Journal article Open Access
Vidhyavani.A; Pooja Gopi; Sushil Ram; Sujay Sukumar
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/5852593</identifier> <creators> <creator> <creatorName>Vidhyavani.A</creatorName> <affiliation>Computer science, SRM Institute of science and Technology, Chennai, India,</affiliation> </creator> <creator> <creatorName>Pooja Gopi</creatorName> <affiliation>Computer science, SRM Institute of science and Technology, Chennai, India,</affiliation> </creator> <creator> <creatorName>Sushil Ram</creatorName> <affiliation>Computer science, SRM Institute of science and Technology, Chennai, India,</affiliation> </creator> <creator> <creatorName>Sujay Sukumar</creatorName> <affiliation>Computer science, SRM Institute of science and Technology, Chennai, India,</affiliation> </creator> </creators> <titles> <title>Adaptive Prediction of User Interaction based on Deep Learning</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>Deep learning, gated recurrent unit (GRU), Navigation prediction, user interaction, web applications.</subject> <subject subjectScheme="issn">2277-3878</subject> <subject subjectScheme="handle">B3372079220/2020©BEIESP</subject> </subjects> <contributors> <contributor contributorType="Sponsor"> <contributorName>Blue Eyes Intelligence Engineering and Sciences Publication(BEIESP)</contributorName> <affiliation>Publisher</affiliation> </contributor> </contributors> <dates> <date dateType="Issued">2020-07-30</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5852593</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2277-3878</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijrte.B3372.079220</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>This application starter work in the region of site page expectation is introduced. The structured and actualized model offers customized association by anticipating the client&#39;s conduct from past web perusing history. Those forecasts are a short time later used to streamline the client&#39;s future connections. We propose a Profile-based Interaction Prediction Framework (PIPF), which can illuminate the occasion activated connection expectation issue productively and adequately. In PIPF, we initially change the cooperation sign into a Sliding-window Evolving Graph (SEG) to decrease the information volume and steadily update SEG as the association log develops. At that point, we construct profiles intended to introduce clients&#39; conduct by separating the static and astounding highlights from SEG. The static (separately, astonishing) stress mirrors the normality of clients&#39; conduct (individually, the transient conduct). At the point when an occasion happens, we process the closeness between the event and every competitor connects.</p></description> </descriptions> </resource>
Views | 23 |
Downloads | 13 |
Data volume | 3.0 MB |
Unique views | 16 |
Unique downloads | 13 |