, while no one improves with control. A higher number needed to treat indicates more
or less a treatment which is less effective.

Number needed to harm (NNH)

Definition 2.19 (Number needed to harm (NNH)).

NNH (At,Bt)≡
1

EER(At,Bt)−CER(At,Bt)
(55)

The number needed to harm (Massel and Cruickshank, 2002), mathematically the inverse of the ab-
solute risk increase, indicates at the end how many patients need to be exposed to a certain factor, in
order to observe a harm in one patient that would not otherwise have been harmed.

Outcome prevalence rate (OPR)

Definition 2.20 (Outcome prevalence rate (OPR)).

OPR(At,Bt)≡
p(at)

p(Bt)
=

at

at + ct
(56)

Control prevalence rate (CPR)

Definition 2.21 (Control prevalence rate (CPR)).

CPR(At,Bt)≡
p(bt)

p(Bt)
=

bt

bt +dt
(57)

Bias and confounding is present to some degree in all research. In order to assess the relationship of
exposure with a disease or an outcome, a fictive control group (i.e. of newborn or of young children et
cetera) can be of use too. Under certain circumstances, even a CPR = 0 is imaginable.
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Absolute prevalence reduction (APR)

Definition 2.22 (Absolute prevalence reduction (APR)).

APR(At,Bt)≡CPR(At,Bt)−OPR(At,Bt) (58)

Absolute prevalence increase (API)

Definition 2.23 (Absolute prevalence increase (API)).

API (At,Bt)≡ OPR(At,Bt)−CPR(At,Bt) (59)

Relative prevalence reduction (RPR)

Definition 2.24 (Relative prevalence reduction (RPR)).

RPR(At,Bt)≡
CPR(At,Bt)−OPR(At,Bt)

CPR(At,Bt)

= 1−RR(At,Bt)sc

(60)

The index NNS

Definition 2.25 (The index NNS).

NNS (At,Bt)≡
1

CPR(At,Bt)−OPR(At,Bt)
(61)

Mathematically, the index NNS is the reciprocal of the absolute prevalence reduction.

The index NNI

Definition 2.26 (The index NNI).

NNI (At,Bt)≡
1

OPR(At,Bt)−CPR(At,Bt)
(62)

Mathematically, the index NNI is the reciprocal of the absolute prevalence increase.
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2.1.10. Odds ratio (OR)

Definition 2.27 (Odds ratio (OR)).

Odds ratios as an appropriate measure for estimating the relative risk have become widely used in
medical reports of case-control studies. The odds ratio(Fisher, 1935, p. 50) is defined(Cox, 1958) as
the ratio of the odds of an event occurring in one group with respect to the odds of its occurring in
another group. Odds(Yule and Pearson, 1900, p. 273) ratio (OR) is a measure of association which
quantifies the relationship between two binomial distributed random variables (exposure vs. outcome)
and is related to Yule’s (Yule and Pearson, 1900, p. 272) Q(Yule, 1912, p. 585/586). Two events At
and Bt are regarded as independent if (At,Bt) = 1. Let

at = number of persons exposed to At and with disease Bt

bt = number of persons exposed to At but without disease Bt

ct = number of persons unexposed At but with disease Bt

dt = number of persons unexposed At: and without disease Bt

at+ct = total number of persons with disease Bt (case-patients)

bt+dt = total number of persons without disease Bt (controls).

Hereafter, consider the table 3. The odds’ ratio (OR) is defined as

Table 3. The two by two table of random variables

Conditioned/Outcome Bt
TRUE FALSE

Condition/Exposure TRUE at bt At
At FALSE ct dt At

Bt Bt Nt

OR(At,Bt)≡
(

at

bt

)
/

(
ct

dt

)
≡
(

at×dt

bt× ct

) (63)

Remark 2.1. Odds ratios can support logical fallacies and cause difficulties in drawing logically
consistent conclusions. The chorus of voices is growing, which demand the immediate ending(Knol,
2012, Sackett et al., 1996) of any use of Odds ratio.

Under conditions where (b = 0), the measure of association odds ratio will collapse, because we need
to divide by zero, as can be seen at eq. 63. However, according to today’s rules of mathematics, a
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division by zero is neither allowed nor generally accepted as possible. It does no harm to remind
ourselves that in the case b = 0 the event At is a sufficient condition of Bt. In other words, odds ratio is
not able to recognize elementary relationships of objective reality. In fact, it would be a failure not to
recognize how dangerous and less valuable odds ratio is.

Under conditions where (c = 0) odds ratio collapses too, because we need again to divide by zero, as
can be seen at eq. 63. However, and again, today’s rules of mathematics don’t allow us a division by
zero. In point of fact, in the case c = 0 it is more than necessary to point out that At is a necessary
condition of Bt. In other words, odds ratio or the cross-product ratio is not able to recognize elementary
relationships of nature like necessary conditions. We can and need to overcome all the epistemological
obstacles as backed by odds ratio entirety. Sooner rather than later, we should give up this measure of
relationship completely.

2.1.11. Study design and bias

Systematic observation and experimentation, inductive and deductive reasoning are essential for any
formation and testing of hypotheses and theories about the natural world. In one way or another,
logically and mathematically sound scientific methods and concepts are crucial constituents of any
scientific progress. When all goes well, different scientists at different times and places using the same
scientific methodology should be able to generate the same scientific knowledge. However, more than
half (52%) of scientists surveyed believe that studies do not successfully reproduce sufficiently similar
or the same results as the original studies (Baker, 2016). In a very large study on publication bias
in meta-analyses, Kicinski et al. (Kicinski et al., 2015) found evidence of publication bias even in
systematic reviews. Therefore, a careful re-evaluation of the study/experimental design, the statistical
methods and other scientific means which underpin scientific inquiry and research goals appears to be
necessary once and again. While it is important to recognize the shortcoming of today’s science, one
issue which has shaped debates over studies published is the question: has a study really measured
what it set out to? Even if studies carried out can vary greatly in detail, the data from the studies itself
provide information about the credibility of the data.

Index of unfairness (IOU)

Definition 2.28 (Index of unfairness).

The index of unfairness (Barukčić, 2019b) (IOU) is defined as

p(IOU (A,B))≡ Absolute
((

A+B
N

)
−1

)
(64)

A very good study design should assure as much as possible a p(IOU) = 0. In point of fact, against
the background of lacking enough experience with the use of p(IOU), a p(IOU) up to 0.25 could be of
use too. An index of unfairness is of use to prove whether sample data are biased and whether sample
data can be used for Chi-square based analysis of necessary conditions, of sufficient conditions and of
causal relationships.
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Index of independence (IOI)

Definition 2.29 (Index of independence).

The index of independence(Barukčić, 2019a) (IOI) is defined as

p(IOI (At,Bt))≡ Absolute
((

At +Bt

N

)
−1

)
(65)

or as

p(IOI (At,Bt))≡ Absolute
((

At +Bt

N

)
−1

)
(66)

A very good study design which aims to prove an exclusion relationship or a causal relationship
should assure as much as possible a p(IOI) = 0. However, once again, against the background of
lacking enough experience with the use of p(IOI), sample data with a p(IOI) up to 0.25 are of use too.
Today, most double-blind placebo-controlled studies are based on the demand that p(IOU) = p(IOI)
while the value of p(IOU) of has been widely neglected. Such an approach leads to unnecessary big
sample sizes, the increase of cost, the waste of time and, most importantly of all, to epistemological
systematically biased sample data and conclusions drawn. A change is necessary.

Index of relationship (IOR)

Definition 2.30 (Index of relationship (IOR)).

Due to several reasons, it is not always easy to identify the unique characteristics between two events
like At and Bt. And more than that, it is difficult to decide what to do, and much more difficult to
know in which direction one should think and which decision is right. Sometimes it is helpful to know
at least something about the direction of the relationship between two events like At and Bt. Under
conditions where p(at) = p(At∧Bt), the index of relationship(Barukčić, 2021b), abbreviated as IOR,
is defined as

IOR(At,Bt)≡
(

p(At∧Bt)

p(Bt)× p(At)

)
−1

≡
(

p(at)

p(Bt)× p(At)

)
−1

≡
((

N×N× p(at)

N× p(Bt)×N× p(At)

)
−1

)
≡
((

N×a
A×B

)
−1

)
(67)

where p(At) denotes the probability of an event At at the Bernoulli trial t and p(Bt) denotes the proba-
bility of another event Bt at the same Bernoulli trial t while p(at) denotes the joint probability of p(At
AND Bt) at the same Bernoulli trial t and a, A and B may denote the expectation values.
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2.2. Conditions

2.2.1. Exclusion relationship

Definition 2.31 (Exclusion relationship [EXCL]).

Mathematically, the exclusion (EXCL) relationship, denoted by p(At | Bt) in terms of statistics and
probability theory, is defined(Barukčić, 1989, p. 68-70) as

p(At | Bt)≡ p(At ↑ Bt)

≡ p(bt)+ p(ct)+ p(dt)

≡ N× (p(bt)+ p(ct)+ p(dt))

N

≡

N
∑

t=1
(At∨Bt)

N
≡ b+ c+d

N

≡ b+A
N

≡ c+B
N

≡+1

(68)

Based on the 1913 Henry Maurice Sheffer (1882-1964) relationship, the Sheffer stroke(Nicod, 1917,
Sheffer, 1913) usually denoted by ↑, it is p(At∧Bt)≡ 1− p(At | Bt) (see table 4).

Table 4. At excludes Bt and vice versa.

