
Proceedings of the

13th Junior Researcher Workshop on
Real-Time Computing

JRWRTC 2019
https://www.irit.fr/rtns2019/jrwrtc/

Toulouse, November 6-8, 2019

https://www.irit.fr/rtns2019/jrwrtc/

JRWRTC’2019 preface

Preface

This volume contains the papers presented at JRWRTC’2019: Junior Researcher Workshop on
Real-Time Computing 2019 held on November 6, 2019 in Toulouse.

There were 13 submissions. Each submission was reviewed by at least 3 program committee
members. The committee decided to accept 13 papers.

We would like to thank all members of the PC committee, and authors, as well as Liliana
Cucu-Grosjean for her support. We also would like to thank Jérôme Ermont, general chair of
the RTNS conference, to give us the opportunity to organise this workshop.

Sponsors:

• RTNS 2019 conference – https://www.irit.fr/rtns2019/

• IRIT lab – https://www.irit.fr

• INP ENSEEIHT – http://www.enseeiht.fr/

• Easychair – https://easychair.org/

October 9, 2019
Amsterdam

Benjamin Rouxel
Antonio Paolillo

i

JRWRTC’2019 Program Committee

Program Committee

Muhammad Ali Awan CISTER Research Center, Portugal
Nicola Capodieci Univerisity of Modena and Reggio Emilia, Italy
Stefano Cherubin Politecnico di Milano
Oana Hotescu IRIT - INP, France
Tomasz Kloda University of Modena and Reggio Emilia, Italy
Cláudio Maia CISTER Research Center, Portugal
Yoann Marquer INRIA Rennes - Irisa, France
Borislav Nikolic IDA - TU Braunschweig, Germany
Antonio Paolillo Université Libre de Bruxelles, Belgium
Xavier Poczekajlo Université Libre de Bruxelles, Belgium
Syed Aftab Rashid CISTER Research Center, Portugal
Juan Rivas Université Libre de Bruxelles, Belgium
Simon Rokicki INRIA Rennes - Irisa, France
Benjamin Rouxel University of Amsterdam, Netherlands
Stefanos Skalistis INRIA Rennes - Irisa, France
Aakash Soni IRIT - INP - ECE, France
Jun Xiao University of Amsterdam, Netherlands

1

JRWRTC’2019 Additional Reviewers

Additional Reviewers

Reghenzani, Federico

1

JRWRTC’2019 Table of Contents

Table of Contents

Exploration of Timing Anomalies on Simplistic Processor with Model-Checking. 1

Coralie Allioux

Challenges in Real-Time GPU Management . 5

Tanya Amert

PLRU cache analysis . 9

Zhenyu Bai, David Monniaux and Claire Mäıza

TSN Support for Quality of Service in Space . 13

Pierre-Julien Chaine, Marc Boyer, Claire Pagetti and Franck Wartel

Generating substation network simulations from substation configuration description files . 17

Théo Docquier, Ye-Qiong Song, Vincent Chevrier, Ludovic Pontnau and Abdelaziz
Ahmed-Nacer

Formal Model of the Lipsi Processor : Definition and Use of its Timing Behavior 21

Imane Haur, Mathieu Jan and Mihail Asavoae

Reasoning about non-functional properties using compiler intrinsic function annotations . . 25

Shashank Jadhav, Mikko Roth, Heiko Falk, Christopher Brown and Adam Barwell

InterNoC: Unified Deterministic Communication For Distributed NoC-based Many-Core . . 29

Eleftherios Kyriakakis, Jens Sparsoe and Martin Schoeberl

A Preliminary Examination of Schedulability under Lock Servers . 33

Catherine Nemitz

The temporal correlation of data in a multirate system . 37

Evariste Ntaryamira, Cristian Maxim and Liliana Cucu-Grosjean

Formal Verification of Real-time Networks . 41

Lucien Rakotomalala, Marc Boyer and Pierre Roux

Interdependent Multi-version Scheduling in Heterogeneous Energy-aware Embedded
Systems . 45

Julius Roeder, Benjamin Rouxel, Sebastian Altmeyer and Clemens Grelck

PRUDA: An API for Time and Space Predictible Programming in NVDIA GPUS using
CUDA . 49

Reyyan Tekin, Zahaf Houssam Eddine and Giuseppe Lipari

1

Exploration of Timing Anomalies on Simplistic Processor
with Model-Checking

Coralie Allioux
∗

VERIMAG
700 Avenue centrale

Saint-Martin-d’Hères, France
coralie.allioux@grenoble-inp.org

ABSTRACT
For real-time applications, a timely answer is at least as
important as a correct one. Thus, real-time applications re-
quire bounded guarantees on their wort-case execution time
(WCET). During WCET analysis, a counter-intuitive phe-
nomenon, called timing anomaly, can happen, in which a lo-
cal shorter execution time does not imply a better global ex-
ecution time. It is difficult to integrate this phenomenon in
timing analysis as it cannot be predicted. In most case, han-
dling timing anomalies greatly increases complexity which
makes such analyses unscalable.

In this article, we are interested in exploring multiple ex-
amples of timing anomalies, to understand in greater details
their causes and impact on a whole program, in a certain
context. Are there timing anomalies? If so, how to ana-
lyse them with model-checking and determine what kind of
timing anomalies are present?

Keywords
Real-time system, WCET, Timing anomaly, Model-checking

1. INTRODUCTION
For real-time systems, timing constraints must be gua-

ranteed. The satisfaction of such requirements is even more
important for critical systems, which must be highly reliable
because of a critical need (like aeronautics embedded sys-
tems). The timing analysis usually relies on WCET analysis
(Worst Case Execution Time) to determine upper bounds on
the execution times of a program.

Hardware platform performances are continuously impro-
ving, at the cost of an increased complexity. A pipeline
implements instruction-level parallelism, cache memory al-
lows instruction with multiple timing behaviour, analysis for
multicore processors have to take care of interferences, etc.
Supporting all these new features make timing analysis more
and more complex.

These new features are potential sources of some kind
of counter-intuitive phenomena. We are interested here in
timing anomalies, where a local shorter execution time can
provide a global longer execution time. Timing anomalies
interfere with timing analysis methods, and more generally
reduce timing predictability. In certain cases — for instance,
timing compositionality for a multicore processor [4] —, ta-

∗Student at ENSIMAG, supervised for this work by Claire
Maiza, Jacques Combaz, Lionel Rieg, Catherine Parent-
Vigouroux

king into consideration timing anomalies in the analysis is
likely infeasible because of a prohibitive complexity. This
paper aims at a better understanding of the causes and im-
pacts of timing anomalies. More precisely, we explore the
different impacts of timing anomalies coming from a single
cause: a cache access.

In this article, we present a method to explore possible
timing anomalies and their impacts on a given program,
with model-checking. The goal is to discover other pat-
terns of timing anomalies in order to understand in more
details what kinds exist, in the reduced context of a simplis-
tic processor. This processor consists in an in-order 4-stage
pipeline with instruction and data caches. Caches are the
source of uncertainty on instruction’s timing execution be-
cause of the two possible response of the cache: a cache hit
or a cache miss. Both cases differ by their execution time
(retrieving from main memory in case of a miss takes longer
than when the data is already cached). Our model simulates
the different running possibilities of the program on the pro-
cessor. The detection of a timing anomaly is expressed by
a simple query in the model-checker verifier. This query is
based on double runs: it compares timing execution of each
instruction in both cases, as in [1]. We construct our model
on a simplistic processor with a minimal program.

The remainder of the paper is organized as follow. The
next section gives more details about the model and exposes
the chosen exploration context. It explains the processor
properties and types of observed timing anomalies. Section
3 presents some kind of timing anomalies, found with our
model. Section 4 and 5 concludes the paper (related work,
conclusion, future work).

2. EXPLORATION CONTEXT
We use model-checking to explore more quickly the exis-

ting timing anomalies and to evaluate their different possible
impacts on the program execution time.

We use UPPAAL as our model-checker. Our model is
split in two parts: one for the processor, the other for the
instruction block under consideration. The source of timing
anomalies is a dynamic event: here, the execution time be-
haviour of an instruction, due to a cache access. A cache
access can have two different behaviours: hit or miss. We
explore the different behaviours by trying if the worst case
(a cache miss) can provide a better global execution time
than a cache hit. It is this aspect of the timing anomaly
phenomenon that is particularly counter-intuitive.

This paragraph gives some details on the model itself. A

Table 1: Instruction types
Instruction Role

nop Do nothing
load Register Reading
add Sum between two registers

UPPAAL model is a network of timed automata. Each stage
of the pipeline is represented by a timed automaton. The
instruction block is a passive structure, which is updated by
the pipeline whenever an instruction is completed in a stage.
The program can be determined statically or randomly. In
UPPAAL, time is continuous whereas we need discrete time.
Our model implement a new type of clock to measure time:
an integer clock, inspired by [5].

To detect timing anomalies, the model runs the program
twice sequentially, to explore both behaviours of a cache
access (hit or miss), inspired by [1]. The UPPAAL verifier
compares the execution time of each instruction between
both runs of the target program. It is easier to compare
execution times this way because all the information we need
is present in the same run in the model-checker: the query,
which detects timing anomalies, is simplified.

Model-checking is an exhaustive method, i.e. all possibi-
lities are explored. In consequence, for a 5-instruction block
with all parameters randomly chosen (instruction type, data
dependencies, data and instruction cache response, etc), there
are around 2 million different instruction blocks. The model-
checker will execute the 2 million possibilities and will store
results in a structure. For each possibility, it will compare
with the existing structure traces and states, whether this
is a new case. In this context, the complexity is emphasised
by the exhaustive search of the model-checker. The explo-
ration will often reach the limit of model-checking: memory
exhausted. The model-checker cannot explore and store the
2 millions possibilities: it is likely infeasible.

For all these reasons, we reduce the exploration context
as much as possible on the processor itself and sources of
timing anomalies, as described below.

2.1 Simplistic Processor
The processor is as simplistic as possible, to observe di-

rectly simple sources of timing anomalies.

• Instruction Types: The different instructions are
described in Table 1.

• Pipeline: We consider a in-order 4-stage pipeline, as
described in Table 2. In-order means that instructions
are executed in each stage of the pipeline in the same
order that they are written in the program.

• Resources: The processor have two caches: an in-
struction cache and a data cache. The fetch stage
uses the instruction cache whereas exec memory ac-
cess stage uses the data cache. Caches access the
memory by a shared bus: it implies that both caches
have a common access and the memory is shared. It
creates conflicts between caches to access memory. Con-
flicting accesses to the memory are solved based on a
fixed-priority: the data cache has priority over the in-
struction cache. In the model, the execution time for
a cache hit is 1 cycle. Execution time for a cache miss
is 7 cycles. We keep the realistic range between cache

Table 2: Pipeline

Stage Role
Execution
time

Concerned
instruction

fetch
Loading
instruction

Hit: 1,
Miss: 7

All

decode
Decode in-
struction

1 All

exec
memory
access

Moving data
between regis-
ter and mem-
ory

Hit: 1,
Miss: 7

load

exec
Sum between
two registers

1
add and
nop

hit and cache miss: for a MPPA3 processor, cache hit
is 3 cycles and cache miss is 23 cycles.

2.2 Types of observed Timing Anomalies
We distinguish two different kinds of timing anomaly: lo-

cal (absorbed) and global (unabsorbed) timing anomalies.
When there is a timing anomaly in the middle of a pro-

gram and it is observed only on some instructions, it is a
local timing anomaly (see example in Section 3.2).

When a timing anomaly appears somewhere in a program
and spreads until the end of the program to finally impacts
the global execution time, it is a unabsorbed timing anomaly.
In this case, a better local execution time produces a worst
global execution time (example in Section 3.3).

To limit the exploration in our model, we only consider
timing anomalies on the data cache. Therefore, only a load

instruction can trigger a timing anomaly in our model. With
this restriction, we can still observe timing anomalies pro-
duced by the fixed-priority between instruction and data
caches.

