Journal article Open Access

Adaptive Prediction of User Interaction based on Deep Learning

Vidhyavani.A; Pooja Gopi; Sushil Ram; Sujay Sukumar


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/5852593</identifier>
  <creators>
    <creator>
      <creatorName>Vidhyavani.A</creatorName>
      <affiliation>Computer science, SRM Institute of science and  Technology, Chennai, India,</affiliation>
    </creator>
    <creator>
      <creatorName>Pooja Gopi</creatorName>
      <affiliation>Computer science, SRM Institute of science and  Technology, Chennai, India,</affiliation>
    </creator>
    <creator>
      <creatorName>Sushil Ram</creatorName>
      <affiliation>Computer science, SRM Institute of science and  Technology, Chennai, India,</affiliation>
    </creator>
    <creator>
      <creatorName>Sujay Sukumar</creatorName>
      <affiliation>Computer science, SRM Institute of science and  Technology, Chennai, India,</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Adaptive Prediction of User Interaction based on  Deep Learning</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Deep learning, gated recurrent unit (GRU), Navigation prediction, user interaction, web applications.</subject>
    <subject subjectScheme="issn">2277-3878</subject>
    <subject subjectScheme="handle">B3372079220/2020©BEIESP</subject>
  </subjects>
  <contributors>
    <contributor contributorType="Sponsor">
      <contributorName>Blue Eyes Intelligence Engineering  and Sciences Publication(BEIESP)</contributorName>
      <affiliation>Publisher</affiliation>
    </contributor>
  </contributors>
  <dates>
    <date dateType="Issued">2020-07-30</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5852593</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2277-3878</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijrte.B3372.079220</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This application starter work in the region of site page expectation is introduced. The structured and actualized model offers customized association by anticipating the client&amp;#39;s conduct from past web perusing history. Those forecasts are a short time later used to streamline the client&amp;#39;s future connections. We propose a Profile-based Interaction Prediction Framework (PIPF), which can illuminate the occasion activated connection expectation issue productively and adequately. In PIPF, we initially change the cooperation sign into a Sliding-window Evolving Graph (SEG) to decrease the information volume and steadily update SEG as the association log develops. At that point, we construct profiles intended to introduce clients&amp;#39; conduct by separating the static and astounding highlights from SEG. The static (separately, astonishing) stress mirrors the normality of clients&amp;#39; conduct (individually, the transient conduct). At the point when an occasion happens, we process the closeness between the event and every competitor connects.&lt;/p&gt;</description>
  </descriptions>
</resource>
23
13
views
downloads
Views 23
Downloads 13
Data volume 3.0 MB
Unique views 16
Unique downloads 13

Share

Cite as