Conditioned (COVID-19) Bt
TRUE FALSE

Condition (Vaccine) TRUE +0 p(bt) p(At)
At FALSE p(ct) p(dt) p(At)

p(Bt) p(Bt) +1

Example 2.1. Pfizer Inc. and BioNTech SE announced on Monday, November 09, 2020 - 06:45am
results from a Phase 3 COVID-19 vaccine trial with 43.538 participants which provides evidence that
their vaccine (BNT162b2) is preventing COVID-19 in participants without evidence of prior SARS-
CoV-2 infection. In toto, 170 confirmed cases of COVID-19 were evaluated, with 8 in the vaccine
group versus 162 in the placebo group. The exclusion relationship can be calculated as follows.

p(Vaccine : BNT 162b2 |COV ID−19(in f ection))≡ p(bt)+ p(ct)+ p(dt)

≡ 1− p(at)

≡ 1−
(

8
43538

)
≡+0,99981625

(69)

with a P Value = 0,000184.
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Following Kolmogorov’s definition of an n-dimensional probability density (see also Kolmogorov,
1950, p. 26) of random variables At, Bt et cetera at the point t, we obtain

p(At | Bt)≡ p(U t∪W t)

≡ 1− p(At∩Bt)

≡ 1−
At∫
−∞

Bt∫
−∞

f (At,Bt) dAt dBt

≡+1

(70)

while p(At | Bt) would denote the cumulative distribution function of random variables and f (At,Bt)

is the joint density function.

2.2.2. Observational study and exclusion relationship

Under conditions of an observational study, the exclusion relationship follows approximately(see
Barukčić, 2021a) as

p(At | Bt)≡ p(At ↑ Bt)≥ 1− p(at)

p(Bt)
(71)

2.2.3. Experimental study and exclusion relationship

Under conditions of an experimental study, the exclusion relationship follows approximately(see
Barukčić, 2021a) as

p(At | Bt)≡ p(At ↑ Bt)≥ 1− p(at)

p(At)
(72)

2.2.4. The goodness of fit test of an exclusion relationship

Definition 2.32 (The χ̃2 goodness of fit test of an exclusion relationship).

Under some well known circumstances, testing hypothesis about an exclusion relationship p(At | Bt)
is possible by the chi-square distribution (also chi-squared or χ̃2-distribution) too. The χ̃2 goodness of
fit test of an exclusion relationship with degree of freedom (d. f.) of d. f. = 1 is calculated as

χ̃
2

Calculated ((At | Bt) | A)≡
(b− (a+b))2

A
+

((c+d)−A)2

A

≡ a2

A
+0

≡ a2

A

(73)
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or equally as

χ̃
2

Calculated ((At | Bt) | B)≡
(c− (a+ c))2

B
+

((b+d)−B)2

B

≡ a2

B
+0

≡ a2

B

(74)

and can be compared with a theoretical chi-square value at a certain level of significance α . The χ̃2-
distribution equals zero when the observed values are equal to the expected/theoretical values of an
exclusion relationship/distribution p(At | Bt), in which case the null hypothesis has to be accepted.
Yate’s (Yates, 1934) continuity correction was not used under these circumstances.

2.2.5. The left-tailed p Value of an exclusion relationship

Definition 2.33 (The left-tailed p Value of an exclusion relationship).

It is known that as a sample size, N, increases, a sampling distribution of a special test statistic ap-
proaches the normal distribution (central limit theorem). Under these circumstances, the left-tailed (lt)
p Value (Barukčić, 2019c) of an exclusion relationship can be calculated as follows.

pValuelt (At | Bt)≡ 1− e−(1−p(At|Bt))

≡ 1− e−(a/N)
(75)

A low p-value may provide some evidence of statistical significance.

2.2.6. Neither nor conditions

Definition 2.34 (Neither At nor Bt conditions [NOR]).

Mathematically, a neither At nor Bt condition (or rejection according to the French philosopher and
logician Jean George Pierre Nicod (1893-1924), i.e. Jean Nicod’s statement (Nicod, 1924)) relationship
(NOR), denoted by p(At ↓ Bt) in terms of statistics and probability theory, is defined (Barukčić, 1989,
p. 68-70) as

p(At ↓ Bt)≡ p(dt)

≡
N−

N
∑

t=1
(At∨Bt)

N
≡

N
∑

t=1
(At∧Bt)

N
≡ N× (p(dt))

N

≡ d
N

≡+1

(76)
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2.2.7. The Chi square goodness of fit test of a neither nor condition relationship

Definition 2.35 (The χ̃2 goodness of fit test of a neither At nor Bt condition relationship).

A neither At nor Bt condition relationship p(At ↓ Bt) can be tested by the chi-square distribution (also
chi-squared or χ̃2-distribution). The χ̃2 goodness of fit test of a neither At nor Bt condition relationship
with degree of freedom (d. f.) of d. f. = 1 may be calculated as

χ̃
2

Calculated ((At ↓ Bt) | A)≡
(d− (c+d))2

A
+

((a+b)−A)2

A

≡ c2

A
+0

(77)

or equally as

χ̃
2

Calculated ((At ↓ Bt) | B)≡
(d− (b+d))2

B
+

((a+ c)−B)2

B

≡ b2

B
+0

(78)

Yate’s (Yates, 1934) continuity correction has not been used in this context.

2.2.8. The left-tailed p Value of a neither nor B condition relationship

Definition 2.36 (The left-tailed p Value of a neither At nor Bt condition relationship).

The left-tailed (lt) p Value (Barukčić, 2019c) of a neither At nor Bt condition relationship can be
calculated as follows.

pValuelt (At ↓ Bt)≡ 1− e−(1−p(At↓Bt))

≡ 1− e−p(At∨Bt)

≡ 1− e−((a+b+c)/N)

(79)

where ∨ may denote disjunction or logical inclusive or. In this context, a low p-value indicates again a
statistical significance. In general, it is p(At∨Bt)≡ 1− p(At ↓ Bt) (see table 5).
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Table 5. Neither At nor Bt relationship.

Conditioned Bt
YES NO

Condition At YES 0 0 0
NO 0 1 1

0 1 1

2.2.9. Necessary condition

Definition 2.37 (Necessary condition [Conditio sine qua non]).

Despite the most extended efforts, the current state of research on conditions and conditioned is still
incomplete and very contradictory. However, even thousands of years ago and independently of any
human mind and consciousness, water has been and is still a necessary condition for (human) life.
Without water, there has been and there is no (human) life. It comes therefore as no surprise that one
of the first documented attempts to present a rigorous theory of conditions and causation (see also
Aristotle et al., 1908, Metaphysica III 2 997a 10 and 13/14) came from the Greek philosopher and
scientist Aristotle (384-322 BCE). Thus far, it is amazing that Aristotle himself made already a strict
distinction between conditions and causes. Taking Aristotle very seriously, it is necessary to consider
that

“... everything which has a ... ... potency in question ... ... has the potency ... of acting ...

not in all circumstances but on certain conditions ... ”

(see also Aristotle et al., 1908, Metaphysica IX 5 1048a 14-19)

Before going into details, Aristotle went on to define the necessary condition as follows.
“... necessary ... means ...

without ... a condition, a thing cannot live ... ”

(see also Aristotle et al., 1908, Metaphysica V 2 1015a 20-22)