3. EXAMPLES OF TIMING ANOMALIES
These examples are verified by our model, described in

the previous section. They do not correspond to an exhaus-
tive exploration of the timing anomalies, so it is certainly
possible to find other types of timing anomalies for our use
case.

The examples have the same source: the fixed priority
between caches. Actually, the timing anomaly depends on
which stage between fetch and exec mem access waits to
access memory. More generally, a gap of some cycles can be
created by the waiting time of a stage to access memory.

We show here that other examples derived from the same
timing anomaly can have a different impact on the global
execution time of a program.

3.1 Notations
The figures in the next sections, which expose timing

anomaly examples, use the following notations:

• Instructions: L: load; A: add

• r : register

• M : cache miss which results in a memory access

• Cache hit:

– DC : Cache hit in the data cache

– IC : Cache hit in the instruction cache

3.2 A Local Timing Anomaly
We present here a local timing anomaly with only four

instructions, inspired by the well-known example presented
in [3]. The instruction block and the state of the pipeline
are shown on Figure 1. We consider both possible responses
by the data cache for the first instruction: a hit (left) or a
miss (right).

As shown by Figure 1, the shortest global execution time
is obtained for the cache hit case. However, there is a local
timing anomaly on the third instruction (blue colour): it
takes one more cycle with a cache hit than a cache miss.
This means that the worst-case termination time of the third
instruction is obtained when the first instruction issues a hit,
which is counter-intuitive at first thought.

Figure 1: Example of a local timing anomaly

As we can see, on the left case, the second load instruction
waits until the memory is free, at the 10th cycle — it waits
six cycles. In the miss case, it waits only five cycles: it is
the instruction cache which waits until memory is free.

As said before, the source of the timing anomaly is the
fixed priority between caches. The cache miss of the 1st

instruction (data cache, green colour) and 4th instruction
(instruction cache, red colour) do not request memory access
at the same cycle: there is a delay of one cycle. For this
reason, we can have a gap of one cycle for the termination
time of the 3rd instruction (blue colour): the beginning of its
memory access depends of which instruction, the 1st (green
colour) or 4th (red colour), uses memory.

In this example, the timing anomaly is only visible locally:
only one instruction of the block has such an anomalous
behaviour, and it sits in the middle of the block. This timing
anomaly does not impact the global execution time and is
absorbed as the execution goes by.

3.3 Unabsorbed Timing Anomaly
The previous timing anomaly can impact the whole exe-

cution time of a program. The example is represented on
Figure 2.

Remember that such a timing anomaly is due to the pre-
sence of an initial load instruction. Because of the fixed-
priority between the instruction cache and the data cache,
it is possible to postpone the start of an instruction in the
fetch stage. This phenomenon is visible on the 6th instruc-
tion (second black instruction, add r2), which terminates
later when the first load has cache hit.

This delay is kept throughout the rest of the program,
thanks to the pipeline which implements instruction-level
parallelism. Instead, the 5th instruction (second green on
Figure 2) has no dependency on any other instruction. The
last add instructions are executed at the same time than the
5th instruction: the parallelism of stages exec and exec
memory access causes the unabsorbed timing anomaly.

This example shows that fixed priority can create a un-
absorbed timing anomaly, which impacts the global execu-
tion time of the program. This is due to the gap at the
fetch stage for the 6th instruction (second black): this is
why the previous example only impacts locally.

4. RELATED WORK
Authors in [1] and [2] have used model-checking to detect

timing anomaly. This present work have some similarities
with their methods but the context and the objectives are
different.

[1] develops a formal executable models for automatic
detection of timing anomalies. It focuses about the cons-
truction of the model itself and how to adapt it to a given
architecture. The goal is to apply this method on a real
platform, applicable in a given computer architecture de-
sign. We were inspired by the method of the detection of
timing anomalies in the search tree of the model-checker,
which is presented in [1].

[2] uses model-checking to emphasize and validate their
definition and the automatic detection method of timing
anomalies. Contrary to our model, their method does not
use any specific program: the identification is independent
of the program.

Figure 2: Example of a unabsorbed timing anomaly

However, we construct our model in order to explore the
different kinds of timing anomaly for a given source on all
possible program — understandable by our simplistic pro-
cessor. We demonstrate that with a context reduced as much
possible, we can already observe timing anomalies which im-
pact the whole execution time of a given program.

5. CONCLUSIONS AND FUTURE WORK
Timing anomaly is a phenomenon hard to model to be

taken into account in timing analysis. A possible solution to
this constraint is to explore different kinds of timing anoma-
lies and understand their impacts on the global execution
time of a program. This understanding will probably of-
fers new ideas, methods or ways to take timing anomalies
into consideration on timing analysis, or specify the context
where a timing anomaly has an impact on global execution
time. We suggest in this article a model which explores
timing anomalies for a given program, based on the model-
checking method.

Our model is able to find various relevant examples of
timing anomalies, even in a reduced context. More precisely,
by using our model we explore impacts of timing anomaly
due to fixed-priority of data and instruction cache.

Starting from a well-known example of timing anomaly,
we succeed to find others situation where the same timing
anomaly is unabsorbed yet, i.e., a domino effect: it impacts
the global execution time of the program.

As future work, we can use this approach to search timing
anomalies in a real platform — our model is adaptable and
it is possible to add new features. It can also be used to
verify models for WCET computation.

6. ACKNOWLEDGMENTS
I thank my supervisors — Claire Maiza, Lionel Rieg, Jacques

Combaz, Catherine Parent-Vigouroux — for their participa-
tion, their support and their proofreading of this work.

7. REFERENCES
[1] M. Asavoae, B. B. Hedia, and M. Jan. Formal

executable models for automatic detection of timing
anomalies. In 18th International Workshop on
Worst-Case Execution Time Analysis (WCET 2018),
2018.

[2] J. Eisinger, I. Polian, B. Becker, A. Metzner,
S. Thesing, and R. Whilhelm. Automatic identification
of timing anomalies for cycle-accurate worst-case
execution time analysis. In 2006 IEEE Design and
Diagnostics of Electronic Circuits and systems, 2006.

[3] S. Hahn, J. Reineke, and R. Wilhelm. Toward compact
abstractions for processor pipelines. In R. Meyer,
A. Platzer, and H. Wehrheim, editors, Correct System
Design - Symposium in Honor of Ernst-Rüdiger
Olderog on the Occasion of His 60th Birthday,
Oldenburg, Germany, September 8-9, 2015.
Proceedings, pages 205–220, 2015.

[4] S. Hahn, J. Reineke, and R. Wilhelm. Towards
compositionality in execution time analysis: definition
and challenges. SIGBED Review, 12(1):28–36, 2015.

[5] A. S. Xiaowan Huang and S. A. Smolka. Using integer
clocks to verify the timing-synch sensor network
protocol. In Proceedings of NFM 2010, April 13-15,
2010, Washington D.C, USA, pages 79–81, 2010.

Challenges in Real-Time GPU Management∗

Tanya Amert
The University of North Carolina at Chapel Hill

tamert@cs.unc.edu

ABSTRACT
Existing work on response-time analysis for real-time task
systems represented as processing graphs containing cycles
does not properly handle GPU-using tasks when intra-task
parallelism is restricted. For such graphs to be schedula-
ble, the execution of GPU-using tasks within the cycles may
need to be prioritized over that of other tasks. This pa-
per presents possible approaches for managing tasks using
NVIDIA GPUs while allowing some tasks to be prioritized
over others, and explores the tradeoff that results between
response times of various tasks.

Keywords
GPUs, CUDA, real-time GPU management

1. INTRODUCTION
Advanced driver assist systems are enabled by a range

of computer vision (CV) applications. These applications
typically rely on cameras as an input modality. Processing
of camera feeds for CV applications is greatly accelerated
by graphics processing units (GPUs). Such safety-critical
systems must be certified, so response-time bounds for CV
applications executed on GPUs are a necessity.

However, bounding response times of tasks executed on a
GPU is extremely challenging. NVIDIA’s Drive-PX2 series
of GPU-equipped embedded platforms are specifically de-
signed for automotive applications, yet necessary scheduling
details of NVIDIA GPUs are not available without a restric-
tive non-disclosure agreement, and their drivers are typically
closed source. As a result, existing response-time bounds for
such GPUs are not tight, and modifications to the internal
scheduling policies are difficult to make. Although AMD
provides open-source drivers for its GPUs, AMD is not as
widely adopted by automotive companies.

Contributions. In this paper, we explore approaches to
real-time GPU management that enable tighter response-
time bounds for GPU-using tasks while allowing for priori-
tizing of some GPU-using tasks over others.

Organization. This paper is organized as follows. We
provide an overview of NVIDIA GPU software and hardware
in Sec. 2 and discuss related work in Sec. 3. We then explore
various approaches to managing GPU execution in Sec. 4,
and conclude in Sec. 5.

∗Work supported by NSF grants CNS 1409175, CNS
1563845, CNS 1717589, and CPS 1837337, ARO grant
W911NF-17-1-0294, and funding from General Motors.

Listing 1 Vector Addition Pseudocode.

1: kernel vecAdd(A ptr to int, B: ptr to int, C: ptr to int)
// Calculate index using built-in thread, block info

2: i := blockDim.x * blockIdx.x + threadIdx.x
3: C[i] := A[i] + B[i]
4: end kernel

5: procedure main
// (i) Allocate GPU memory for arrays A, B, and C

6: cudaMalloc(d A)
7: . . .

// (ii) Copy arrays A and B from CPU to GPU memory
8: cudaMemcpy(d A, h A)
9: . . .

// (iii) Launch the kernel
10: vecAdd<<<numBlocks, threadsPerBlock>>>(

d A, d B, d C)
// (iv) Copy results from GPU to CPU array C

11: cudaMemcpy(h C, d C)
// (v) Free GPU memory for arrays A, B, and C

12: cudaFree(d A)
13: . . .

14: end procedure

2. BACKGROUND
In this section, we provide an overview of the basics of

NVIDIA GPUs.

2.1 CUDA
CUDA is a C/C++ extension developed by NVIDIA to

allow programmers to submit instructions to the GPU [8].
The CUDA API includes commands to copy data between
the host CPU and the device GPU, as well as between mul-
tiple GPU devices, and to submit programs called kernels
for execution on the GPU.

The general structure of a CUDA program is illustrated in
Listing 1. This includes (i) allocating memory on the GPU,
(ii) copying data to the GPU, (iii) executing one or more
kernels on the GPU, (iv) copying the results back from the
GPU, and (v) freeing any allocated memory on the GPU.

Kernel execution is divided into groups of 32 threads, called
warps. Each thread in a warp executes in a SIMD fashion,
using built-in CUDA variables to determine the data for that
thread (Line 2). Warps are combined into blocks, which are
further grouped into grids. As shown in Line 10, the com-
mand to issue a kernel requires the programmer to specify
the layout of threads into grids and blocks (numBlocks and
threadsPerBlock, respectively).

Each CUDA commands is issued to a stream, which is a
FIFO queue of operations. By default, all CUDA commands
are issued to the default stream, called the NULL stream.

Memory Controller

DRAM1

Bank 0

DRAM

Bank 1 …
DRAM

Bank n

DRAM

Bank 2

DRAM

Bank n-1

A57 CPU 0

…
L1-I

48KB

L1-D

32KB

A57 CPU 3

L1-I

48KB

L1-D

32KB

A57 CPU shared L2 cache

2 MB

GPU L2 cache

512 KB

Pascal GPU

SM 0 SM 1

128 cores 128 cores

Denver CPU 0

L1-I

128KB

L1-D

64KB

Denver CPU 1

L1-I

128KB

L1-D

64KB

Denver CPU shared L2 cache

2 MB

Copy Engine

1DRAM bank count and size depend on device package

(a) NVIDIA TX2

Host Machine

GPU L2 cache

4608 KB

Discrete Volta GPU

Titan V

SM 0

64 cores

SM 79

64 cores
...

