Journal article Open Access

Fire Recognition based on Image Processing using Raspberry pi

R. Sandhiya; Santhoshini Arulvallal; Lakshmi Shree. B; D. Dhina


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">GMM, GPIO, GPS, Open CV, RPi, SoC</subfield>
  </datafield>
  <controlfield tag="005">20220115134853.0</controlfield>
  <controlfield tag="001">5853957</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Biomedical Engineering, AVIT,  Chennai, India.</subfield>
    <subfield code="a">Santhoshini Arulvallal</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Biomedical Engineering, AVIT,  Chennai, India.</subfield>
    <subfield code="a">Lakshmi Shree. B</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Biomedical Engineering, AVIT,  Chennai, India.</subfield>
    <subfield code="a">D. Dhina</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  and Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">635432</subfield>
    <subfield code="z">md5:085988090ed30e3a6a76fdf8f4aa94ac</subfield>
    <subfield code="u">https://zenodo.org/record/5853957/files/J76060891020.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-09-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5853957</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">143-149</subfield>
    <subfield code="n">11</subfield>
    <subfield code="p">International Journal of Innovative Technology and Exploring Engineering (IJITEE)</subfield>
    <subfield code="v">9</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Biomedical Engineering, AVIT, Chennai,  India</subfield>
    <subfield code="a">R. Sandhiya</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Fire Recognition based on Image Processing using  Raspberry pi</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2278-3075</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijitee.J76060891020</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Fire is a procedure of ignition that brings calamity. It becomes unsafe when fire loses control and spreads out. The fire detection becomes more and more important with the rapid development of image and video processing, the fire detection technology based on video processing is becoming the focal point of some research due to its advantages of high intuitive, speed and anti-jamming capability. This method uses colour and motion information extracted from video sequences to detect fire. It can work both indoor and outdoor environments. Moreover, it detects fire at the beginning of the burning process. The method performs the region growing segmentation to identify colour pixels in the scene and then identify moving pixels based on the ratio of height and width of suspected fire region. This method can get low false alarm rate by eliminating the fire-like colours because it just needs a fire pixel as the seed pixel. .&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2278-3075</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijitee.J7606.0991120</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
20
16
views
downloads
Views 20
Downloads 16
Data volume 10.2 MB
Unique views 16
Unique downloads 16

Share

Cite as