In point of fact, Aristotle developed a theory of conditions and causality commonly referred to as the
doctrine of four causes. Many aspects and general features of Aristotle’s logical concept of causality
are meanwhile extensively and critically debated in secondary literature. However, even if the Greek
philosophers Heraclitus, Plato, Aristotle et cetera numbers among the greatest philosophers of all time,
the philosophy has evolved. Scientific knowledge and objective reality are deeply interrelated and
cannot be reduced only to Greek philosophers like Aristotle. As mentioned at the start of the article,
the specification of necessary conditions has traditionally been part of the philosopher’s investigations
of different phenomena. Behind the need of a detailed evidence, it is justified to consider that phi-
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losophy or philosophers as such certainly do not possess a monopoly on the truth and other areas
such as medicine as well as other sciences and technology may transmit truths as well and may be of
help to move beyond one’s self enclosed unit. Seemingly, the law’s concept of causation justifies to
say few words on this subject, to put some light on some questions. Are there any criteria in law for
deciding whether one action or an event At has caused another (generally harmful) event Bt? What
are these criteria? May causation in legal contexts differ from causation outside the law, for example,
in science or in our everyday life and to what extent? Under which circumstances is it justified to
tolerate such differences as may be found to exist? To understand just what is the law’s concept of
causation, it is useful to know how the highest court of states is dealing with causation. In the case
Hayes v. Michigan Central R. Co., 111 U.S. 228, the U.S. Supreme Court defined 1884 conditio sine
qua non as follows: “... causa sine qua non – a cause which, if it had not existed, the injury would
not have taken place”. (Justice Matthews, 1884) The German Bundesgerichtshof für Strafsachen
stressed once again the importance of conditio sine qua non relationship in his decision by defining
the following: “Ursache eines strafrechtlich bedeutsamen Erfolges jede Bedingung, die nicht hin-
weggedacht werden kann, ohne daß der Erfolg entfiele”(Bundesgerichtshof für Strafsachen, 1951)
Another lawyer elaborated on the basic issue of identity and difference between cause and condi-
tion. Von Bar was writing: “Die erste Voraussetzung, welche erforderlich ist, damit eine Erscheinung
als die Ursache einer anderen bezeichnet werden könne, ist, daß jene eine der Bedingungen dieser
sein. Würde die zweite Erscheinung auch dann eingetreten sein, wenn die erste nicht vorhanden war,
so ist sie in keinem Falle Bedingung und noch weniger Ursache. Wo immer ein Kausalzusammenhang
behauptet wird, da muß er wenigstens diese Probe aushalten . . . Jede Ursache ist nothwendig auch
eine Bedingung eines Ereignisses; aber nicht jede Bedingung ist Ursache zu nennen.”(Bar, 1871)
Von Bar’s position translated into English: The first requirement, which is required, thus that something
could be called as the cause of another, is that the one has to be one of the conditions of the other. If
the second something had occurred even if the first one did not exist, so it is by no means a condition
and still less a cause. Wherever a causal relationship is claimed, the same must at least withstand this
test. . . Every cause is necessarily also a condition of an event too; but not every condition is cause
too. Thus far, let us consider among other the following in order to specify necessary conditions from
another, probabilistic point of view. An event (i.e. At) which is a necessary condition of another event
or outcome (i.e. Bt) must be given, must be present for a conditioned, for an event or for an outcome
Bt to occur. A necessary condition (i.e. At) is a requirement which must be fulfilled at every single
Bernoulli trial t, in order for a conditioned or an outcome (i.e. Bt) to occur, but it alone does not
determine the occurrence of an event. In other words, if a necessary condition (i.e. At) is given, an
outcome (i.e. Bt) need not occur. In contrast to a necessary condition, a ‘sufficient’condition is the
one condition which ‘guarantees’that an outcome will take place or must occur for sure. Under which
conditions we may infer about the unobserved and whether observations made are able at all to justify
predictions about potential observations which have not yet been made or even general claims which
my go even beyond the observed (the ‘problem of induction’) is not the issue of the discussion at this
point. Besides of the principal necessity of meeting such a challenge, a necessary condition of an event
can but need not be at the same Bernoulli trial t a sufficient condition for an event to occur. However,
theoretically, it is possible that an event or an outcome is determined by many necessary conditions.
Let us focus to some extent on what this means, or in other words how much importance can we at-
tribute to such a special case. Example. A human being cannot live without oxygen. A human being
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cannot live without water. A human being cannot live without a brain. A human being cannot live
without kidneys. A human being cannot live without ... et cetera. Thus far, even if oxygen is given, if
water is given, if a brain is given, without functioning kidney’s (or something similar) a human being
will not survive on the long run. This example is of use to reach the following conclusion. Although
it might seem somewhat paradoxical at first sight, even under circumstances where a condition or
an outcome depends on several different necessary conditions it is particularly important that
every single of these necessary conditions for itself must be given otherwise the conditioned (i.e.
the outcome) will not occur. Mathematically, the necessary condition (SINE) relationship, denoted
by p(At← Bt) in terms of statistics and probability theory, is defined (Barukčić, 1989, p. 15-28) as

p(At← Bt)≡ p(At∨Bt)≡

N
∑

t=1
(At∨Bt)

N
≡ (At∨Bt)× p(At∨Bt)

(At∨Bt)

≡ p(at)+ p(bt)+ p(dt)

≡ N× (p(at)+ p(bt)+ p(dt))

N
≡ E (At← Bt)

N

≡ a+b+d
N

≡ E (At∨Bt)

N

≡ A+d
N
≡ E (At← Bt)

N

≡ a+B
N
≡ E (At∨Bt)

N
≡+1

(80)

where E (At← Bt)≡ E (At∨Bt) indicates the expectation value of the necessary condition. In general,
it is p(At−< Bt)≡ 1− p(At← Bt) (see Table 6).

Table 6. Necessary condition.

Conditioned Bt
TRUE FALSE

Condition TRUE p(at) p(bt) p(At)
At FALSE +0 p(dt) p(At)

p(Bt) p(Bt) +1

Remark 2.2. A necessary condition At is characterized itself by the property that another event Bt
will not occur if At is not given, if At did not occur (Barukčić, 1989, 1997, 2005, 2016, 2017a,b,
2020a,b,c,d, Barukčić and Ufuoma, 2020). Example. Once again, a human being cannot live without
water. A human being cannot live without gaseous oxygen, et cetera. Water itself is a necessary
condition for human life. However, gaseous oxygen is a necessary condition for human life too. Thus
far, even if water is given and even if water is a necessary condition for human life, without gaseous
oxygen there will be no human life. In general, if a conditioned or an outcome Bt depends on the
necessary condition At and equally on numerous other necessary conditions, an event Bt will not occur
if At itself is not given independently of the occurrence of other necessary conditions.

PREPRINT Web of Science https://www.doi.org/10.5281/zenodo.5854744 Volume 17, Issue 1, 23–92

https://publons.com/researcher/AAI-9919-2020/
https://www.doi.org/10.5281/zenodo.5854744


50

Taking into account Kolmogorov’s definition of an n-dimensional probability density (see also Kol-
mogorov, 1950, p. 26) of random variables At, Bt et cetera at the (period of) time t, we obtain

p(At← Bt)≡+1
≡+1− p(ct)

≡+1− p(At∩Bt)

≡

 At∫
−∞

Bt∫
−∞

f (At,Bt) dAt dBt

+

1−
Bt∫
−∞

f (Bt) dBt


(81)

while p(At← Bt) would denote the cumulative distribution function of random variables of a necessary
condition. Another adequate formulation of a necessary condition is possible too.

2.2.10. The Chi-square goodness of fit test of a necessary condition relationship

Definition 2.38 (The χ̃2 goodness of fit test of a necessary condition relationship).

Under some well known circumstances, hypothesis about the conditio sine qua non relationship p(At
← Bt) can be tested by the chi-square distribution (also chi-squared or χ2-distribution), first described
by the German statistician Friedrich Robert Helmert (Helmert, 1876) and later rediscovered by Karl
Pearson (Pearson, 1900) in the context of a goodness of fit test. The χ̃2 goodness of fit test of a conditio
sine qua non relationship with degree of freedom (d. f.) of d. f. = 1 is calculated as

χ̃
2

Calculated (At← Bt | B)≡
(a− (a+ c))2

B
+

((b+d)−B)2

B

≡ c2

B
+0

≡ c2

B

(82)

or equally as

χ̃
2

Calculated (At← Bt | A)≡
(d− (c+d))2

A
+

((a+b)−A)2

A

≡ c2

A
+0

≡ c2

A

(83)
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and can be compared with a theoretical chi-square value at a certain level of significance α . It has not
yet been finally clarified whether the use of Yate’s (Yates, 1934) continuity correction is necessary at
all.

2.2.11. The left-tailed p Value of the conditio sine qua non relationship

Definition 2.39 (The left-tailed p Value of the conditio sine qua non relationship).

The left-tailed (lt) p Value (Barukčić, 2019c) of the conditio sine qua non relationship can be calculated
as follows.

pValuelt (At← Bt)≡ 1− e−(1−p(At←Bt))

≡ 1− e−(c/N)
(84)

2.2.12. Sufficient condition

Definition 2.40 (Sufficient condition [Conditio per quam]).

Mathematically, the sufficient condition (IMP) relationship, denoted by p(At→Bt) in terms of statistics
and probability theory, is defined(Barukčić, 1989, p. 68-70) as

p(At→ Bt)≡ p(At∨Bt)≡

N
∑

t=1
(At∨Bt)

N
≡ (At∨Bt)× p(At∨Bt)

(At∨Bt)

≡ p(at)+ p(ct)+ p(dt)

N× (p(at)+ p(ct)+ p(dt))

N

≡ a+ c+d
N

≡ E (At∨Bt)

N

≡ B+d
N
≡ E (At→ Bt)

N

≡ a+A
N

≡+1

(85)

It is p(At >−Bt)≡ 1− p(At→ Bt) (see Table 7).

Remark 2.3. A sufficient condition At is characterized by the property that another event Bt will occur
if At is given, if At itself occured (Barukčić, 1989, 1997, 2005, 2016, 2017a,b, 2020a,b,c,d, Barukčić
and Ufuoma, 2020). Example. The ground, the streets, the trees, human beings and many other objects
too will become wet during heavy rain. Especially, if it is raining (event At), then human beings will
become wet (event Bt). However, even if this is a common human wisdom, a human being equipped with
an appropriate umbrella (denoted by Rt) need not become wet even during heavy rain. An appropriate
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Table 7. Sufficient condition.

Conditioned Bt
TRUE FALSE

Condition TRUE p(at) +0 p(At)
At FALSE p(ct) p(dt) p(At)

p(Bt) p(Bt) +1

umbrella (Rt) is similar to an event with the potential to counteract the occurrence of another event
(Bt) and can be understood something as an anti-dot of another event. In other words, an appropriate
umbrella is an antidote of the effect of rain on human body, an appropriate umbrella has the potential
to protect humans from the effect of rain on their body. It is a good rule of thumb that the following
relationship

p(At→ Bt)+ p(Rt∧Bt)≡+1 (86)

indicates that Rt is an antidote of At. However, taking a shower, swimming in a lake et cetera may make
human hair wet too. More than anything else, however, these events does not affect the final outcome,
the effect of raining on human body.

2.2.13. The Chi square goodness of fit test of a sufficient condition relationship

Definition 2.41 (The χ̃2 goodness of fit test of a sufficient condition relationship).