Copy Engine 0 Copy Engine 6

…DRAM1

Bank 0

DRAM

Bank

nCPU

…
DRAM1

Bank 0

DRAM

Bank

nGPU

DRAM

Bank 1

PCI-E Bus

...

(b) NVIDIA Titan V

Figure 1: Comparison of two GPUs: (a) NVIDIA
TX2 (integrated) and (b) Titan V (discrete).

Use of the NULL stream greatly reduces parallelism, and
user-defined streams can be used to allow operations to ex-
ecute in parallel, and thus better utilize powerful GPUs.

2.2 NVIDIA GPU Hardware
NVIDIA GPUs contain multiple copy engines (CEs), used

to copy data to and from the GPU, and an execution en-
gine (EE), comprised of multiple streaming multiprocessors
(SMs). An SM can service up to 2048 threads at once. In-
tegrated GPUs typically have an order of magnitude fewer
SMs than discrete GPUs.

Example 1. Details of two NVIDIA GPUs are depicted
in Fig. 1. NVIDIA’s TX2 system-on-chip (inset (a)) has a
GPU comprised of one CE and two SMs. In contrast, the
discrete Titan V (inset (b)) boasts seven CEs and 80 SMs.

An SM is comprised of a number of hardware cores, ser-
viced by a small number of warp schedulers. A warp sched-
uler hides memory latency by determining which of four
warps should execute an instruction at a given time instant.
For the rest of this paper, we consider scheduling at the
thread and block level, and ignore warps, as their details
are much more difficult to measure at runtime.

3. RELATED WORK
In this section, we discuss three groups of related work.

In doing so, we consider the following different dimensions
of GPU execution: whether the GPU is treated as a unipro-
cessor or multiprocessor device, if the approach uses locking
protocols to synchronize GPU access or considers scheduling
techniques, whether the GPU is accessed by one or multiple
processes, and if one or multiple GPUs are available in a sys-
tem. We consider related work first based on the choice of
scheduling or synchronization as a management technique,
and discuss the remaining dimensions later.

Scheduling. The NVIDIA documentation omits important
details regarding GPU scheduling policies. To this end, Ot-
terness et al. explored the behavior of kernels submitted
from different processes (thus executed via timeslices) [9].
Amert et al. extended this exploration to GPU access from
within a single process [1]; they described a set of rules dic-
tating the order in which GPU operations (kernel executes
or copy operations) execute on their respective GPU engines,
and provided microbenchmark experiments to validate this
behavior. They additionally studied the behavior when both
user-defined streams and the NULL stream are used, as well
as two different stream priority levels. Recently, Yang et
al. extended this work to provide response-time bounds for
GPU-using CV applications expressed as DAGs [10].

Capodieci et al. demonstrated a real-time scheduler for
GPU operations [3]. They implemented a software scheduler
module within the NVIDIA hypervisor’s runlist manager,
enabling preemptive earliest-deadline first (EDF) scheduling
on the Drive-PX2. However, their approach requires the
open-source drivers available only for NVIDIA’s Drive-PX2
embedded platform, and some details and their source code
were not made available due to non-disclosure agreements.

Synchronization. Access to the GPU can alternatively be
arbitrated by a locking protocol. This approach was taken
in developing GPUSync [4], a real-time GPU management
framework. GPUSync utilizes k-exclusion locks to allow mu-
tually exclusive access to a number of GPUs in a system. Im-
plemented in the kernel, GPUSync is available as a fork [5]
of the LITMUSRT kernel [6].

Remaining dimensions. Of the described related work,
both GPUSync and Capodieci et al. treat the GPU as a
uniprocessor. For less-powerful embedded GPUs, this is a
reasonable assumption. However, computations performed
on a powerful GPU such as the Titan V might not require
all of the GPU’s many SMs, resulting in wasted GPU ca-
pacity. In that case, the multiprocessor-scheduling-based
approaches of [1, 9, 10] might be more appropriate.

Simultaneous GPU access from different processes can
greatly impact response times [9]. For discrete GPUs, the
NVIDIA Multi-Process Service (MPS) allows the scheduling
rules detailed in [1] to apply even when different processes
access the GPU; without MPS, kernels submitted from dif-
ferent processes execute in timeslices based on the runlist,
and thus do not truly execute concurrently on the GPU.

The above related work can also be applied for systems
with multiple GPUs. The CUDA API allows the program-
mer to specify to which GPU an operation is submitted. The
EDF approach from [3] applies if tasks are partitioned to the
different GPUs, and GPUSync directly allows for multiple
GPUs via its k-exclusion locking protocol to manage access.

1 4

2

5 6

3

Regular edge Delay edge

CPU node𝜏𝑣 GPU node𝜏𝑣

𝑝 = 1

𝑝 = 2

Figure 2: A sporadic task graph with CPU and GPU
nodes and one cycle.

4. REAL-TIME GPU MANAGEMENT
In this section, we formalize our problem and present po-

tential approaches to real-time GPU management that pri-
oritize tasks within cycles.

4.1 Motivation
Processing graphs can be used to represent CV applica-

tions. Nodes represent tasks that perform some computa-
tion, and edges correspond to the data dependencies be-
tween tasks. Delay edges indicate that the data involves
results from a prior time step (in CV applications, a time
step typically corresponds to a video frame used as inupt).
Corresponding to each delay edge is a value p indicating the
age of the historical data dependency.

Example 2. An example graph is depicted in Fig. 2. The
edges from τ1 to τ2 indicate that a job of τ2 uses the outputs
of the jobs of τ1 from the current and previous time steps.

Cycles induced by the presence of delay edges can wreak
havoc on existing real-time analysis. If some delay edge in
a cycle has p = 1, then some task in that cycle depends on
the output of the prior frame; as a result, no two jobs of any
task in that cycle can possibly execute in parallel.

Example 2. (cont’d) In Fig. 2, the delay edge from τ6 to
τ4 results in a cycle. As p = 2 for that edge, no more than
two jobs of any task in {τ4, τ5, τ6} can execute in parallel.

The implicit-deadline sporadic task model is given as τi =
(Φi, Ti, Ci), where Φi, Ti, and Ci represent the task’s phase
offset, period, and worst-case execution time, respectively.
The utilization of task τi is defined as ui = Ci/Ti.

Assume multiple jobs of a task may execute concurrently.
If the utilization of a cycle is greater than 1.0, then jobs of
tasks in that cycle cannot be scheduled sequentially without
incurring unbounded response times; if ucycle is the utiliza-
tion of a cycle in the graph, then at least ducyclee jobs of
each task in the cycle must be allowed to execute simultane-
ously. However, the data dependency introduced by a cycle
requires that no more than p jobs of a given task may execute
at once. Thus, tasks have restricted intra-task parallelism.

In an upcoming paper, Amert et al. [2] propose a new rp-
sporadic task model and provide the corresponding analysis
for sporadic task graphs containing cycles with utilization
greater than 1.0. The rp-sporadic task model encodes the
necessary intra-task parallelism as an additional task pa-
rameter: τi = (Φi, Ti, Ci, Pi). In this model, Pi is the
maximum possible intra-task parallelism for the task.

1 456

2

3

𝑃1 = 𝑚
𝑃2 = 𝑚

𝑃3 = 𝑚

𝑃456 = 2

Figure 3: The sporadic task DAG corresponding to
the graph in Fig. 2.

4.2 Proposed Approaches
The analysis presented in [2] reveals a circularity: to de-

termine the response-time bound for CPU tasks, it is neces-
sary to know the response-times of the GPU tasks, and vice
versa. The GPU response-time analysis in [10] assumes full
intra-task parallelism (Pi =∞) for GPU tasks, so it does not
apply to the rp-sporadic task model. Instead, Amert et al.
break this circularity by assuming that access to the GPU
is arbitrated with a simple FIFO mutex lock, and thus treat
GPU blocking time as CPU execution time. They also com-
bine cycles into supernodes; the resulting DAG correspond-
ing to the graph from Fig. 2 is shown in Fig. 3. However,
the response-time bounds derived in [2] are conservative for
powerful GPUs such as the Titan V.

We now explore real-time GPU management approaches
that enable more precise accounting of response times of
GPU tasks under the rp-sporadic task model, and aim specif-
ically to minimize the response times for GPU nodes that
are part of cycles. We first assume each approach is taken
individually; later we remove this assumption.

As in the graph in Fig. 2, we assume that each task exe-
cutes on either the CPU or the GPU. For our purposes, we
consider only the GPU tasks, which we divide into two sets:
H and L, corresponding to nodes that are (high priority)
and are not (low priority) part of a cycle, respectively.

Example 2. (cont’d) In Fig. 2, H = {τ5} and L = {τ3}.

Multiple GPUs. In a system with many GPUs, each cycle
can be assigned to its own GPU. If GPUs are not so abun-
dant, a subset of the GPUs can be designated for use only by
tasks in H, with access arbitrated by a k-exclusion locking
protocol, as in GPUSync [4]. If some task in H may access
more than one GPU simultaneously, a locking protocol for
replicated resources [7] can instead be used to manage ac-
cess. This might be the case if multiple GPU operations are
issued by a single task.

Multi-Process Service. In addition to allowing different
processes’ kernels to execute according to the rules in [1],
MPS allows the programmer to specify a fraction of the GPU
available to a given process.1 Thus, MPS can be used to
divide a GPU into two or more “virtual GPUs” (vGPUs);
the scheduling rules of [1] apply to each vGPU.

Example 3. An example execution pattern is shown in
Fig. 4. In this experiment, two processes each submitted a
single kernel to a Titan V. Under MPS, each process was
specified to utilize 40% of the GPU, i.e. 32 of the 80 to-
tal SMs. Each process submitted a kernel comprised of 160
1MPS can only be used on discrete GPUs, and thus is not
available for integrated GPUs, such as on NVIDIA’s TX2 or
Drive-PX2.

Figure 4: Two processes, each using 40% of the GPU
(all of the Titan V’s 80 SMs shown).

blocks of 1024 threads each (exactly enough to utilize the
entire GPU). Both kernels were able to run immediately us-
ing their 40% share, and both took three times as long to
complete compared to their runtime in isolation. (Without
MPS, one kernel would utilize the entire GPU, and the sec-
ond would start upon completion of blocks of the first.)

As demonstrated in Ex. 3, there is a tradeoff between the
response time of a task and the fraction of the GPU it can
utilize. One vGPU could service all tasks in L, while the rest
service tasks in H. Alternatively, multiple processes could
be configured with different GPU fractions, acting as servers
of different execution power available to tasks in H.

Stream priorities. One of the scheduling extensions ex-
plored in [1] is stream priorities. On existing NVIDIA GPUs,
there are two priority levels for user-defined streams: priority-
low (the default) and priority-high. As described by Amert
et al., the EE uses one scheduling queue per priority level.
Rule A2 from [1] states that if a kernel is present at the head
of the priority-high EE queue, then blocks from that kernel
may execute on the EE. Otherwise, blocks of the kernel at
the head of the priority-low EE queue, if any, may execute.

Example 4. Fig. 5 depicts an experiment showing the
starvation of a kernel submitted to a priority-low stream
(Fig. 6 in [1], reproduced on a Titan V with only the first
8 SMs depicted for clarity). All 640 blocks of each of ker-
nels K2 and K3 complete execution before the last 160 blocks
of K1 execute. The execution of K3 is only delayed by the
execution of K2, another kernel in a priority-high stream.

Tasks in H could submit kernels only to priority-high
streams, and tasks in L could submit kernels only to priority-
low streams. Therefore, tasks in H would be delayed only
by other tasks in H plus at most the longest block duration
of any kernel submitted by a task in L.

4.3 Combining Approaches
The approaches mentioned above can be combined. For

example, in a system with multiple GPUs, allowing only
tasks from a single cycle to execute on a GPU reduces block-
ing of those tasks, but might greatly underutilize the GPU.
Instead, the prioritized stream approach could be used to
allow tasks in L with short block durations to better uti-
lize the GPU with only minimal delay for the tasks in H
assigned to that GPU. Similarly, MPS and stream priori-
ties could be combined to enable tasks in both H and L to
execute on the same vGPU. The delay to tasks in H intro-
duced by lower-priority jobs when using prioritized streams

Figure 5: Kernels in priority-high streams can starve
kernels in priority-low streams (truncated to show
only the first 8 SMs).

suggests a design tradeoff between block duration and the
number of blocks needed to complete computations.

