Journal article Open Access

Adaptive Prediction of User Interaction based on Deep Learning

Vidhyavani.A; Pooja Gopi; Sushil Ram; Sujay Sukumar


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/5852593">
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5852593</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/5852593"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Vidhyavani.A</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Computer science, SRM Institute of science and Technology, Chennai, India,</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Pooja Gopi</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Computer science, SRM Institute of science and Technology, Chennai, India,</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Sushil Ram</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Computer science, SRM Institute of science and Technology, Chennai, India,</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Sujay Sukumar</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Computer science, SRM Institute of science and Technology, Chennai, India,</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Adaptive Prediction of User Interaction based on Deep Learning</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2020</dct:issued>
    <dcat:keyword>Deep learning, gated recurrent unit (GRU), Navigation prediction, user interaction, web applications.</dcat:keyword>
    <dct:subject>
      <skos:Concept>
        <skos:prefLabel>2277-3878</skos:prefLabel>
        <skos:inScheme>
          <skos:ConceptScheme>
            <dct:title>issn</dct:title>
          </skos:ConceptScheme>
        </skos:inScheme>
      </skos:Concept>
    </dct:subject>
    <dct:subject>
      <skos:Concept>
        <skos:prefLabel>B3372079220/2020©BEIESP</skos:prefLabel>
        <skos:inScheme>
          <skos:ConceptScheme>
            <dct:title>handle</dct:title>
          </skos:ConceptScheme>
        </skos:inScheme>
      </skos:Concept>
    </dct:subject>
    <schema:sponsor>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Blue Eyes Intelligence Engineering and Sciences Publication(BEIESP)</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Publisher</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </schema:sponsor>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2020-07-30</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/5852593"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5852593</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:relation rdf:resource="http://issn.org/resource/ISSN/2277-3878"/>
    <owl:sameAs rdf:resource="https://doi.org/10.35940/ijrte.B3372.079220"/>
    <dct:description>&lt;p&gt;This application starter work in the region of site page expectation is introduced. The structured and actualized model offers customized association by anticipating the client&amp;#39;s conduct from past web perusing history. Those forecasts are a short time later used to streamline the client&amp;#39;s future connections. We propose a Profile-based Interaction Prediction Framework (PIPF), which can illuminate the occasion activated connection expectation issue productively and adequately. In PIPF, we initially change the cooperation sign into a Sliding-window Evolving Graph (SEG) to decrease the information volume and steadily update SEG as the association log develops. At that point, we construct profiles intended to introduce clients&amp;#39; conduct by separating the static and astounding highlights from SEG. The static (separately, astonishing) stress mirrors the normality of clients&amp;#39; conduct (individually, the transient conduct). At the point when an occasion happens, we process the closeness between the event and every competitor connects.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.35940/ijrte.B3372.079220"/>
        <dcat:byteSize>229221</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5852593/files/B3372079220.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
23
13
views
downloads
Views 23
Downloads 13
Data volume 3.0 MB
Unique views 16
Unique downloads 13

Share

Cite as