Under some well known circumstances, testing hypothesis about the conditio per quam relationship
p(At→ Bt) is possible by the chi-square distribution (also chi-squared or χ̃2-distribution) too. The χ̃2

goodness of fit test of a conditio per quam relationship with degree of freedom (d. f.) of d. f. = 1 is
calculated as

χ̃
2

Calculated (At→ Bt | A)≡
(a− (a+b))2

A
+

((c+d)−A)2

A

≡ b2

A
+0

≡ b2

A

(87)
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or equally as

χ̃
2

Calculated (At→ Bt | B)≡
(d− (b+d))2

B
+

((a+ c)−B)2

B

≡ b2

B
+0

≡ b2

B

(88)

and can be compared with a theoretical chi-square value at a certain level of significance α . The χ̃2-
distribution equals zero when the observed values are equal to the expected/theoretical values of the
conditio per quam relationship/distribution p(At → Bt), in which case the null hypothesis is accepted.
Yate’s (Yates, 1934) continuity correction has not been used in this context.

2.2.14. The left-tailed p Value of the conditio per quam relationship

Definition 2.42 (The left-tailed p Value of the conditio per quam relationship).

The left-tailed (lt) p Value (Barukčić, 2019c) of the conditio per quam relationship can be calculated
as follows.

pValuelt (At→ Bt)≡ 1− e−(1−p(At→Bt))

≡ 1− e−(b/N)
(89)

Again, a low p-value indicates a statistical significance.

2.2.15. Necessary and sufficient conditions

Definition 2.43 (Necessary and sufficient conditions [EQV]).

The necessary and sufficient condition (EQV) relationship, denoted by p(At↔ Bt) in terms of statistics
and probability theory, is defined(Barukčić, 1989, p. 68-70) as

p(At↔ Bt)≡

N
∑

t=1
((At∨Bt)∧ (At∨Bt))

N
≡ p(at)+ p(dt)

≡ N× (p(at)+ p(dt))

N

≡ a+d
N

≡+1

(90)
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2.2.16. The Chi square goodness of fit test of a necessary and sufficient condition relationship

Definition 2.44 (The χ̃2 goodness of fit test of a necessary and sufficient condition relationship).

Even the necessary and sufficient condition relationship p(At ↔ Bt) can be tested by the chi-square
distribution (also chi-squared or χ̃2-distribution) too. The χ̃2 goodness of fit test of a necessary and
sufficient condition relationship with degree of freedom (d. f.) of d. f. = 1 is calculated as

χ̃
2

Calculated (At↔ Bt | A)≡
(a− (a+b))2

A
+

d− ((c+d))2

A

≡ b2

A
+

c2

A

(91)

or equally as

χ̃
2

Calculated (At↔ Bt | B)≡
(a− (a+ c))2

B
+

d− ((b+d))2

B

≡ c2

B
+

b2

B

(92)

The calculated χ̃2 goodness of fit test of a necessary and sufficient condition relationship can be com-
pared with a theoretical chi-square value at a certain level of significance α . Under conditions where
the observed values are equal to the expected/theoretical values of a necessary and sufficient condition
relationship/distribution p(At↔ Bt), the χ̃2-distribution equals zero. It is to be cleared whether Yate’s
(Yates, 1934) continuity correction should be used at all.

2.2.17. The left-tailed p Value of a necessary and sufficient condition relationship

Definition 2.45 (The left-tailed p Value of a necessary and sufficient condition relationship).

The left-tailed (lt) p Value (Barukčić, 2019c) of a necessary and sufficient condition relationship can
be calculated as follows.

pValuelt (At↔ Bt)≡ 1− e−(1−p(At↔Bt))

≡ 1− e−((b+c)/N)
(93)

In this context, a low p-value indicates again a statistical significance. Table 8 may provide an overview
of the theoretical distribution of a necessary and sufficient condition.
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Table 8. Necessary and sufficient condition.

Conditioned Bt
YES NO

Condition At YES 1 0 1
NO 0 1 1

1 1 2

2.2.18. Either or conditions

Definition 2.46 (Either At or Bt conditions [NEQV]).

Mathematically, an either At or Bt condition relationship (NEQV), denoted by p(At >−< Bt) in terms
of statistics and probability theory, is defined(Barukčić, 1989, p. 68-70) as

p(At >−< Bt)≡

N
∑

t=1
((At∧Bt)∨ (At∧Bt))

N
≡ p(bt)+ p(ct)

≡ N× (p(bt)+ p(ct))

N

≡ b+ c
N

≡+1

(94)

It is p(At >−< Bt)≡ 1− p(At <−> Bt) (see Table 9).

Table 9. Either At or Bt relationship.

Conditioned Bt
YES NO

Condition At YES 0 1 1
NO 1 0 1

1 1 2

2.2.19. The Chi-square goodness of fit test of an either or condition relationship

Definition 2.47 (The χ̃2 goodness of fit test of an either or condition relationship).

An either or condition relationship p(At >−< Bt) can be tested by the chi-square distribution (also
chi-squared or χ̃2-distribution) too. The χ̃2 goodness of fit test of an either or condition relationship
with degree of freedom (d. f.) of d. f. = 1 is calculated as
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χ̃
2

Calculated ((At >−< Bt) | A)≡
(b− (a+b))2

A
+

c− ((c+d))2

A

≡ a2

A
+

d2

A

(95)

or equally as

χ̃
2

Calculated ((At >−< Bt) | B)≡
(c− (a+ c))2

B
+

b− ((b+d))2

B

≡ a2

B
+

d2

B

(96)

Yate’s (Yates, 1934) continuity correction has not been used in this context.

2.2.20. The left-tailed p Value of an either or condition relationship

Definition 2.48 (The left-tailed p Value of an either or condition relationship).

The left-tailed (lt) p Value (Barukčić, 2019c) of an either or condition relationship can be calculated as
follows.

pValuelt (At >−< Bt)≡ 1− e−(1−p(At>−<Bt))

≡ 1− e−((a+d)/N)
(97)

In this context, a low p-value indicates again a statistical significance.
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2.2.21. Causal relationship k

Definition 2.49 (Causal relationship k).

Nonetheless, mathematically, the causal(Barukčić, 2011a,b, 2012) relationship (Barukčić, 1989, 1997,
2005, 2016, 2017b) between a cause Ut (German: Ursache) and an effect Wt (German: Wirkung),
denoted by k(Ut, Wt), is defined at each single Bernoulli trial t in terms of statistics and probability
theory as

k (U t,W t)≡
σ (U t,W t)

σ (U t)×σ (W t)

≡ p(U t∧W t)− p(U t)× p(W t)
2
√

(p(U t)× (1− p(U t)))× (p(W t)× (1− p(W t)))

(98)

where σ (Ut , Wt) denotes the co-variance between a cause Ut and an effect Wt at every single Bernoulli
trial t, σ (Ut) denotes the standard deviation of a cause Ut at the same single Bernoulli trial t, σ (Wt)
denotes the standard deviation of an effect Wt at same single Bernoulli trial t. Table 10 illustrates the
theoretically possible relationships between a cause and an effect.

Table 10. Sample space and the causal relationship k

Effect Bt
TRUE FALSE

Cause TRUE p(at) p(bt) p(Ut)
At FALSE p(ct) p(dt) p(Ut)

p(Wt) p(Wt) +1
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2.3. Proof methods

Considered from the historical point of view, human reasoning and knowledge appears to be to some
extent relative too. Although it seems almost impossible, to proof or to establish the correctness of a
statement, a theorem, a theory once and for all, this does not justify any technical or other errors in
(human) reasoning which are many times identified the hard way but easy to overlook while in contrast
to that charges and proofs of fallacious reasoning always need time, money, and personal dignity
to be accepted by the scientific community.

“Niemals aber kann die Wahrheit einer Theorie erwiesen werden.
Denn niemals weiß man,

daß auch in Zukunft eine Erfahrung bekannt werden wird,
die Ihren Folgerungen widerspricht...”

(Einstein, 1919)

Albert Einstein’s position translated into English: ‘But the truth of a theory can never be proven. For
one never knows if future experience will contradict its conclusion; and furthermore there are always
other conceptual systems imaginable which might coordinate the very same facts. ’Often, our fear of
the unknown appears to overshadow our mind to an objectively unjustified extent. However, logically
sound scientific verification and proof techniques are likely to allow us to continue our successful and
rapid identification of contradictory scientific findings and are appropriate enough to shed some light
even on this unknown. Step by step, by following the time honoured principle of going from the
known (and secured) to the unknown (and unsecured) we will bring more light into the epistemo-
logical darkness which may surround us sometimes. Following Einstein, a theory can very well be
found to be incorrect if there is a logical error in its deduction.

“Eine Theorie kann also wohl als unrichtig erkannt werden,
wenn in ihren Deduktionen
ein logischer Fehler ist . . . ”

(Einstein, 1919)

In other words, grain by grain and the hen fills her belly. Scientific proof methods are a demarcation
line between science and non-science (Popper, Karl Raimund, 2002). In this context, the development
of new suitable scientific experimental and non-experimental test methods is of key scientific value. It
may be allowed to point out view of these numerous scientific proof (Barukčić, Ilija, 2019) methods.

2.3.1. Proof by counter example

Definition 2.50 (Proof by counter example). Scientific progress can be achieved not only through
doing things right, but also by correcting (scientific) mistakes. Both contributions of authors are equiv-
alent to each other and the two sides of the same coin. A proof by counter example is a valid scientific
proof technique with the potential to correct horrific and dreadful scientific mistakes, especially in
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philosophy, mathematics and in science as such.

“No amount of experimentation
can ever prove me right;

a single experiment
can prove me wrong.”