5. CONCLUSION
In this paper, we presented multiple potential approaches

for real-time GPU management, with a focus on prioritizing
the operations of some GPU-using tasks over others. These
techniques can enable tighter response-time bounds for GPU
workloads. A deeper exploration of each approach, as well
as combinations, is necessary in the future, with a case study
of real automotive applications.

6. REFERENCES
[1] T. Amert, N. Otterness, M. Yang, J. Anderson, and

F. D. Smith, “GPU scheduling on the NVIDIA TX2:
Hidden details revealed,” in RTSS ’17.

[2] T. Amert, S. Voronov, and J. Anderson, “OpenVX and
real-time certification: the troublesome history,” in
RTSS ’19, to appear.

[3] N. Capodieci, R. Cavicchioli, M. Bertogna, and
A. Paramakuru, “Deadline-based scheduling for GPU
with preemption support,” in RTSS ’18.

[4] G. A. Elliott, “Real-time scheduling of GPUs, with
applications in advanced automotive systems,” Ph.D.
dissertation, University of North Carolina at Chapel
Hill, 2015.

[5] GPUSync Project,
https://www.github.com/GElliott/litmus-rt-gpusync/.

[6] LITMUSRT Project, https://www.litmus-rt.org/.

[7] C. Nemitz, K. Yang, M. Yang, P. Ekberg, and
J. Anderson, “Multiprocessor real-time locking
protocols for replicated reources,” in ECRTS ’16.

[8] NVIDIA, “CUDA toolkit documentation v10.1.243,”
Online at http://docs.nvidia.com/cuda/, 2019.

[9] N. Otterness, M. Yang, S. Rust, E. Park, J. Anderson,
F. Smith, A. Berg, and S. Wang, “An evaluation of the
NVIDIA TX1 for supporting real-time computer-vision
workloads,” in RTAS ’17.

[10] M. Yang, T. Amert, K. Yang, N. Otterness, J. H.
Anderson, F. D. Smith, and S. Wang, “Making
OpenVX really ‘real time’,” in RTSS ’18.

PLRU Cache Analysis

Zhenyu Bai
Univ. Grenoble Alpes, CNRS,

Grenoble INP, VERIMAG,
38000 Grenoble, France
zhenyu.bai@univ-
greoble-alpes.fr

David Monniaux
Univ. Grenoble Alpes, CNRS,

Grenoble INP, VERIMAG,
38000 Grenoble, France

David.Monniaux@univ-
grenoble-alpes.fr

Claire Maïza
Univ. Grenoble Alpes, CNRS,

Grenoble INP, VERIMAG,
38000 Grenoble, France
claire.maiza@univ-
grenoble-alpes.fr

ABSTRACT
Memory reads have very different latency whether they hit
the cache or they need to go to main memory (DRAM). This
has to be taken into account for worst-case execution time
analysis. Caches are characterized by several parameters,
including their replacement policy.

The Pseudo Least-Recently Used (PLRU) policy is widely
used in industry. It is however difficult to statically predict
which accesses are hits or misses with this policy, compared
to the Least-Recently Used (LRU) policy. Previous analyses
tend to be expensive or to lack precision—that is, they tend
to fail to classify accesses that could be classified as “always
hit” or “always miss’.

In this paper, we present a new canonical representation
of PLRU cache state and we show a new PLRU cache anal-
ysis with better balance between precision and scalability.
Our analysis is based on abstract interpretation; we show
its soundness and its performance on realistic experiments.

Keywords
Cache Analysis, Abstract Interpretation, Static Analysis,
PLRU cache

1. INTRODUCTION
The latency of accesses to DRAM-based main memory

has long been much higher than that of basic operations
on CPUs. A common solution to bridge this gap is to in-
clude one or more cache memories between the CPU and
main memory, meant to store frequently accessed code and
data. These cache memories respond much faster than main
memory.

The certification of safety-critical real-time applications
often demands to bound a program’s worst-case execution
time (WCET). In architectures involving caches, the latency
of an individual memory access may vary considerably de-
pending on whether the access is a cache hit (the data is
retrieved from the cache) or a cache miss (the data is not in
the cache and has to be fetched from the next-level cache or
from DRAM). Obviously, a higher memory access latency
may lead to a higher execution time. More complex ef-
fects may exist: on certain systems, due to timing anomalies
(cache Hit may cause worst execution time), a lower mem-
ory access latency can translate to a higher execution time.
Also, uncertainty about whether an access is a hit or a miss
forces the static analysis of the microarchitecture to follow
both cases, leading to higher analysis costs. It is therefore
important to classify accesses that always hit or always miss

the cache.
In this paper, we focus on instruction caches—an exten-

sion to data caches could be devised by prepending a pointer
analysis and dealing with the writing policy, but this is out
of our scope. Instruction and data caches are generally set-
associative: each memory access is mapped to exactly one
cache set, determined by a simple computation from its ad-
dress. For most policies, including PLRU, the behavior of
each cache set is independent. Therefore, we construct our
analysis by focusing on a single cache set. Each cache set
consists of several cache lines. After a cache miss, the mem-
ory block is loaded into the cache set that it maps to; if the
cache set is already full, one of its K cache lines is evicted.
The evicted line is determined by the replacement policy, in
our case, the PLRU.

There exist several analyses for statically predicting which
accesses to a PLRU cache are hits or misses; they however
tend to be imprecise (many accesses classified as “unknown”
when they could be classified as “always hit” or “always
miss”) and/or scale poorly, due to combinatorial explosion.1

In this paper, we propose a static analysis approach based
on abstract interpretation that is scalable and yet conserves
reasonable precision.

2. PLRU REPLACEMENT BEHAVIOR
Pseudo-LRU (LRU) replacement policy is a tree-based ap-

proximation of the Least Recent Used (LRU) policy. It ar-
ranges the cache lines at the leaves of a tree with tree bits
pointing to the line to be evicted next; a 0 indicates point-
ing to the left sub-tree, a 1 indicates pointing to the right
sub-tree. After every access, all tree bits on the path from
the root to the accessed or line are set to point away from
the line. Other tree bits are left unchanged.

PLRU policy has been shown to be less predictable than
LRU[7], specially due to the following properties:

• a block is not guaranteed to be evicted after K distinct
accesses of new blocks;

• a block is no longer guaranteed to be cached after
log2(K) + 1 accesses.

Age-based analyses track for each block possible values for
its “age”, that is, how far it is from being the most recent
access, or, equivalently, how many newer values have been

1This contrasts with LRU, for which there exist several anal-
yses [3], including highly precise ones [8]. This difference
between LRU and PLRU has been characterized from the
point of view of complexity theory [6].

loaded into the cache after it. Such analyses are widely used
for LRU caches [3, 8]. They however cannot be used for
showing that some block has been evicted from a PLRU
cache, due to the possibility of infinite survival. In addition,
it is possible to show that a block a must be in the cache only
if at most log2(k) accesses to other blocks have been occurred
since the last access to a. For larger associativities this is
very imprecise. Hence, we want a new analysis avoiding
those limitations.

3. PLRU REPLACEMENT BEHAVIOR:
FROM PHYSICAL STATE TO LOGICAL
STATE

3.1 Logical cache state
Simple canonical representations can be naturally found

for LRU caches and FIFO caches, by ordering cached blocks
from last-in to first-in for FIFO, or from most-recently used
to least-recently used for LRU.2

For PLRU, to each cache state we associate a canonical
representation, that we call uniform index, by rotating si-
multaneously the tree bits and the subtrees so that all ar-
rows point leftwards to the same block as before, and thus
all tree bits are 0. This canonical representation stands for
K equivalent states.

Since all tree bits are now 0, we can discard them. The
state of the cache is now defined by the sequence of K line
contents from left to right. To each block we can associate
a position in the cache, in {0, ...,K − 1} that we use as our
concrete state.

3.2 Updating the concrete state

a b c d

0

0 0

Initial state

0 1

0 1 0 1

a b c d

1

0 0

b accessed, Hit

1 0

0 1 0 1

c d a b

0

0 0

after ’re-format’

0 1

0 1 0 1

Figure 1: Tree-bits changes and re-formatting upon hit

Fig.1 shows how the concrete state is affected by memory
accesses. For a given canonical state, upon cache hit, tree
bits may change and hence make the state no longer canon-
ical; then we re-format the new state to make it canonical.

In the case of hit, the contents are unchanged, and the
changes of the tree bits and reformatting amount to a per-
mutation of the positions of the block in the cache. In fact,
in the case of Hit, this permutation of position is static and
depends only on the position of the accessed cache line. In
the example of Fig.1, the initial canonical state before access
can be written as:

[a, b, c, d] or
a→ 0; b→ 1; c→ 2; d→ 3

and after access, the canonical state is

[c, d, a, b] or
a→ 2; b→ 3; c→ 0; d→ 1

2The actual hardware implementation may work differently,
e.g. for FIFO as a circular buffer, leaving blocks in the
same hardware memories and moving a pointer to the cur-
rent block to be evicted. This is immaterial to our reasoning.

In the case of miss, it is not exactly a permutation : tree
bits changes are the same as for a hit on position 0, but
the block at position 0 is evicted and replaced by the newly
loaded block. We compare in the example below, the update
upon cache Hit on position 0 and upon cache Miss.

[a, b, c, d]
upon access a, Hit−−−−−−−−−−−−→ [c, d, b, a]

[a, b, c, d]
upon access e, Miss−−−−−−−−−−−−→ [b, c, d, e]

4. CACHE ANALYSIS - ABSTRACT INTER-
PRETATION

4.1 Abstract Interpretation framework
To classify a memory access as“always miss”(respectively,

“always hit”), we must prove that the cache state along all
feasible execution paths before this access results in a miss
(respectively, a hit) upon this access. Enumerating all such
paths is in general intractable. Enumerating all reachable
cache states at a given location is also quickly intractable,
as we shall see. Most cache analyses thus use some form of
abstraction of the set of reachable cache states.

Abstract interpretation, a widely used approach in static
analysis, provides a framework for abstraction. In this frame-
work one has a concrete domain Dconc, i.e., what we want
to abstract, here the cache states, an abstract domain, Dabs,
i.e., the abstract values upon which the analysis computes,
and for each operation of the system, here each possible
memory access, a suitable transformer for the abstract value.
These transformers must be sound, meaning that if an ab-
stract value represents a concrete state that can lead to an-
other concrete state by the operation, then the abstract
value produced by the transformer should represent that
other concrete states. In other words, we never ignore fea-
sible behaviors of the program.

While our analysis is sound, it is not exact, as in most
cases in abstract interpretation.3 This means the analy-
sis may fail to classify as “always hit” (respectively, “always
miss”) accesses that hit (respectively, miss) in all executions.

4.2 Abstract Interpretation in cache analysis
We assume that we are given a Control-Flow Graph (CFG)

containing the control-flow and the distribution of memory
accesses into cache sets. This CFG is obtained by loading
the program with known addresses, and performing pointer
analysis for indirect branches, including returns from proce-
dure calls.4

This CFG is an abstraction of the original program. We
completely lose the semantics of the program instructions
(arithmetic, conditional branches); thus the CFG may ex-
hibit behaviors that cannot occur in the original program
(e.g., taking a x < 0 branch then a x > 0 branch for the
same x). This is a common approach in cache analysis. It
is in general impossible to include a faithful account of pro-
gram semantics in analysis, since doing so entails solving
Turing’s halting problem. Partially accounting for unfea-
sible paths is possible, but is outside of the scope of this
paper.

3For LRU there exists one scalable exact analysis [8], but
again LRU has good properties not shared by PLRU.
4In the case of data caches, one needs pointer analysis for
all values.

