Journal article Open Access

Diverse Methods for Signature based Intrusion Detection Schemes Adopted

Jyoti Snehi,; Abhinav Bhandari,; Vidhu Baggan; Manish Snehi, Ritu


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/5851986</identifier>
  <creators>
    <creator>
      <creatorName>Jyoti Snehi,</creatorName>
      <familyName>Jyoti Snehi</familyName>
      <affiliation>Chitkara University Institute of Engineering and Technology,  Chitkara University, Punjab, India</affiliation>
    </creator>
    <creator>
      <creatorName>Abhinav Bhandari,</creatorName>
      <familyName>Abhinav Bhandari</familyName>
      <affiliation>Department of Computer Science and Engineering,  Panjabi University, Patiala, India</affiliation>
    </creator>
    <creator>
      <creatorName>Vidhu Baggan</creatorName>
      <affiliation>Engineering Department, Infosys Limited, Chandigarh,  India</affiliation>
    </creator>
    <creator>
      <creatorName>Manish Snehi, Ritu</creatorName>
      <givenName>Ritu</givenName>
      <familyName>Manish Snehi</familyName>
      <affiliation>Engineering Department, Infosys Limited, Chandigarh,  India</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Diverse Methods for Signature based Intrusion Detection Schemes Adopted</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Intrusion detection system (IDS), Signature Based IDS, Anomaly Based IDS.</subject>
    <subject subjectScheme="issn">2277-3878</subject>
    <subject subjectScheme="handle">A2791059120/2020©BEIESP</subject>
  </subjects>
  <contributors>
    <contributor contributorType="Sponsor">
      <contributorName>Blue Eyes Intelligence Engineering  and Sciences Publication(BEIESP)</contributorName>
      <affiliation>Publisher</affiliation>
    </contributor>
  </contributors>
  <dates>
    <date dateType="Issued">2020-07-30</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5851986</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2277-3878</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijrte.A2791.079220</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Intrusion Detection Systems (IDS) is used as a tool to detect intrusions on IT networks, providing support in network monitoring to identify and avoid possible attacks. Most such approaches adopt Signature-based methods for detecting attacks which include matching the input event to predefined database signatures. Signature based intrusion detection acts as an adaptable device security safeguard technology. This paper discusses various Signature-based Intrusion Detection Systems and their advantages; given a set of signatures and basic patterns that estimate the relative importance of each intrusion detection system feature, system administrators may help identify cyber-attacks and threats to the network and Computer system. Eighty percent of incidents can be easily and promptly detected using signature-based detection methods if used as a precautionary phase for vulnerability detection and twenty percent rest by anomaly-based intrusion detection system that involves comparing definitions of normal activity or event behavior with observed events in identifying the significant deviations and deciding the traffic to flag.&lt;/p&gt;</description>
  </descriptions>
</resource>
18
9
views
downloads
Views 18
Downloads 9
Data volume 5.6 MB
Unique views 13
Unique downloads 9

Share

Cite as