(Robertson, 1997)

In particular, the close investigation of counter examples can give us an insight into the many deep
and delicate issues surrounding a statement or theorem. A generally valid theorem can be refuted
by a single counter example (Bağçe, Samet and Başkent, Can, 2009, Corcoran, 2005, Israël, Hans,
2011, McGee, 1985, Robertson, 1997, Romano and Siegel, 1986, Stoyanov, 2013, Weatherson, 2003)
by showing an instance where a given statement, theorem et cetera cannot possibly be correct.

It is worth to emphasise in this context that one single counter example refutes a theorem, a theory, a
conjecture as effectively as n counter examples.

2.3.2. Proof by (thought) experiments

Unfortunately, too often, competing scientific positions or even theories of the nature or of our world
are excluding each other. A (theoretical) scientific verification becomes pressing, while (thought)
experiments are of special importance in this context. In short, Albert Einstein wrote in a letter to the
student J. S. Switzer on April 23rd, 1953, the following:

“Development of Western science is based on two great achievements: the invention of the formal
logical system (in Euclidean geometry) by the Greek philosophers, and the discovery of the

possibility to find out causal relationships by systematic experiment (during the Renaissance). ”
(Hu, 2005)

In other words, (thought) experiments are one of the methods to prove theorems and theories.

2.3.3. Modus tollens

From a practical point of view, various proposals (Barukčić and Ufuoma, 2020) have been put forward
which criteria of demarcation between science and non-science should be applied, including modus
tollens as advocated especially by Karl Popper. Following Popper,

“... it is possible by means of purely deductive inferences
(with the help of the modus tollens of classical logic)

to argue
from the truth of singular statements
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to the falsity of universal statements.”
(Popper, Karl Raimund, 1935)

2.3.4. Proof by modus inversus

It is noticeable that our today’s methods of investigation especially in natural sciences and even the
knowledge achieved relies to a very great extent on mathematics and mathematical rules too. Thus
far, mathematics as such appears to enjoy a very special esteem within the scientific community and is
regarded more or less above all other sciences (Barukčić and Ufuoma, 2020). This view is sometimes
further strengthened by the common belief that the laws of mathematics are absolutely certain and
indisputable. However, it is noteworthy that objects studied in mathematics are not all the time located
in space and time and the methods of investigation of mathematics sometimes differ markedly from
the methods of investigation in the natural sciences (Barukčić and Ufuoma, 2020). Therefore, first
and after all and in a slightly different way, today’s mathematics itself is more or less a product
of human thought and mere human imagination and belongs as such to a world of human thought
and mere human imagination. In point of fact, human thought and mere human imagination which
produces the laws of mathematics is able to produce erroneous or incorrect results too with the
principal consequence that even mathematics or mathematical theorems, rules or other results valid
since thousands of years are in constant danger of being overthrown by newly discovered facts
(Barukčić and Ufuoma, 2020). Modus inversus (Barukčić and Ufuoma, 2020, Barukčić, Ilija, 2019,
Toohey, 1948) is a suitable proof method to check mathematical position and theorems for logical
consistency.

However, modus inversus is an additional approach to solve the problem of demarcation between
science and non-science (see also: https://doi.org/10.5281/zenodo.4165074). In contrast to modus
ponens, modus inversus is designed primarily to preserve at all costs the contradiction, the falsity,
the falseness, the falsehood as such. In contrast to the principle ex contradictione sequitur quodli-
bet (Carnielli and Marcos, 2001, Priest, 1998, Priest et al., 1989), from a contradictory premise
or a contradictory statement like (+1=+0), does not anything follow but the contradiction itself.
In other words, in the absence of (technical and other) errors, the contradiction is preserved. In
particular, even if one of the main tasks of modus inversus (Barukčić, Ilija, 2019) is to preserve the
contradiction under any circumstances, the main task of modus inversus is to recognize the truth too.
The abstract structure of modus inversus is as follows.

Proof by modus inversus. Thus far, let RPt denote a premise at a certain point in (space-) time t. Let
RCt denote the conclusion at the same certain point in (space-) time t.
PREMISES.
(1) If (RPt is false) then (RCt is false).
(2) RPt is false.
CONCLUSION.
(3) RCt is false. □
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The following 2x2 table may illustrate modus inversus again. Let RPt denote a premise from the
standpoint of a stationary observer, a Bernoulli distributed random variable at a certain period of time
or Bernoulli trial t (Uspensky, 1937).

Table 11. Modus inversus

Conclusion RCt
FALSE TRUE

Premisse FALSE +1 +0
RPt TRUE +1 +1

+1

In terms of probability theory, modus inversus can be expressed as follows.

Table 12. Modus inversus II

Conclusion RCt
FALSE TRUE

Premisse FALSE p(at) +0 p(RPt)
RPt TRUE p(ct) p(dt) p(RPt)

p(RCt) p(RCt) +1

The premise RPt might take only the values either +0 or +1. Let RCt denote a conclusion from the
standpoint of a stationary observer R, a Bernoulli distributed random variable at the same period of
time or Bernoulli trial t. The conclusion RCt itself might take only the values either +0 or +1 too. Under
conditions of classical logic, +0 may denote false while +1 may denote true. The modus inversus is
defined as if (premiset is false) then (conclusiont is false). Formally, modus inversus can be expressed
as

(RPt)∪ (R¬Ct)≡+1 (99)

while the sign ∪ denotes inclusive or. It is noticeable and by far not regrettable that according to
modus inversus it is not possible to achieve a true conclusion while starting with a false premise.
The follow-up question should be: what allows the assumption that modus inversus is generally valid
or valid at all?

EXAMPLE: BURNING CANDLE EXPERIMENT
A simple to perform real-world experiment may illustrate the general validity of modus inversus. Let
At denote gaseous oxygen, a Binomial random variable, which can take only two values, either gaseous
oxygen is present = +1 or gaseous oxygen is not present = +0. Gaseous oxygen is present means that
the amount of gaseous oxygen is enough to assure that a candle can burn. Let Bt denote a candle, a
Binomial random variable, which can take only two values, either a candle is burning = +1 or a candle
is not burning = +0.
In this experiment, an investigator lights the candle wick of some candles (old, young, big, small, red,
green, curved, straight et cetera) under different conditions. As next, candle flame reacts with gaseous
oxygen such that light and heat which characterizes a candle are produced. The data as obtained by
this real-world experiment are illustrated by the following 2x2 table.
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Table 13. Example. Modus inversus III

Candle is burning
FALSE TRUE

Gaseous FALSE +1 +0
oxygen TRUE +1 +1

+1

The relationship between gaseous oxygen and the behaviour of a candle produced out of simple wax is
studied to demonstrate the relationship of modus inversus to objective reality. In other words, modus
inversus is backed by natural processes independent of human mind and consciousness.

For this reason, and especially if different persons with different ideology and believe are aiming to
arrive at the same logical conclusions with regard to a difficult and controversy issue of investigation,
they will have to agree at least upon some view fundamental laws (axioms) as well as the methods
by which other laws can be deduced therefrom. At this point, clarifying some fundamental axioms
or starting points of investigations can therefore be essential part of every scientific method and any
scientific progress.

2.3.5. Direct proof

The truth or falsehood of a given theorem can be demonstrated too by a straightforward combination
of established facts.

2.3.6. Proof by contradiction

Proof by contradiction (Dorolle, 1918, Worrall et al., 1976) is a widely used proof method and goes
back at least as far as to ancient times. The truth or the validity of a theorem can be established by
assuming that a statement or a theorem we want to prove is false. In the following of the proof by
showing that such an assumption leads to a contradiction it is justified to conclude that we were wrong
to assume the theorem was false. In other words, the theorem must be true.

2.3.7. Proof by other methods

There are of course many other scientific proof methods which can be found in literature.
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2.4. Statistical methods

The probability of the necessary (Barukčić, 2021c) condition p(SINE) has been calculated and tested
for statistical significance. The probability of the sufficient (Barukčić, 2021c) condition p(IMP) has
been calculated, the statistical significance of this relationship has been proofed. The chi-square good-
ness of fit test with one degree of freedom has been used to test whether the sample data published fit a
certain theoretical distribution in the population. The causal relationship k (Barukčić, 2021c) has been
calculated to evaluate a possible causal relationship between the events/factors analysed. The hyper-
geometric(Fisher, 1922, Gonin, 1936, Huygens and van Schooten, 1657, Pearson, 1899) distribution
(HGD) has been used to test the one-sided significance of the causal relationship k. The study (de-
sign) bias has been controlled by IOI, the index of independence(Barukčić, 2019a) and IOU, the index
of unfairness(Barukčić, 2019b). All the data were analysed using MS Excel (Microsoft Corporation,
USA). The p values less than 0.05 were considered to indicate a statistically significant difference.
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2.5. Axioms

2.5.1. Axiom I. Lex identitatis

In this context, we define axiom I as the expression

+1 =+1 (100)

2.5.2. Axiom II. Lex contradictionis

In this context, axiom II or lex contradictionis, the negative of lex identitatis, or

+0 =+1 (101)

and equally the most simple form of a contradiction formulated.