We also do not take the call stack into account, so calls
to the same procedure will be mixed in the semantics. It is
possible to refine this by inlining procedures subgraphs at
the point of call, in the case of bounded call stacks, which
is in general the case for safety-critical systems.

5. COLLECTING SEMANTICS
The simplest solution for cache analysis is to compute the

set of all reachable concrete cache states at each program
point, called Collecting Semantics. Thus, the domain of
collecting semanticsDcoll is a set of concrete state. Following
abstract interpretation, we define first the concrete domain,
the collecting semantics:

• to each program point we attach the set of reachable
cache states at that point, the domain of this set is
called Dcoll;

• upon a memory access, we update each possible state
of the set by the rules of PLRU policy, this transformer
is called Updatecoll;

• at a control point with several incoming edges, we keep
the disjoint union of all possible cache state; this trans-
former is called Joincoll.

Assuming the program starts with an empty cache, we at-
tach the set ∅ to the program starting location, meaning
that the only possible cache state at this location is empty.
Other locations receive ∅, meaning they are so far considered
to be unreachable.

We then saturate these sets as follows. We maintain a
working set of locations to be updated, initially containing
only the immediate successors of the initial control location.
Then, as long as this set is nonempty, we pick a location
from it, and replace the set of states corresponding to that
location by the union of the images of the sets of states
assigned to its predecessors by the suitable permutations and
replacement. If the set at the location is changed from its
previous value, then the successors are added to the working
set.

In the end, we have computed for each location the set of
reachable cache states. Unfortunately such an analysis, akin
to explicit-state model-checking, suffers from combinatorial
explosion, as we shall see later. The goal of our abstraction is
hence to find a good way to abstract the set of concrete states
and find good transformers corresponding to Updatecoll and
Joincoll.

6. OUR ANALYSIS
We abstract a set of concrete states by all possible posi-

tions of each block in the canonical representation.

6.1 Abstract Domain
Formally, the abstract domain is defined as:

Dabs : B→ P({0, ..,K − 1, ε})
Where P stands for power set and B stands for basic block
(i.e. an identifier in N). The {0, ..,K − 1, ε} corresponds to
the positions in the canonical representation, with ε meaning
‘not cached’, to distinguish ‘a block can only be at position
p’ from ‘a block can be at position p or not cached’. {ε}
means that a block is for sure not in the cache.

The abstraction is defined by its concretization function:

γ : Dabs → Dcoll

γ(q#) = {pb ∈ B→ {0, ..,K − 1, ε}|∀b ∈ B,
pb(b) 6= ε⇒ pb(b) ∈ q#(b) ∧ pb(b) = ε⇒ ε ∈ q#(b)}

We show below an example of abstracting from collecting
semantics then concretizing it to collecting semantics:

{[a,b,c,d], [e,f,c,d]}
⇓ abstraction
a→ {0, ε}; b→ {1, ε}; c→ {2};
d→ {3}; e→ {0, ε}; f → {1, ε}.
⇓ concretization
{[a,b,c,d], [e,f,c,d], [a,f,c,d], [e,b,c,d]}

This example also shows that our abstraction is not ex-
act: it overapproximates (soundly) certain sets of reachable
states.

6.2 Abstract Transformers
Following the Abstract Interpretation framework, we also

define the transformers corresponding to those for collecting
semantics : the Updatecoll upon memory access, and the
Joincoll when control flows from several locations to a single
one.

6.2.1 Join transformer: Joinabs

Similar to collecting semantics, we keep the union of pos-
sible positions. Formally, the Joinabs transformer is defined
as:

Joinabs : Dabs ×Dabs → Dabs

Joinabs = λb.s1(b) ∪ s2(b)

The Joinabs gives also an over-estimation of Joincoll i.e.
γ ◦ Joinabs ⊂ Joincoll ◦ γ. However, Joinabs is sound.

6.2.2 Update transformer: Updateabs
As stated in Sec.3, the permutation of position is static.

Hence, we can compute the new cache state position by
position. Upon cache Hit, all possible blocks at the posi-
tion x will be at position y where x and y depends only on
the accessed position. We define the function representing
this permutation σ → {0, ...,K − 1} → {0, ...,K − 1, ε} →
{0, ...,K − 1, ε} takes the accessed position and the position
before update then determinate the position after update.

Upon cache miss, tree bits changes are the same as Hit
at eviction position, but the block at eviction position is
evicted and replaced by the new block. We use a function
σMiss : {0, ..., k − 1, ε} → {0, ..., k − 1, ε} to represent the
permutation of each position, in the case of miss, the hit
position is no longer needed since the permutation is the
same as hit on position 0.
Updateabs consists in applying σ to each possible position

of each block. It’s defined formally by :

updateabs : Dabs × B→ Dabs

updateabs(q#)(b) = λx.
⋃

i∈q#(b)

σ(i)(q#(x))

In practice, a block that can be at x1, x2, x3, .. will be at
y1, y2, y3 where xi and yi are determined statically, that
means the update of all possible position of a block can
be pre-calculated, which accelerates considerably the analy-
sis. In the example below, since b could be at 1 or ε before
update, we apply σHit,1 and σMiss respectively to each po-
sition.

a→ {0, ε}; b→ {1, ε}; c→ {2};
d→ {3}; e→ {0, ε}; f → {1, ε}.
⇓ access b
a→ {2, ε}; b→ {3}; c→ {0, 1};
d→ {2, 1}; e→ {2, ε}; f → {0, ε}.

7. EVALUATION
Both abstract analysis and collecting semantics are im-

plemented with OTAWA [1]. The binaries of TACLe Bench-
marks are compiled for a small ARM processor. The mem-
ory block is fixed to 32 bytes and the associativity is 8, the
total cache size hence depends on the number of cache set.

In Fig.2, we compare the analysis time of both type of
analysis. A timeout of 2 hours has been set and consid-
ered as reasonable 5. In case of one cache set and small
programs, we can see that the performance of collecting se-
mantics is similar to abstract analysis. However, for big
programs and 2 or 8 cache sets, collecting semantics fails
to finish in 2 hours, whereas abstract analysis accomplishes
it; for medium one, analysis time of collecting semantics is
exponential to abstract analysis (The y-axis has logarithmic
scale).

In Fig.3, we compare the percentage of classification (Al-
ways Hit (AH), Always Miss (AM) and Not Classified (NC))
of both collecting semantics and abstract analysis with one
cache set. We have no complete data for some benchmarks
since the corresponding analysis has not finished in 2 hours.
We have observed generally 10% to 200% more Not Classi-
fied which needs more precise study to identify the influence
factor. However, this lose of precision is acceptable in the
most of the cases compared to the gain on the performance
and we consider adding a partial-concretization style reduc-
tion before Update stage which may reduce the global lose
of precision.

We have observed a general speed-up and up to 100 times
faster compared to [4] on the Malardalen benchmarks even
binaries are compiled for a small ARM architecture instead
of MIPS in [4]. However, we have not compared our analysis
to existing ones [5, 4, 2]due to the different target architec-
ture. More generally, we have not found enough of imple-
mentation details of existing analyses to be able to compare
with ours.

We have implemented our collecting semantics to evaluate
our analysis and to compare with existing implementation
of collecting semantics used as reference of their abstract
analysis respectively. Since the same strategy i.e. collecting
semantics is implemented, the relative complexity of analysis
for some programs (referred by the relative ratio of analysis
time) should be similar. While the experimental result con-
firms an incomparability: our implementation of collecting
semantics shows different complexities for a giving bench-
marks set compared to existing ones.

As conclusion, Our analysis is much faster than collecting
semantics on realistic parameters and seems to be generally
faster than existing PLRU analyses. However, experimenta-
tion leads to incomparable results for the same set of bench-
marks (some better and some worst results). As future work,
we aim at a better understanding of this comparison.

5We consider 2 hours the limit of reasonable for a desktop
PC of 8G RAM and a i5 processor

Figure 2: analysis time (in second) by analysis type (COLL as
collecting semantics or ABS as abstract analysis), and number of
cache set (1,2 and 8)

Figure 3: percentage of classifications AH/AM/NC of abstract
analysis and collecting semantics with 1 cache set

8. REFERENCES
[1] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat.

Otawa: An open toolbox for adaptive wcet analysis. In
S. L. Min, R. Pettit, P. Puschner, and T. Ungerer,
editors, Software Technologies for Embedded and
Ubiquitous Systems, pages 35–46, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[2] G. Doychev, D. Feld, B. Kopf, L. Mauborgne, and
J. Reineke. Cacheaudit: A tool for the static analysis of
cache side channels. In Presented as part of the 22nd
USENIX Security Symposium (USENIX Security 13),
pages 431–446, Washington, D.C., 2013. USENIX.

[3] C. Ferdinand and R. Wilhelm. Efficient and precise
cache behavior prediction for real-time systems.
Real-Time Systems, 17(2):131–181, Nov 1999.

[4] D. Griffin, B. Lesage, A. Burns, and R. I. Davis. Lossy
compression for worst-case execution time analysis of
plru caches. In Proceedings of the 22Nd International
Conference on Real-Time Networks and Systems, RTNS
’14, pages 203:203–203:212, New York, NY, USA, 2014.
ACM.

[5] D. Grund and J. Reineke. Toward precise plru cache
analysis. In B. Lisper, editor, Proceedings of 10th
International Workshop on Worst-Case Execution
Time (WCET) Analysis, pages 28–39, July 2010.

[6] D. Monniaux and V. Touzeau. On the complexity of
cache analysis for different replacement policies.

[7] J. Reineke, D. Grund, C. Berg, and R. Wilhelm.
Timing predictability of cache replacement policies.
Real-Time Systems, 37(2):99–122, Nov 2007.

[8] V. Touzeau, C. Mäıza, D. Monniaux, and J. Reineke.
Fast and exact analysis for lru caches. Proc. ACM
Program. Lang., 3(POPL):54:1–54:29, Jan. 2019.

TSN Support for Quality of Service in Space
Pierre-Julien CHAINE
Airbus Defence & Space

Toulouse, FRANCE
pierre-julien.chaine@airbus.com

Marc BOYER
ONERA

Toulouse, FRANCE
marc.boyer@onera.fr

Claire PAGETTI
ONERA

Toulouse, FRANCE
claire.pagetti@onera.fr

Franck WARTEL
Airbus Defence & Space

Toulouse, FRANCE
franck.wartel@airbus.com

Abstract—The European spacecraft industry has developed
guidelines for generic satellite development known as SAVOIR
(Space AVionics Open Interface Architecture). While the current
satellites on-board networks implementations are compliant with
this standard, their evolution opportunities are strongly limited.
New missions and new clients are always more demanding on
performance on-board, leading to the conclusion that the satellite
embedded network must be upgraded. One opportunity appears
with Time Sensitive Networking, an IEEE Ethernet technology
capable of supporting both real-time and high-bandwidth traffic.
The goal of this paper is to discuss, in a qualitative study, how
TSN protocols can help to integrate Quality of Service in new
generation satellites.

Index Terms—Time Sensitive Network (TSN), Embedded Net-
works, Satellites, SAVOIR-OSRA, Ethernet

I. SATELLITE ARCHITECTURE OVERVIEW

A. Introduction

For a long time, agencies and space companies, at prime
and supplier levels, have raised the need of increasing the level
of reuse and standardization in spacecraft avionics systems in
order to improve efficiency and reduce development costs. This
has led to studies and initiatives which are now federated under
the Space Avionics Open Interface Architecture (SAVOIR) [1]
initiative through different working groups.

Platform Payload

Sensors (N)

Actuators

RIU

IMU Star Tracker

Sensors (N)

Actuators

RIU
IMU

Star Tracker

Instrument B

Instrument C

Instrument A

SW + MM A (N)

SW + MM B (N)

Fig. 1. Traditional Satellite Network Topology

B. Current Satellite Network

Among all the elements of the SAVOIR Reference Ar-
chitecture, let us focus on the communication links. In a
generic satellite architecture, the on-board network is com-
monly ”composed” of two interconnected networks: platform
and payload. Each of these networks fulfils different and
sometimes opposite needs.

