Journal article Open Access

Adaptive Prediction of User Interaction based on Deep Learning

Vidhyavani.A; Pooja Gopi; Sushil Ram; Sujay Sukumar


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Deep learning, gated recurrent unit (GRU), Navigation prediction, user interaction, web applications.</subfield>
  </datafield>
  <controlfield tag="005">20220115134851.0</controlfield>
  <controlfield tag="001">5852593</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Computer science, SRM Institute of science and  Technology, Chennai, India,</subfield>
    <subfield code="a">Pooja Gopi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Computer science, SRM Institute of science and  Technology, Chennai, India,</subfield>
    <subfield code="a">Sushil Ram</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Computer science, SRM Institute of science and  Technology, Chennai, India,</subfield>
    <subfield code="a">Sujay Sukumar</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  and Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">229221</subfield>
    <subfield code="z">md5:feb42f526be01987bfb04a543c49e611</subfield>
    <subfield code="u">https://zenodo.org/record/5852593/files/B3372079220.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-07-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5852593</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">190-192</subfield>
    <subfield code="n">2</subfield>
    <subfield code="p">International Journal of Recent Technology and Engineering (IJRTE)</subfield>
    <subfield code="v">9</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Computer science, SRM Institute of science and  Technology, Chennai, India,</subfield>
    <subfield code="a">Vidhyavani.A</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Adaptive Prediction of User Interaction based on  Deep Learning</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2277-3878</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)B3372079220/2020©BEIESP</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;This application starter work in the region of site page expectation is introduced. The structured and actualized model offers customized association by anticipating the client&amp;#39;s conduct from past web perusing history. Those forecasts are a short time later used to streamline the client&amp;#39;s future connections. We propose a Profile-based Interaction Prediction Framework (PIPF), which can illuminate the occasion activated connection expectation issue productively and adequately. In PIPF, we initially change the cooperation sign into a Sliding-window Evolving Graph (SEG) to decrease the information volume and steadily update SEG as the association log develops. At that point, we construct profiles intended to introduce clients&amp;#39; conduct by separating the static and astounding highlights from SEG. The static (separately, astonishing) stress mirrors the normality of clients&amp;#39; conduct (individually, the transient conduct). At the point when an occasion happens, we process the closeness between the event and every competitor connects.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2277-3878</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijrte.B3372.079220</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
23
13
views
downloads
Views 23
Downloads 13
Data volume 3.0 MB
Unique views 16
Unique downloads 13

Share

Cite as