2.5.3. Axiom III. Lex negationis

¬(0)×0 = 1 (102)

where ¬ denotes (logical (Boole, 1854) or natural) negation (Ayer, 1952, Förster and Melamed, 2012,
Hedwig, 1980, Heinemann, 1943, Horn, 1989, Koch, 1999, Kunen, 1987, Newstadt, 2015, Royce,
1917, Speranza and Horn, 2010, Wedin, 1990). In this context, there is some evidence that ¬(1)×1 =
0. In other words, it is (¬(1)×1)× (¬(0)×0) = 1
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3. Results

3.1. Without gaseous oxygen, no burning candle

Theorem 3.1 (Without gaseous oxygen, no burning candle). The necessary condition relationship is
given and valid independently of any human mind and consciousness, objectively and real. Let At
denote sufficient amount of gaseous oxygen with two states, either sufficient amount of gaseous oxygen
is given (≡ +1 or TRUE) or a sufficient amount of gaseous oxygen is not given (+0 or FALSE). Let
Bt denote a candle made out of wax with two states, either a candle is burning (≡ +1 or TRUE) or
a candle is not burning (+0 or FALSE). Let p(At← Bt) denote the probability by which a necessary
condition relationship between sufficient amount of gaseous oxygen and a burning wax candle is given.
In general, it is

p(At← Bt)≡ p(At∨Bt)≡

N
∑

t=1
(At∨Bt)

N
≡ (At∨Bt)× p(At∨Bt)

(At∨Bt)

≡ p(at)+ p(bt)+ p(dt)

≡ N× (p(at)+ p(bt)+ p(dt))

N
≡ E (At← Bt)

N

≡ a+b+d
N

≡ E (At∨Bt)

N

≡ A+d
N
≡ E (At← Bt)

N

≡ a+B
N
≡ E (At∨Bt)

N
≡+1

(103)

where E (At← Bt)≡ E (At∨Bt) indicates the expectation value of the necessary condition. Example:
Without sufficient amount of gaseous oxygen, no burning candle.

Proof by thought expermiment. Since objective reality posses the power to correct wrong thinking,
wrong theories et cetera, a real world experiment has been performed by thought to confront the theo-
rem above with objective reality as such. The following data (see table 14) were obtained. As can be

Table 14. Necessary condition between oxygen and burning candle.

Burning wax candle Bt
TRUE FALSE

Gaseous oxygen TRUE 1 3 4
At FALSE 0 5 5

1 8 9

seen, data show that case c = 0. In other words, an event no sufficient amount of gaseous oxygen but
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still burning wax candle has not been observed, while at=1, bt=3, dt=5. In the end, why is something,
the way it is? This relationship of table 14 are illustrated by figure 3.1.

Fig. Conditio sine qua non
(period of) time t

Event

Bt

At

Case:                   d1 b2 a3 b4 d5

Conditioned 
(Outcome)

Condition

Conditio sine qua non.
Case d1, d5: no At and no Bt
Case b2, b4: At and no Bt
Case a3: At and Bt
Case c: no At and Bt: not observed

The relationship between At and Bt
is analysed at the same Bernoulli
trial / (period of) time t.

Our conclusion is true. Without sufficient amount of gaseous oxygen, no burning wax candle. □

Remark 3.1. The sample size of the study above is very small. Thus far, the conclusions drawn could
be considered a little uncertain. However, such a basic attitude is not completely justified. Even a study
with a smaller sample size (see data of table 14) has the potential to recognize the basic relationship
between events. Moreover, from the point of view of sound logical reasoning, it is to be criticized that
figure 3.1 illustrates a specific way of analysing the relationship between a sufficient amount of gaseous
oxygen (At) and a burning candle (Bt) as a sequence of data points collected over an interval of time.
Finally, figure 3.1 might be confused with time series analysis and become an unavoidable source of
misunderstanding and of frustration even. Example. An illness like gastric cancer existed centuries
ago, gastric cancer is existing today too. Therefore, the necessary condition/s of gastric cancer must
also have existed centuries ago and is/are existing today too, otherwise gastric cancer would have not
existed in the past and would not exist today. However, with the continuing development of human
beings and human culture, new objects, products et cetera will become an increasingly important part
of human life, while others will increasingly lose significance. At the same time, it is also true that such
new objects, products cannot be a necessary condition of human gastric cancer because centuries ago
human cancer existed but not these newly objects, products et cetera. In this context, it is necessary to
focus at least on one key aspect with respect to a necessary condition: what is time series analysis? As
can be seen, after condition At at the time b2 follows the conditioned Bt at the time a3. Furthermore,
after conditioned at the time a3 follows the condition at the time b4 et cetera. However, in order to
avoid any misunderstanding and in complete contrast to time series, a necessary condition is based on
the co-occurrence of events at the same Bernoulli trial / (period of) time t.
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3.2. Observational studies and necessary conditions

The generation of reliable knowledge by a research study is endangered by many factors and circum-
stances which can be the cause of serious (selection, information, confounding et cetera) bias, study
design is one of these factors. Therefore, we must draw the reader’s attention to the need to adopt
all the measures required to ensure that bias is prevented as much as possible in observational studies
(i.e. cross-sectional; case-control and cohort studies) or in experimental studies (randomised control
trials, RCTs). One of these measures is the use of mathematical methods, which is completely inde-
pendent of any study design. Such methods might provide a reliable estimate of the true relationship.
A case-control study1 is a type of observational study commonly used to look at factors or exposures
or conditions (an event At) responsible for conditioned or outcomes (an event At) at a certain Bernoulli
trial t. A case-control study is based on a group of cases, which are the individuals who have the
outcome or the conditioned Bt of interest. A researcher then tries to construct an appropriate group of
individuals, called the controls, who do not have the outcome of interest and compares both groups.
However, at least this step can lead to dramatic bias. Mathematically, it is possible to estimate the ex-
tent to which an event At is a necessary condition of an event Bt (an outcome) independent of a control
group.

Theorem 3.2. In general, the necessary condition relationship follows approximately as

p(At← Bt)≥ 1− p(ct)

p(Bt)
(104)

Proof by direct proof. The premise
+1≡+1 (105)

is true. In the following, we rearrange the premise. We obtain

p(Bt)≡ p(Bt) (106)

or
p(at)+ p(ct)≡ p(Bt) (107)

Rearranging equation 107, it is
p(at)≡ p(Bt)− p(ct) (108)

Simplifying equation 108, we obtain

p(at)

p(Bt)
≡ p(Bt)

p(Bt)
− p(ct)

p(Bt)
(109)

Equation 109 becomes
p(at)

p(Bt)
≡ 1− p(ct)

p(Bt)
(110)

1Steven Tenny et al., Case Control Studies
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A basic requirement of a necessary condition relationship is the need that
p(at)

p(Bt)
≡ 1. In general, it is

p(At← Bt)≡
p(at)

p(Bt)
≡ 1− p(ct)

p(Bt)
(111)

However, this relationship is not given under any circumstances. Therefore, the necessary condition
relationship can be estimated roughly under conditions of an observational study independently of a
control group by the relationship

p(At← Bt)≈ 1− p(ct)

p(Bt)
(112)

□

However, in reality, it can be assumed that the necessary condition relationship will be stronger than the
relationship suggested by equation 112. Therefore, equation 112 is of particular value under conditions
where a control group is absent or appears to be (completely) unsuitable. In general, it is

p(At← Bt)≥ 1− p(ct)

p(Bt)
(113)

3.3. Experimental studies and necessary conditions

A transparent and rigorous bias2 assessment is of key importance, especially for high-quality random-
ized, double-blind placebo-controlled experimental studies, too. In order to prevent false conclusions
or bias and to reduce the deviation from the truth in general based on published data, many times the
sample size is increased. Nonetheless, withholding a potentially effective treatment from one or more
participants in a clinical research study or any unnecessary lengthening of a study, et cetera, faces at
least serious ethical problems. Mathematically, it is possible to estimate the extent to which an event
At is a necessary condition of an event Bt (an outcome) independent of a verum group.

Theorem 3.3. In general, the necessary condition relationship follows approximately as

p(At← Bt)≥ 1− p(ct)

p(At)
(114)

Proof by direct proof. The premise
+1≡+1 (115)

is true. In the following, we rearrange the premise. We obtain

p(At)≡ p(At) (116)

or
p(ct)+ p(dt)≡ p(At) (117)

2Hugh Waddington et al., Quasi-experimental study design
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Rearranging equation 117, it is
p(dt)≡ p(At)− p(ct) (118)

Simplifying equation 118, we obtain

p(dt)

p(At)
≡ p(At)

p(At)
− p(ct)

p(At)
(119)

Equation 119 becomes
p(dt)

p(At)
≡ 1− p(ct)

p(At)
(120)

However, another basic requirement of a necessary condition relationship is the need that
p(dt)

p(At)
≡ 1.

In general, it is

p(At← Bt)≡
p(dt)

p(At)
≡ 1− p(ct)

p(At)
(121)

Regrettably, this reduced relationship of a necessary condition is not given under any circumstances
too. In other words, the necessary condition relationship can be estimated roughly under conditions of
an experimental study independently of a verum group by the relationship

p(At← Bt)≈ 1− p(ct)

p(At)
(122)

□

However, in reality, it can be assumed that the necessary condition relationship will be stronger than the
relationship suggested by equation 122. Therefore, equation 122 is of particular value under conditions
where a verum group is absent or appears to be (completely) inappropriate, et cetera. In general, it is

p(At← Bt)≥ 1− p(ct)

p(At)
(123)

3.4. Study design and necessary conditions

The study design of an observational or an experimental study should assure that it should be possible to
recognize a necessary condition given, it doesn’t matter whether data are obtained by an observational
or an experimental study. What is a basic requirement of such a study design?