On the one hand, the platform network is in charge of
conveying all the necessary information in order to guarantee
the nominal behaviour of the satellite. It transmits data from
sensors (position, magnetic field, temperature) as well as,
among others, flight control commands. This kind of traffic,
often described as time critical traffic requires bounded latency
and low jitter communications. However, due to the small size
and small volume of messages, a low data rate is enough to
achieve the platform needs. In general, the platform network
is implemented using a dual MIL-STD-1553 bus [3] or CAN
[4] bus.

On the other hand, the payload network requires a very
high data rate in order to convey the huge amount of raw data
generated by the payload instruments such as pictures from
a telescope (GAIA, SPOT), telemeters from a weather sensor
or IoT (Internet of Things) data. However, the constraints are
less stringent for a payload network: a delay in the packet
communication path will not impact the nominal behaviour
of the satellite. The payload network is based in general on
SpaceWire [5].

C. Current Satellite Architecture

The generic satellite network topology shown in Fig. 1 is
compliant with SAVOIR reference architecture: it contains sev-
eral equipments corresponding to different functions intercon-
nected with communication links. First of all, this architecture
has one (duplicated) On-Board Computer or OBC. This OBC
is the master that manages all the platform equipments. Using
a 1553 bus, it handles a polling mechanism to all the sensors or
actuators, being eventually gathered in a Remote Interface Unit
- RIU - also called Data Concentrator. OBC N, for Nominal,
(and OBC R, for Redundant) is also hosting AOCS - Attitude
and Orbit Control Subsystem functions. To do so, it gathers
information from several sensors, including one or several Star
Trackers, processes and exploits them in order to control the
propulsion system of the satellite. OBC is also connected to
a data storage system, usually a solid state mass memory,
mainly used for storing payload data, which is connected to the

instruments through a SpaceWire network (payload network).
Finally, it is generally in charge of routing Telecommand
and Telemetry between the communication subsystem and the
instruments.

The network itself, platform and payload, is mirrored. There
are always 2 distinct links from one device to one other. On
the platform side, as well as on the payload side, there is only
1 active bus (1553 or SpaceWire) at any given time, resulting
in a cold redundancy scheme. On the payload side, there is
also only one active SpaceWire switch. This active switch is
constantly monitored in order to be able to trigger the other
switch in case of failure.

II. OPPORTUNITY FOR AN UNIFIED TSN NETWORK

Although the actual architecture works perfectly fine, it
has started to show its limits: new instruments and more
generally new equipments are capable of generating gigabits
of data that the network cannot handle in its current version
(100Mbits/s on a SpaceWire network). Using a gigabit-capable
network could allow satellite users to access this huge amount
of raw data. Furthermore, Spacewire bus is only used in
the spacecraft industry, thus its development and update is
quite expensive. Using a technology based on Ethernet and
COTS - Commercial-off-the-shelves - components could help
lower the overall price of the satellite network. Finally, adding
Quality of Service mechanisms provided by TSN could ease
the integration of an increasing number of equipments on-
board.

A. Challenge

The Unified TSN-based network is a path to investigate in
order define the upgrade of the satellite on-board network.
Thus, the question is to find whether TSN is a superset of
1553 + Spacewire, i.e. is it possible to satisfy both Platform
and Payload network requirements using this technology?

In order to deal with this challenge, several aspects have to
be analysed:

1) What are the valid topologies for the future on-board
network?

2) What are the protocols/features offered by TSN ?
3) What are the requirements of the satellite network ?
4) What is the minimum subset of TSN protocols satisfying

these requirements ?
We provide some answers in the next sections.

B. Which topology for a Unified TSN-based Network ?

We have to keep in mind that any new topology must be
compliant with SAVOIR requirements. The question of how to
organize the switches and links is still open at this stage and
will be explored in the next year. For instance there could be 2
independent networks : one for Platform and one for Payload.

C. Overview of TSN protocols

For the last years, an IEEE Ethernet technology capable
of supporting both real-time and high-bandwidth traffic has

been defined in the working group TSN (Time Sensitive Net-
working) [6], continuing the work of the former AVB (Audio
Video Broadcasting) working group. Founded in 2012, the
working group has already published a dozen of amendments
to the 802.1 standard family in order to ensure a behaviour
that is simultaneously real-time, adaptive and flexible, mixing
synchronous and asynchronous approaches. Fig. 2 summarizes
the available TSN features/protocols.

Fig. 2. TSN available services [7]

From all available TSN addenda, five main directions are
identified:

• Time Synchronization (802.1AS, 802.1AS-rev),
• Ultra Reliability (802.1CB, 802.1Qca, 802.1Qci,

802.1As-Rev),
• Bounded Low Latency (802.1Qav, 802.1Qbu, 802.1Qbv,

802.1Qch, 802.1Qcr),
• Dedicated Resources and API (802.1Qat, 802.1Qcc,

802.1Qcp),
• Zero Congestion Loss (802.1Qav, 802.1Qbu, 802.1Qbv,

802.1Qch, 802.1Qcr, 802.1Qat, 802.1Qcc, 802.1Qcp).

III. WHICH PROTOCOLS FOR A UNIFIED TSN NETWORK ?
A. Proposed Methodology

From the brief introduction, it is clear that TSN is wide
and its complexity could increase quickly. As a consequence,
we believe that TSN protocols are very likely not to be used
all at the same time and that a selection of TSN features
must be realized to define which protocols should or should
not be targeted for a use in space. In order to do so, the
important task is to define a goal, with precise KPIs or Key
Performance Indicators, that the On-Board Network should
reach using TSN protocols. This will lead to the identification
of one or several combinations of TSN features that satisfy
this goal. Some higher level criterion (cost, complexity, code
size, targeted mission, etc.) will help refine the choice from
one combination to one other.

B. On-Board Network: current and future requirements

The general goal is to fulfil the satellite network re-
quirements. This seems easy, however today, these require-
ments need to be redefined. In fact, in the actual on-board
network specification, many requirements suffer from over-
specification i.e. being more inherited from the actual network

Requirements Platfom - 1553 Payload - SpaceWire TSN
Number of end-systems 5-8 1-15 4

Data Rate Low (1Mbit/s) High (200Mbits/s) 4

Perf. Requirements Low Latency(<10ms) High average throughput ?No Jitter (<10µs)
Transaction size 2-64bytes Unlimited (typically 2048bytes) ?

Simple behaviour 4 4 ?

Fig. 3. Platform and Payload Network Performance Requirements

technology than driven by the satellite architecture itself.
Hence, the first job will consist in eliminating this over-
specification.

Once this has been done, the goal i.e. the network require-
ments will be classified into two categories: performance &
real-time properties requirements on the one hand and safety
requirements on the other hand. The rest of the paper will deal
with the first category of requirements.

C. Performance & Real-time properties requirements

The table in Fig 3 gives an overview of the very first
performance & real-time properties requirements and their
associated KPIs, that we have identified for the satellite
network. It is still a work in progress: the current KPIs may
be clarified and new requirements may be added to the list.

The figure also gives a glimpse of what TSN could be capa-
ble of with respect to the previously introduced requirements.
The evaluation, for some lines, was very simple; for instance,
the supported number of end-station in TSN is, in theory, equal
to the number of available Ethernet MAC addresses and it is
way higher that what is required in space (around 25 end-
stations). For other lines however, the analysis is still pending.

The rest of the paper will focus on the third line of the table
i.e. the following requirement:

Requirement 1: The unified on-board network shall be
capable of handling, in the same time, low latency, low jitter
traffic and high throughput traffic.

IV. MIXING DIFFERENT TRAFFIC WITH QOS USING
TSN-802.1QBV

This section will enlighten how TSN protocol IEEE
802.1Qbv - Enhancement for Scheduled Traffic could stasify
Req. 1. In order to understand how to validate the previous
statement, let us apply 802.1Qbv to a simple network example,
show in the figure below.

ES1

ES2

ES3

SW1

Video

C&C

Fig. 4. Motivating network example

A. Motivating Example
This network has 3 End-Stations (ES), 1 Switch (SW), all

of them are 1Gbits/s capable. The physical medium is also
capable of conveying a 1 Gbits/s traffic load. The nature of
the physical medium (optical or copper) is outside of the scope
of this study. ES1 sends video traffic to ES3 and ES2 sends
C&C traffic to ES3. The characteristics and requirements of
both flows are listed in the following table.

Type C&C Video
Size 512bits 10Mbits
Freq 100Hz 8Hz

Priority High Low
Latency req. 1ms 2µs

Jitter req. 100ms 100ms

Fig. 5. Traffic characteristics and requirements

TSN-802.1Qbv protocol will be used in the output port
of SW1. This protocol has several parameters that can be
configured. Finder whether using 802.1Qbv satisfies Req. 1
(in our example) relays now in finding if there exist any
combination of said parameters that satisfies the network
requirements listed in Fig. 5. In this paper, we have chosen,
among all 802.1Qv parameters, only three to study :

• Transmission Selection Algorithm (TSA)
• Transmission Gates
• Preemption

The parameters and their possible values are summarized in
Fig 7, a schematic representation of SW1 output port.

Already, with only 3 parameters and their possible values,
twelve 802.1Qbv combinations/configurations exist and should
be analysed to see if Video and C&C requirements are met.
Again, for this short paper, we have limited the study to only
2 configurations, detailed in Fig 6.

Configuration 1 (see. IV-B) 2 (see .IV-C)
TSA none none

Transmission Gates always open always open
Preemption non-preemptive preemptive

Fig. 6. 802.1Qbv summary

B. First configuration: Static Priority
In this first configuration, the TSN port has no transmission

selection algorithm configured, no gate control list configured,

Transmission
Selection
Algorithm

Transmission
Gate

Preemption + Static Priority

High priority
queue

Transmission
Selection
Algorithm

Low priority
queue

Transmission
Gate

• Credit Based Shaper
• Ad hoc
• none

• Always open
• Ad hoc (scheduled

opening/closing)

• Preemptive
• Non-Preemptive

Fig. 7. SW1 Output port schematic view

and no frame preemption. In that case, this port is equivalent
to a port with two queues arbitrated using static priority. In
fact, it behaves like a standard Ethernet switch port would i.e.
without any TSN or AVB protocols.

As specified in Fig. 3, for this example, C&C traffic has a
higher priority than Video traffic. In terms of delay:

• The best-case scenario for this configuration is the fol-
lowing: a C&C frames arrives in the switch, no other
packet is being processed or stored by the switch and
the frame is ”immediately” transmitted to ES3. In this
best-case, the delay induced by SW1 is its technological
latency. Let us assume that this latency is not significant
when compared to the frame’s delay requirements.

• The worst-case scenario is as follows: if a C&C frame
arrives just after the beginning of the transmission of a
Video frame of 1518 bytes (max. length for an Ethernet
frame), the C&C frame will have to wait for that frame to
be transmitted before being granted access to the medium.
The waiting time is obtained by computing the formula
below:

MessageSize

LinkSpeed
=

1518 ∗ 8
1.109

= 12, 144µs (1)

In this configuration, the jitter, understood as delay variabil-
ity, for a C&C frame, has a value of 12,114µs, which is higher
than the maximum admissible jitter for this class of traffic.
Obviously, this is only one part of the delay analysis that
should be realised End-to-End on this network example for this
configuration. Nevertheless, if the jitter is already higher than
the requirements in the switch only, the rest of the analysis
does not matter: this configuration is declared not valid and
Req. 1 is not satisfied.

C. Second configuration: Strict Priority + Frame Preemption

In the first configuration, the length of the frame, in the
worst case, was too big; so was the C&C frames’ jitter.

Fortunately, TSN introduced 802.1Qbu (with the help of
802.3br): a protocol dedicated to Frame Preemption. Thanks
to this feature, an Ethernet frame of lower priority can now be
preempted by a higher priority frame. With this new protocol,
the length of the shortest non-preemptable frame drops down
to 143 bytes. By re-applying (1) with this new frame size, the
delay is reduced to 1,144µs which is compatible with C&C
traffic class jitter requirement. Considering that C&C traffic
has its constraints satisfied, it is necessary to check that Video
frames still have enough bandwidth. C&C traffic uses less than
1% of the available bandwidth and Video requires 1%. Hence
there should enough bandwidth available for Video frames and
Viveo constraints are fulfilled (formal analysis pending). As a
result, this configuration is a valid configuration with respect
to the initial goal and Req. 1 is satisfied.

