Journal article Open Access

IoT-Based Air Quality and Sound Intensity Monitoring System using Raspberry Pi

Nanda M B; Madhura K; Chathurya K; Laxmi Tripathi


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">IoT, Raspberry Pi, Air Quality Monitoring, Sound Intensity Monitoring, Cloud storage.</subfield>
  </datafield>
  <controlfield tag="005">20220115134852.0</controlfield>
  <controlfield tag="001">5852306</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Student, Department of CSE, Sapthagiri College of  Engineering, Bangalore, India.</subfield>
    <subfield code="a">Madhura K</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Student, Department of CSE, Sapthagiri College of  Engineering, Bangalore, India.</subfield>
    <subfield code="a">Chathurya K</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Student, Department of CSE, Sapthagiri College of  Engineering, Bangalore, India.</subfield>
    <subfield code="a">Laxmi Tripathi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  and Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">476892</subfield>
    <subfield code="z">md5:eb96203b8211918f778cbb896e822bf5</subfield>
    <subfield code="u">https://zenodo.org/record/5852306/files/B3207079220.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-07-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5852306</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">126-130</subfield>
    <subfield code="n">2</subfield>
    <subfield code="p">International Journal of Recent Technology and Engineering (IJRTE)</subfield>
    <subfield code="v">9</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Assistant Professor, Department of CSE, Sapthagiri  College of Engineering, Bangalore, India.</subfield>
    <subfield code="a">Nanda M B</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">IoT-Based Air Quality and Sound Intensity  Monitoring System using Raspberry Pi</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2277-3878</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)B3207079220/2020©BEIESP</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In day to day life, the increase in Air and Sound pollution has become a distressing problem. It has now become a vital issue that is to be considered. To overcome this problem, an IoT based system to monitor the pollution levels constantly has been proposed. Nowadays Internet of things (IoT) is one of the most widely used and researched technology to monitor the environmental changes. It gives an innovative approach where various devices can be connected together with the use of the internet. By interconnecting different objects located at different locations, we can collectively analyze the data at a single place. This feature is useful in data analytics. Raspberry Pi mini-computer is used to collect different data from different sensors and this data is monitored. In our proposed system we are using four different modules namely Air Quality Monitoring System, Sound Intensity Monitoring System, Cloud based Monitoring System, Notification system. These modules are integrated together to monitor the environmental changes. This system can be implemented in remote areas where the bulky equipment cannot be placed. Industrial areas where the pollution levels are high can be constantly monitored and precautionary measures can be implemented if the pollution is more.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2277-3878</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5852305</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5852306</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
24
14
views
downloads
All versions This version
Views 2424
Downloads 1414
Data volume 6.7 MB6.7 MB
Unique views 1818
Unique downloads 1414

Share

Cite as