Theorem 3.4. In general, the necessary condition relationship demands a study design where the index
of unfairness (IOU) (Barukčić, 2019b) or p(IOU) is equal to

p(IOU (A,B))≡ Absolute
((

At +Bt

N

)
−1

)
≡ 0 (124)
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Proof by direct proof. The premise
+1≡+1 (125)

is true. In the following, we rearrange the premise. We obtain

p(At← Bt)≡ p(At← Bt) (126)

Based on equation 111 it is p(At← Bt)≡
p(at)

p(Bt)
≡ 1− p(ct)

p(Bt)
. Rearranging equation 126, it is

1− p(ct)

p(Bt)
≡ p(At← Bt) (127)

Based on equation 121 it is p(At← Bt)≡
p(dt)

p(At)
≡ 1− p(ct)

p(At)
. Equation 127 simplifies as

1− p(ct)

p(Bt)
≡ 1− p(ct)

p(At)
(128)

Equation 128 becomes

− p(ct)

p(Bt)
≡− p(ct)

p(At)
(129)

or
p(ct)

p(At)
≡ p(ct)

p(Bt)
(130)

Equation 130 can be simplified as

p(ct)× p(Bt)≡ p(ct)× p(At) (131)

In the following we ignore p(ct) and set p(ct) = +1. In general, it is

p(Bt)≡ p(At) (132)

or
p(Bt)≡ 1− p(At) (133)

or
p(At)+ p(Bt)≡ 1 (134)

Rearranging equation 134, it is
N× p(At)+N× p(Bt)≡ N (135)

while N might denote the sample or population size. Furthermore, it follows that

At +Bt ≡ N (136)

Rearranging equation 136, it is
At +Bt

N
≡ N

N
≡+1 (137)
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and the index of unfairness (Barukčić, 2019b) (IOU) follows as

IOU (At,Bt)≡
(

At +Bt

N

)
−1≡ 0 (138)

In order to make the obtained results of observational and experimental studies which investigated the
necessary condition relationship comparable to each other, the study design should assure as much as
possible that

p(IOU (A,B))≡ Absolute
((

At +Bt

N

)
−1

)
≡ 0 (139)

□

3.5. Observational studies and exclusion relationship

An exclusion relationship can be investigated by the two major types of observational study designs:
the comparative or case-control study, the longitudinal or cohort study or some of their variants. 3

Mathematically, it is possible to estimate the extent to which an event At excludes an event Bt (an
outcome) independent of a control group.

Theorem 3.5. In general, an exclusion relationship follows approximately as

p(At | Bt)≥ 1− p(at)

p(Bt)
(140)

Proof by direct proof. The premise
+1≡+1 (141)

is true. In the following, we rearrange the premise. We obtain

p(Bt)≡ p(Bt) (142)

or
p(at)+ p(ct)≡ p(Bt) (143)

Rearranging equation 143, it is
p(ct)≡ p(Bt)− p(at) (144)

Simplifying equation 144, we obtain

p(ct)

p(Bt)
≡ p(Bt)

p(Bt)
− p(at)

p(Bt)
(145)

Equation 145 becomes
p(ct)

p(Bt)
≡ 1− p(at)

p(Bt)
(146)

3PMID: 18450043
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A basic requirement of a exclusion relationship is the need that
p(ct)

p(Bt)
≡ 1. In general, it is

p(At | Bt)≡
p(ct)

p(Bt)
≡ 1− p(at)

p(Bt)
(147)

However, even this relationship might not be given under any circumstances. Therefore, the exclusion
relationship can be estimated roughly under conditions of an observational study independently of a
control group by the relationship

p(At | Bt)≈ 1− p(at)

p(Bt)
(148)

□

However, in reality, it can be assumed that an exclusion relationship will be stronger than the relation-
ship suggested by equation 148. Therefore, equation 148 is of particular value under conditions where
a control group is absent or appears to be (completely) unsuitable. In general, it is

p(At | Bt)≥ 1− p(at)

p(Bt)
(149)

3.6. Experimental studies and exclusion relationship

An experimental study design necessitates much thought in order to investigate an exclusion relation-
ship. Lack of a good quality experimental study design can induce uncontrolled biases and might doom
the experiment to failure. 4 Mathematically, it is possible to estimate the extent to which an event At
excludes the occurrence of an event Bt (an outcome) and vice versa, independent of a placebo group.

Theorem 3.6. In general, an exclusion relationship follows approximately as

p(At | Bt)≥ 1− p(at)

p(At)
(150)

Proof by direct proof. The premise
+1≡+1 (151)

is true. In the following, we rearrange the premise. We obtain

p(At)≡ p(At) (152)

or
p(at)+ p(bt)≡ p(At) (153)

Rearranging equation 153, it is
p(bt)≡ p(At)− p(at) (154)

4PMID: 7995475
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Simplifying equation 154, we obtain

p(bt)

p(At)
≡ p(At)

p(At)
− p(at)

p(At)
(155)

Equation 155 becomes
p(bt)

p(At)
≡ 1− p(at)

p(At)
(156)

However, another basic requirement of an exclusion relationship is the need that
p(bt)

p(At)
≡ 1. In general,

it is

p(At | Bt)≡
p(bt)

p(At)
≡ 1− p(at)

p(At)
(157)

Nonetheless, this reduced relationship of an exclusion relationship is not given under any circum-
stances too. In other words, the exclusion relationship can be estimated roughly under conditions of an
experimental study design independently of a placebo group by the relationship

p(At | Bt)≈ 1− p(at)

p(At)
(158)

□

However, in reality, it can be assumed that an exclusion relationship will be much stronger than the
relationship suggested by equation 158. Therefore, equation 158 is of particular value under conditions
where a placebo group is absent or appears to be (completely) inappropriate, et cetera. In general, it is

p(At | Bt)≥ 1− p(at)

p(At)
(159)

3.7. The identity of an index of independence

Theorem 3.7. In general, the necessary condition relationship demands a study design where the index
of unfairness (IOU) (Barukčić, 2019b) or p(IOU) is equal to

p(IOU (At,Bt))≡ Absolute
((

At +Bt

N

)
−1

)
≡ 0 (160)

Proof by direct proof. The premise
+1≡+1 (161)

is true. In the following, we rearrange the premise. We obtain

+0≡+0 (162)
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The index of independence is defined as p(IOI (At,Bt))≡ Absolute
((

At +Bt

N

)
−1

)
≡ 0. Equation

161 becomes (
At +Bt

N

)
−1≡ 0 (163)

or (
At +Bt

N

)
≡+1 (164)

or
At +Bt ≡ N (165)

or
At ≡ N−Bt (166)

One general requirement of a study design in order to ensure the investigation of an exclusion relation-
ship(see Barukčić, 2021a) is the necessity

At ≡ Bt (167)

or
at +bt ≡ at + ct (168)

or
bt ≡ ct (169)

In general, it is At ≡ N−At. Equation 167 becomes

N−At ≡ Bt (170)

or
N ≡ At +Bt (171)

or
N
N
≡ At +Bt

N
(172)

Equation 172 simplifies as
At +Bt

N
≡ N

N
≡+1 (173)

or as
At +Bt

N
−1≡+0 (174)

The index of independence(Barukčić, 2019a) (IOI) can be expressed as

p(IOU (At,Bt))≡ Absolute
((

At +Bt

N

)
−1

)
≡ 0 (175)

□
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3.8. Observational studies and study design

Theorem 3.8 (Observational studies and study design). Many observational studies are based on the
demand that

p(IOU (At,Bt))≡ p(IOI (At,Bt)) (176)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(177)

is true, then the following conclusion

p(IOU (At,Bt))≡ p(IOI (At,Bt)) (178)

is also true, again the absence of any technical errors presupposed. The premise

+1≡+1 (179)

is true. We multiply equation 179 by an expectation value Bt, it is

Bt ≡ Bt (180)

Many times, the study design of observational studies demands that Bt ≡ Bt. Equations 180 becomes

Bt ≡ Bt (181)

Adding the expectation value of At, it is

At +Bt ≡ At +Bt (182)

Dividing by the sample/populations size N, it is

At +Bt

N
≡ At +Bt

N
(183)

or
At +Bt

N
−1≡ At +Bt

N
−1 (184)

In general, a study design which demands that Bt ≡ Bt is based on the relationship

p(IOU (At,Bt))≡ p(IOI (At,Bt)) (185)

□
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3.9. Experimental studies and study design

Theorem 3.9 (Experimental studies and study design). Many experimental studies are based on the
demand that

p(IOU (At,Bt))≡ p(IOI (Bt,At)) (186)

Proof by direct proof. If the premise
+1 =+1︸       ︷︷       ︸
(Premise)

(187)

is true, then the following conclusion

p(IOU (At,Bt))≡ p(IOI (Bt,At)) (188)

is also true, again the absence of any technical errors presupposed. The premise

+1≡+1 (189)

is true. We multiply equation 189 by an expectation value At, it is

At ≡ At (190)

Many times, the study design of observational studies demands that At ≡ At. Equations 190 becomes

At ≡ At (191)

Adding the expectation value of Bt, it is

At +Bt ≡ Bt +At (192)

Dividing by the sample/populations size N, it is

At +Bt

N
≡ Bt +At

N
(193)

or
At +Bt

N
−1≡ Bt +At

N
−1 (194)

In general, a study design which demands that At ≡ At is based on the relationship

p(IOU (At,Bt))≡ p(IOI (Bt,At)) (195)

□
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3.10. Leflunomide and acute myocardial infarction

Suissa 5 et al. (Suissa et al., 2006) conducted a nested case-control analysis within a cohort of subjects
with rheumatoid arthritis (RA), observed between January 1, 1999 and December 31, 2003 to inves-
tigate the relationship between leflunomide and the risk of acute myocardial infarction (AMI) while
using a database of a NorthAmerican insurance company. Subjects had to be free of the outcome of in-
terest (AMI) and were followed from the date of cohort entry until an outcome of interest occurred. For
each AMI case occurred in the cohort, Suissa et al. randomly selected 10 controls. During followup
of 5 years, 558 cases of AMI requiring hospitalization occurred. In toto 6/558 AMI cases received
leflunomide. The original data and the statistical analysis is presented by table 15.