V. WAY FORWARD

The last section gave a hint of the level of complexity
associated with the upgrade of the satellite on-board network
using TSN, only focusing on Quality of Service. Standard
Ethernet (using static priority) is not enough for a future
satellite network. One simple asynchronous solution relies on
TSN Frame Preemption and offer a minimal jitter of 1,144µs at
low cost on a 1Gbits/s network. For applications demanding
an even higher jitter, one possible solution relies on using
802.1Qbv synchronous feature i.e. configure a schedule for the
transmission gates. The analysis is still pending but it could
potentially help building a ”zero-jitter” path for the C&C flow.
Going to a synchronous TSN configuration however has a
heavy impact as time distribution and synchronization services
must be added to the current architecture. The trade-off of
going to one solution or one other will depend on the results
of Safety analysis as well as mission requirements and other
parameters.

The study will continue to define all the satellite network
requirements and analyse all targeted TSN protocols/features.

REFERENCES

[1] European Space Agency, “SAVOIR Functional Reference Architecture,”
Technical Note 001, https://essr.esa.int/project/savoir, April 2016.

[2] ESA, “OSRA Communication Network Specification,” Technical Note
003, https://essr.esa.int/project/savoir, April 2017.

[3] “Aircraft Internal Time Division Command/Response Multiplex Data
Bus,” MIL-STD-1553B, September 1978.

[4] “Road vehicles – Controller area network (CAN),” ISO 11898-2:2016,
December 2016.

[5] ESA, “Spacewire-Links, nodes, routers and networks,” ECSS-E-ST-50-
12C, July 2018.

[6] IEEE, Time Sensitive Networking Task Group,
“https://1.ieee802.org/tsn/”.

[7] J. Farkas, “Introduction to 802.1, Focus on the Time-Sensitive Network
Task Group,” March 2018.

[8] J. Migge and J. Villanueva and N. Navet and M. Boyer, “Insights on
the Performance and Configuration of AVB and TSN in Automotive
Ethernet Networks,” ERTS, January 2018.

[9] C. Pruvost and T. Planche and O. Notebaert and A. Rossignol and
H. Herpel and A. Schüttauf, “Ethernet for Space: an enabler for next
generation avionics,” DASIA, May 2016.

[10] O. Notebaert and J. Lachaize and R. Clavier and A. Fueser and H. Herpel
and G. Montano and L. Planche, “SpaceWire 2: Needs and Evaluation
Metrics,” 6th SpaceWire Conference, November 2014.

Generating substation network simulations from
substation configuration description files

Théo Docquier
University of Lorraine - CNRS

- LORIA - SCLE SFE
Nancy, France

theo.docquier@loria.fr

Ye-Qiong Song
University of Lorraine - CNRS

- LORIA
Nancy, France

ye-qiong.song@loria.fr

Vincent Chevrier
University of Lorraine - CNRS

- LORIA
Nancy, France

vincent.chevrier@loria.fr
Ludovic Pontnau

SCLE SFE
Toulouse, France

ludovic.pontnau@scle.fr

Abdelaziz Ahmed-Nacer
SCLE SFE

Toulouse, France
abdelaziz.ahmed-

nacer@scle.fr

ABSTRACT
The IEC 61850 standard has become the reference standard
for substation configuration in smart electric grids, intro-
ducing data and service models to achieve interoperability
between the network nodes. As the standard is currently
based on the switched Ethernet architecture, there is a lot
of work on its performance evaluation for guaranteeing real-
time constraints. However, there still lacks a link between
the substation configuration and its underlying Ethernet
performance models (analytic or simulation). For bridging
this gap, we propose in this paper a tool, called Simulation
Tool for Analysis of substation netwoRkS (STARS) allowing
the performance evaluation of any substation configuration
through automatic generation of the corresponding simula-
tion model from the Substation Configuration Description
(SCD) file. STARS is based on the OMNeT++ simulator
allowing the mapping of a real IEC 61850 system configura-
tion to simulation parameters. It also provides a simple net-
work configuration interface. This paper gives an overview
of the STARS features through a simple example and points
out its future evolution towards co-simulation of substation
control algorithms, network performance, and electric grid
behaviors.

1. INTRODUCTION
The need for power utilities in terms of distribution, trans-

port, security and quality of service is growing with the
years.

In this context, substations constitute the critical part
within a smart grid. Their main goals are to ensure the cor-
rect power distribution through the grid, and to react to any
abnormal situations. To meet these requirements, substa-
tions are composed of multiple Intelligent Electronic De-
vices (IED), each of them dealing with specific tasks such as
the monitoring of voltage/current at different points of the
substation or the control of the state of primary equipment
(high voltage switches, circuit breakers, transformers...).

Because of the growing number of IEDs within substa-
tions, architectures tend to move from traditional hardwired
solutions to digital frame based architectures. In such a con-
text, the IEC 61850 standard is specifically defined to meet
these challenges. Major contributions of the standard on

Transfert time class
Transfer time

[ms]

Application examples:

Transfer of
TT0 >1000 Files, events, log, contents
TT1 1000 Events, alarms
TT2 500 Operator commands
TT3 100 Slow automatic interactions
TT4 20 Fast automatic interactions
TT5 10 Releases, status changes
TT6 3 Trips, blockings

Table 1: Performance requirements for different IEC
61850 applications.

the interoperability can be summarized in three parts: 1)
defining a complete model for electrical components (e.g.,
power/current/voltage transformer, circuit breaker) using
an object-oriented paradigm, 2) allowing the configuration
of all equipment belonging to a substation with a language
and representation format, and 3) introducing the Ethernet
standard for the communication between the equipment and
the specification of performance requirement (Table 1).

The configuration part introduces the XML based Sub-
station Configuration Language (SCL), described as both a
language and a representation format. IEDs and the Substa-
tion architecture are fully described respectively by the IED
Configuration Description (ICD) and Substation Configura-
tion Description (SCD) files. These two files use the Data
Object Model (DOM) defined by the IEC 61850 standard
and encode them with an SCL format.

For the communication part, the standard uses switched
Ethernet networks as the main basis for the communication
architecture. To ensure data communication, three main
protocols are introduced: Generic Object Oriented Substa-
tion Event (GOOSE) a layer 2 protocol used for fast mes-
sages transmission, Sampled Measured Value (SMV) a layer
2 protocol for periodic sample transport on the network and
the Manufacturing Message Specification (MMS) a protocol
above the TCP/IP layer used for reporting and slow mes-
sages transmission.

Contributions of the standard are illustrated Figure 1.
The configuration part details the node and communication
descriptions of each IED while the network part brings the
use of Ethernet standard plus the previously described pro-
tocols (MMS, GOOSE & SMV).

However, neither the Ethernet standard nor the specified
protocols define mechanisms to guarantee the architecture’s
determinism or the real-time requirements. Further-
more, the SCD file does not contain any indication about
the network architecture’s structure i.e., how to intercon-
nect IEDs and devices with each other. This leads to the
issue of the network architecture design. Even if the config-
uration and the communication are already described in the
SCD file, the possibilities for the architecture design are mul-
tiple. Examples of issues are about the number of switches
to use and how to interconnect them, the VLAN configura-
tion or the bandwidth allocation. If the architecture design
is not correctly carried out and e.g., the delay of an impor-
tant message (e.g., a trip order) is too high, it could lead to
serious situations, both economically and humanely.

Figure 1: IEC 61850 contribution for configuration
and communication part.

Since the communication architecture plays a critical role
in substation operations, it must be as reliable as possible.
Therefore, it appears a need to have tools that can 1) take
into account an SCD file containing IEDs and their proper-
ties and 2) build a network architecture with all IEDs and
evaluate the performance to guarantee real-time constraints.

At the best of our knowledge, no work has ever considered
the configuration part along with the communication part
in their works, i.e., taking a real configuration with an SCD
file, how to model the network architecture accordingly and
how to assess it.

In this paper, we present our approach considering the
modeling of the network architecture as well as the mapping
of an actual IEC 61850 SCD file to simulation parameters.
We finally give an example of simulation and result analy-
sis. The rest of the paper is organized as follows. Section II
discusses about the recent works on the substation commu-
nication modeling. We describe STARS in Section III and
give an overview of its utilization in Section IV. Section V
concludes the paper.

2. RECENT WORKS
In the literature, modeling substation communication is

based on two main approaches: analytic and simulation.
Analytic modeling: Mathematical models are used to rep-
resent the communication architecture. These models are
used to determine the worst-case parameters (e.g., delay,
backlog) or a statistical approximation for a given scenario.
Previous works have been done on the modeling of the MMS
protocol [1] or on the modeling of GOOSE and SMV at the
same time with priority policy [2] both using Network Cal-
culus approach. However, no existing work has taken into
account the whole IEC 61850 protocols or existing configu-
ration. Moreover, the pessimism for the worst case scenario
always increases drastically as the complexity of the sub-
station grows, making Network Calculus difficult to use for
complex cases.
Simulation: It consists to choose one network simulator
and then develop the model. Recent works have been per-
formed to model and simulate IEC 61850 architecture using
the OMNeT++ simulator. In [3] the three IEC 61850 proto-
cols are implemented while the work made in [4] only focuses
on GOOSE and SMV. However, neither of them introduce
the configuration part of IEC 61850, as their works focus on
the development of specific IEC 61850 network communica-
tion models.

For the rest of the paper, we focus on the simulation part.

3. DESCRIPTION OF STARS

3.1 Global description
To allow a simple utilisation of a performance evaluation

tool, it appears necessary to have two elements:
User interface (UI): act as the ”input” of the tool. It
allows to specify the network architecture, the data model
configuration (from the SCD) and simulation parameters;
Operation core (OC): act as the ”engine” of the tool. It
takes the input parameters coming from the UI and runs
processes to obtain expected results.
The tool can be viewed as a black box system. The only
tasks for the user are the configuration of the network archi-
tecture plus simulation parameters and the loading of the
SCD file corresponding to the substation system configura-
tion the user wants to evaluate.

Figure 2 gives the conceptual view of STARS.

3.2 User Interface
STARS UI composition is described by the left part Figure

2. It consists of a sequence of operations the user has to
do via the interface before starting the simulation. These
operations are as follows:
SCD loading: loads the SCD file related to a specific sub-
station;
Node description: instantiates each IED of the architec-
ture. Instantiation must be consistent regarding the SCD
content as all the IEDs are already described with their con-
figurations;
Switches description: instantiates each switch of the ar-
chitecture;
Architecture: describes relations between each node and
switch composing the architecture;
Scenario description and simulation setting: config-
ures the simulation and scenario parameters. For scenario,
the user can configure the number of fault (e.g., thunder-
bolt on the substation, overload) during the simulation or
the period between two faults. For simulation, the user can

Figure 2: Conceptual view of STARS.

configure the simulation time and delay thresholds for which
the user will be notified if the actual delay exceeds them.

The UI is also responsible for the display of results (e.g.,
delays, packet loss, buffer utilization) with graphs once the
simulation is completed.

3.3 Operation core
The STARS OC composition is described by the right part

of Figure 2. It is made of three fully automated operations:
Parsing: information collected during the configuration part
is parsed into files that can be understood by the simulator;
Simulating : the result of the parsing operation allows to
run the simulation;
Computing result: the obtained results are analyzed and
processed, then passed to the UI to display the information.

We chose the OMNeT++ simulator for the simulating op-
eration. We used the model developed by [4] which is avail-
able on the internet for the substation modeling. We added
some improvement such as a light version of the MMS pro-
tocol, a better mechanism for GOOSE repetition pattern1

and the possibility to have multiple Application Service Data
Units (ASDU2) carried by one SMV frame.