Table 15. Leflunomide and AMI (Study et al. , 2006 ).

AMI
YES NO

Leflunomide YES 6 194 200
NO 552 5386 5938

558 5580 6138

Statistical analysis.
Causal relationship k = -0,0388838898

p Value left tailed (HGD) = 0,0005228
p (EXCL) = 0,9990224829

p (EXCL) approx.= 0,9892473118
χ̃2 (EXCL— At) = 0,1800
χ̃2 (EXCL— Bt) = 0,0645
p Value (EXCL) = 0,0009775171

Relative risk (RR).
RR (nc) = 0,3227
RR (sc) = 0,3093

Additional measures.
OR = 0,9700

IOR = -0,6700
Study design.

p(IOU)= 0,876507006
p(IOI)= 0,058325187

3.11. Leflunomide and acute myocardial infarction II

The study design of Suissa6 et al. (Suissa et al., 2006) with p(IOI)=0,058325187 is of good quality,
but the same can be improved too. At the end, the matching 1:10 has underestimated the relationship
between leflunomide and acute myocardial infarction. The following theorem is based on a study
design with p(IOI) = 0. In the control group of Suissa et al. about b=194 subjects out of 5580 subjects

5PMID: 16874796
6PMID: 16874796
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obtained leflunomide without suffering from AMI. However, under conditions of p(IOI) = 0, a study
design should assure that c=b=552. This would demand a control group of about (552/194)*5580 =
15877 individuals. The data of more appropriate control group are illustrated by table 16.

Table 16. Leflunomide and AMI (Study Suissa et al.,2006).

AMI
YES NO

Leflunomide YES 6 552 558
NO 552 15325 15877

558 15877 16435

Statistical analysis.
Causal relationship k = -0,0240145852

p Value left tailed (HGD) = 0,0003912
p (EXCL) = 0,9996349255

p (EXCL) approx.= 0,9892473118
χ̃2 (EXCL— At) = 0,0645
χ̃2 (EXCL— Bt) = 0,0645
p Value (EXCL) = 0,0003650745

Relative risk (RR).
RR (nc) = 0,3093
RR (sc) = 0,3093

Additional measures.
OR = 0,9892

IOR = -0,6833
Study design.

p(IOU)= 0,932096136
p(IOI)= 0

Leflunomide excludes AMI over about 5 years with a probability better than p (EXCL) approx. =
(1-((6)/558)) = 0,9892473118 or per one year with a probability better than p (EXCL) approx. =
(1-((6/5)/558)) = 0,996415770609319. It is important in the first place to put this result in the right
light. Biontec’s Covid-19 vaccine excluded (see Barukčić, 2021a) the Covid-19 death in individuals
in Scotland 7 who were fully vaccinated by Aug 18, 2021 with the probability p = 1 - (47 / 1247026)
= 0,9999623103. The result of the relationship between leflunomide and AMI is there for all to see.
The result of this statistical analysis is something really impressive. Leflunomide, a medication used in
the treatment and management of rheumatoid arthritis, 8 excludes an acute myocardial infarction with
a probability of p = 1 - (6 / 16435) = 0,9996349255 and is not much worse effective than Biontech’s
Covid-19 vaccine.

7PMCID: PMC8553268
8PMID: 32491731
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3.12. Etoricoxib and coronary artery disease

Li-Chih Wu et al. 9 investigated the effects of the cyclooxygenase-2 (COX II) inhibitor etoricoxib on
the risk of coronary artery disease (CAD) by a 10-year population-based case-control study. The data
and the statistical analysis are viewed by table 17.

Table 17. Etoricoxib and CAD (Study Wu et al., 2016).

CAD
YES NO

Etoricoxib YES 11 264 275
NO 335 3502 3837

346 3766 4112

Statistical analysis.
Causal relationship k = -0,0425712814

p Value left tailed (HGD) = 0,0023361
p (EXCL) = 0,9973249027

p (EXCL) approx.= 0,9682080925
χ̃2 (EXCL— At) = 0,4400
χ̃2 (EXCL— Bt) = 0,3497
p Value (EXCL) = 0,0026750973

Relative risk (RR).
RR (nc) = 0,4581
RR (sc) = 0,4535

‘RRR ’(%) = 54,1851
Additional measures.

OR = 0,9600
IOR = -0,5246

Study design.
p(IOU)= 0,848978599
p(IOI)= 0,017266537

Following Li-Chih Wu et al. “etoricoxib, but no naproxen and diclofenac were negatively associated
with CAD”10. The study design with p(IOI)=0,017266537 is acceptable, the exclusion relationship
between etoricoxib and coronary artery disease with p (EXCL) = 0,9973249027 is significant (p Value
(EXCL) = 0,0026750973). Etoricoxib appears to have protective 11 effects against coronary artery
disease. However, the results of the study of Li-Chih Wu et al. contradict the results of the study of
Kathrin Thöne et al. 12 and the results of Gwen M C Masclee et al. 13 in this context. Both studies
investigated the effect of etoricoxib on acute myocardial infarction.

9PMCID: PMC5023908
10PMCID: PMC5023908
11VIGOR Study Group
12PMCID: PMC5567458
13PMCID: PMC6211656
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3.13. Etoricoxib and coronary artery events

Yao-Min Hung et al. 14 investigated the effect of anti-rheumatic medications for coronary artery
disease in a nationwide population-based cohort study from the Taiwan National Health Insurance
Research Database. Yao-Min Hung et al. found that “The effect of etoricoxib with reduced CAD risks
among RA patients remained constant over the follow up time.”The data and the results are presented
by table 18.

Table 18. Etoricoxib and CAD events (Study Hung et al. , 2017 ).

CAD events
YES NO

Etoricoxib YES 12 144 156
NO 1241 4863 6104

1253 5007 6260

Statistical analysis.
Causal relationship k = -0,0492385193

p Value left tailed (HGD) = 0,0000152
p (EXCL) = 0,9980830671

p (EXCL) approx.= 0,9904229848
χ̃2 (EXCL— At) = 0,9231
χ̃2 (EXCL— Bt) = 0,1149
p Value (EXCL) = 0,0019169329

Relative risk (RR).
RR (nc) = 0,3784
RR (sc) = 0,3330

‘RRR ’(%) = 62,1645
Additional measures.

OR = 0,9231
IOR = -0,6157

Study design.
p(IOU)= 0,774920128
p(IOI)= 0,175239617

14PMCID: PMC5489160
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4. Discussion

The data of Suissa et al. have been presented in this publication more or less only for demonstration
purposes. Nonetheless, even if the data as published by Suissa et al. (Suissa et al., 2006) have several
possible limitations, it is necessary to note that the same data are of use too. However, even if very
convincing, the exclusion relationship between leflunomide and acute myocardial infarction as estab-
lished by the data of Suissa et al. cannot be considered as certain yet. More studies with harder data
will be necessary to ascertain the cardiovascular effects of leflunomide on acute myocardial infarction.
However, and until proven otherwise, it can justifiably be accepted that leflunomide excludes acute
myocardial infarction (p Value (EXCL) = 0,0003650745) very effectively. Leflunomide is taken orally
and becomes metabolized 15 , 16 in the body to its active part known as teriflunomide. As with many
other circumstances in life, it is the dosage that makes the poison. An empirical cholestyramine 17

wash-out therapy with four grams of cholestyramine every 6 hours for 14 days (antidote) is recom-
mended for leflunomide toxicity. Hence, it is possible, and it seems only reasonable, to supply those
individuals with leflunomide who are particularly exposed to the danger of an acute myocardial infarc-
tion or who already suffered from this very dangerous illness. At the same time, the data of the study
of Suissa et al. (Suissa et al., 2006) justify very big doubts about today’s dominant lipid hypothesis of
acute myocardial infarction. In particular with regard to the relationship between etoricoxib and AMI
or CAD, the results are very contradictory, and an ultimate knowledge is impossible today. Further
research is necessary to investigate the impact of etoricoxib on AMI or CAD. As it has been known
for quite a while, there are circumstances where it is impossible to have an event Bt without an event
At. Such a relationship between an event At and an event Bt is described by the notion of necessary
condition relationship. While we humans are faced with obvious limitations of human knowledge due
to logically inconsistent or at the very least questionable scientific methods like risk ratio, odds ratio et
cetera, meanwhile it is mathematically possible and of great practical value to apply the new methods
like the necessary condition et cetera as soon as possible to pave the way for the successful solution of
various (scientific) problems without any delay.

15PMID: 9666414
16PMID: 10600330
17PMID: 31644034
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5. Conclusion

Leflunomide appears to be an antidote against an acute myocardial infarction.
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Private note

The definition section of a paper need not and does not necessarily contain new scientific aspects.
Above all, it also serves to better understand a scientific publication, to follow every step of the argu-
ments of an author and to explain in greater details the fundamentals on which a publication is based.
Therefore, there is no objective need to force authors to reinvent a scientific wheel once and again
unless such a need appears obviously factually necessary. The effort to write about a certain subject in
an original way in multiple publications does not exclude the necessity simply to cut and paste from
an earlier work, and has nothing to do with self-plagiarism. However, such an attitude cannot simply
be transferred to the sections’ introduction, results, discussion and conclusions et cetera.
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