To run a simulation, OMNeT++ needs three different files
(according to the user guide manual3):
Simulation program: containing the compiled code for
modules, simulation kernels and messages. This part con-
tains the core of the model description;
NED (Network Description): containing modules (e.g., IEDs,
switches, servers ...) and their interactions (e.g., link capac-
ities, propagation delay, frame loss rate...);
INI: containing the simulation parameters (e.g., the simu-
lation time) and the parameter descriptions of all modules
in the network (e.g., frame sizes, emission periods...).

1Algorithm used by the GOOSE protocol to ensure the data
exchange reliability. It consists of several repetitions of the
same message several times.
2An ASDU can be considered as a group of samples.
3Available at https://doc.omnetpp.org/omnetpp/manual/

In order to provide the INI and NED files to OMNeT++,
we develop two parsers whose role is to extract the required
information from the SCD file and generate the NED and
INI files. As the model does not change, the simulation
program is already compiled and ready to use. As soon as
the NED and INI files are generated, the simulation can be
run. Once the simulation is completed, the result needs to
be displayed. To do so, we developed a third parser taking
the result file produced by OMNeT++ and extracting the
main values. Once extracted, the results are displayed to the
user as illustrated Figure 4. A report containing the result
displayed is also automatically created.

4. STARS’S CAPABILITIES
To illustrate the capabilities of STARS, we consider an

SCD file coming from a substation benchmark and describ-
ing a real case study. The substation is composed of 17 IEDs.
We start by loading the corresponding SCD file into Calc
Software. The next step is to define a communication archi-
tecture. We consider a network topology with two intercon-
nected switches called ”Switch 1” and ”Switch 2”. All links
on Switch 1 are set to 1 Gbps while all links on Switch 2
are set to 100 Mbps. The link between the two switches is
set to 1 Gbps. At this stage, we can describe the obtained
architecture with Figure 3.

All node behaviors (i.e., protocols used for communica-
tion, data to send and the sending periods) are fully de-
scribed in the INI file where the information is collected
from the SCD. In this simple scenario, the parser does not
parse SMV from the SCD yet, and future additional work
will implement it. GOOSE traffic is emitted by each node
(except SUP nodes) to all other nodes. MMS traffic is emit-
ted by each node to one of the declared MMS receivers. In
our SCD file, only SUP nodes, ACC 1 and ACC 2 are con-
sidered as MMS receivers. GOOSE messages have a higher
priority than MMS ones. Before running, we need to config-
ure the scenario and simulation parameters. We choose the
following scenario: 10 successive faults appear on the grid
with a 1 ms interval, triggering GOOSE and MMS events.
For the configuration of simulation parameters, we set the
simulation time to 0.2s.

Once the previous step is completed, we can start the run
process from Calc Software. Remaining processes (describe
subsection 3.3) are handled by the OC part of STARS.

After the simulation is completed, the results can be re-
trieved as depicted in Fig. 4. For the given SCD and the
simulated scenario, we can observe that the maximum de-
lay for GOOSE traffic exceeds the 3 milliseconds limit for
trip messages given in Table 1 (all APR nodes). Since APR
nodes are set to 100 Mbps, we can speculate that the prob-
lem comes from an insufficient bandwidth. If this specula-
tion proves to be true, then we have identified the problem
that can be solved to meet the real-time requirement by
replacing, for instance, the 100 Mbps link by a 1 Gbps one.

5. CONCLUSION AND FUTURE WORKS
The main issues addressed in this paper is to design and

assess a substation communication architecture while taking
into account a real substation configuration. To meet these
requirements, STARS brings the following features:
Real configuration consideration: the obtained results
are based on real SCD files;

Figure 3: Conversion from SCD file to OMNeT++ model.

Figure 4: Example of a GUI result at the end of the
simulation process

Network modeling and investigation: possibility to
model a network architecture and assess it in case of non-
compliance with real-time requirements. This allows users
to detect a potential performance issue and points of failure,
and deal with them;
Usable by non-expert: spreadsheet interface to design
the network architecture, load the SCD, set the simulation
parameters and run the simulation with results at the end;
Automatic Configuration: the SCD file is automatically
parsed into files understandable by OMNeT++ reducing the
time of the simulation configuration.

The main perspective is the improvement of our IEC 61850
model by integrating the new IEEE Time Sensitive Network-
ing (TSN) standard, the latter describing mechanisms and
protocols to guarantee determinism for Ethernet-based ar-
chitecture. Some works have already been done [5], where
a simulation model for TSN standard is proposed. TSN is
also investigated by the IEC 61850-90-13 draft about deter-
ministic networking for substations to improve overall per-
formance of the communication network by using network
resources efficiently. In addition to TSN study, an investi-

gation on scheduling theory to formally describe how to set
network parameters for network optimization is planned. Fi-
nally, we plan to investigate the co-simulation of our already
made communication network model with control and elec-
trical models with the help of the MECSYCO software [6]
to improve results by integrating different fields of expertise
to be as close as possible to the reality.

6. REFERENCES
[1] Nils Dorsch, Hanno Georg, and Christian Wietfeld.

Analysing the real-time-capability of wide area
communication in smart grids. In Computer
Communications Workshops (INFOCOM WKSHPS),
2014 IEEE Conference on, pages 682–687. IEEE, 2014.

[2] Can Huang, Fangxing Li, Tao Ding, Yuming Jiang,
Jiahui Guo, and Yilu Liu. A bounded model of the
communication delay for system integrity protection
schemes. IEEE Transactions on Power Delivery,
31(4):1921–1933, 2016.

[3] Javier Juárez, Carlos Rodŕıguez-Morcillo, and
José Antonio Rodŕıguez-Mondéjar. Simulation of iec
61850-based substations under omnet++. In
Proceedings of the 5th International ICST Conference
on Simulation Tools and Techniques, pages 319–326,
2012.

[4] Héctor León, Carlos Montez, Marcelo Stemmer, and
Francisco Vasques. Simulation models for iec 61850
communication in electrical substations using goose and
smv time-critical messages. In Factory Communication
Systems (WFCS), 2016 IEEE World Conference on,
pages 1–8. IEEE, 2016.

[5] Jonathan Falk, David Hellmanns, Ben Carabelli,
Naresh Nayak, Frank Dürr, Stephan Kehrer, and Kurt
Rothermel. NeSTiNg: Simulating IEEE time-sensitive
networking (TSN) in OMNeT++. In Proceedings of the
2019 International Conference on Networked Systems
(NetSys), Garching b. München, Germany, March 2019.

[6] Benjamin Camus, Thomas Paris, Julien Vaubourg,
Yannick Presse, Christine Bourjot, Laurent Ciarletta,
and Vincent Chevrier. Co-simulation of cyber-physical
systems using a DEVS wrapping strategy in the
MECSYCO middleware. SIMULATION, vol. 94, 12:
pp. 1099-1127., January 2018.

Formal Model of the Lipsi Processor:
Definition and Use of its Timing Behavior

Imane Haur
CEA, List, France

Imane.Haur@cea.fr

Mihail Asavoae
CEA, List, France

Mihail.Asavoae@cea.fr

Mathieu Jan
CEA, List, France

Mathieu.Jan@cea.fr

ABSTRACT
Timing analysis of safety-critical systems derives timing bounds
of applications (SW) executed on dedicated platforms (HW).
The ensemble HW–SW features, from a timing perspec-
tive, two different types of computation – an SW-specific,
instruction-driven timing progression and an HW-specific,
cycle-driven one. In this paper, we focus on the SW side
of this ensemble by defining formal models of architectures
enriched with timing behaviors. Our (long-term) goal is to
investigate how such models can help to handle memory
interferences in multi-core architectures, by validating the
timing behavior of our SW formal models against formal
HW models extracted from hardware description languages
(HDL). Our SW formal model is exemplified on a simple,
accumulator-based processor called Lipsi, for which we re-
port classical functional semantic as well as timing discrep-
ancies issues found while applying our methodology.

Keywords
Formal semantics, timing model, Sail, memory interferences.

1. INTRODUCTION
Cyber-physical systems (CPSs) integrate computations run-

ning on embedded platforms into physical systems that they
interact with. This integration, expressed through feedback
loops between software and the physical environment, may
need to satisfy strong timing guarantees. To verify them,
timing analyses of computations (e.g., the worst-case exe-
cution time analysis), communications (e.g., the worst-case
traversal time analysis) or both (e.g., the worst-case re-
sponse time analysis) are combined. The commonality of
all these analyses is that the application semantics, i.e. the
software side (SW), is projected on the timing behavior of
the underlying platforms, i.e. the hardware side (HW). A
timing analysis indeed needs to be safe and accurate and the
most precise timing is to be found at the execution platform-
level, i.e. the HW-level.

The high-level functional and temporal properties are how-
ever obfuscated or even lost when translated to this binary
low-level. High-level specifications, for instance, based on
synchronous language [7], can be transformed into an in-
termediate language, usually the C language, in a correct
by construction way. However, the initial high-level timing
properties can no longer be directly expressed at the binary
level, as most ISAs simply do not include timing. A few
exceptions exist, such as PRET [13] and the Patmos [15] ar-
chitectures that provide instructions that explicitly manip-

SW HW
execution

Formalization
+ Trace equivalence via testing

Formal
ISA

Formal
HDL

+ timing

Verification

Figure 1: general workflow for the HW/SW co-
validation of timing models for CPS.

ulate timings. This prevents to implement in a proper way
the initial high-level temporal properties, which thus sim-
ply disappear at the binary level. It is the goal of WCET
analyses to recover them at this level.

We are currently building a methodology to build and
validate timing models for CPS, by enriching formal SW
models with timing behaviors extracted and abstracted from
processor descriptions in register transfer-level (RTL) lan-
guages [3]. In this methodology, we manipulate the compu-
tations, viewed as a set of binaries of software (SW), i.e.
sequences of instructions described at the instruction set
architecture (ISA) binary level. We omit any networking
components within CPSs and focus for now on single-core
or multi-core architectures only. Now, a timing model in this
context is a function between the time progression of SW,
measured in executed instructions and the cycle-accurate
timing, corresponding to HW. As shown by Figure 1, our
general methodology to construct and validate such timing
models is divided into 2 parts: one for the SW side and the
other for the HW side. For the SW side, a timing model
is added to a formal description of the ISA by relying on
the input textual specification of the architecture. Both the
functional and timing behaviors of this timing augmented
formal SW model are tested, for confidence, against traces
of actual code first over an instruction set simulator (ISS)
and then over a real execution. Similarly, on the HW side,
a formal model is built which thus includes by construction
a timing behavior [4]. Finally, the last step consists of the
co-validation of these HW and SW formal timing models,
i.e. verifying the consistency of their two timing models.

While in [3] we illustrate this whole approach of both SW

and HW sides over the Lipsi processor [14], in this paper,
we only focus on the formal SW model of Lipsi. Our con-
tribution is to show how a formal SW ISA-level model of
a processor, enriched with timing behavior, can be used to
detect both functional and timing discrepancies in its imple-
mentation. We use Sail [1] to formally model programs as
it is tailored for expressing ISA semantics of processors and
has been successfully applied to formalize various ISAs, such
as ARM, RISC-V, and MIPS. A Sail specification relies on
the definition of an Abstract Syntax Type (AST) of the ISA
of an architecture, i.e. a union of types with parameters.
To each AST value, specific execute and decode functions
are associated with respectively specify the sequential se-
mantics of the instruction and the matching of its binary
representation of its AST value. From a Sail specification,
both emulators and theorem-prover definitions can be gen-
erated to support fast execution of programs or deductive
reasoning.

2. FORMAL SW MODEL OF LIPSI
Overview of Lipsi. Lipsi is a tiny sequential 8-bit pro-

cessor to be used in auxiliary functions or for teaching pur-
poses. The ISA of Lipsi includes ALU operations using reg-
isters or immediate operands, loads/stores, unconditional
and conditional branches, and an input/output (i/o) oper-
ation. A complete list of instructions and their encodings
are shown in [14]. Instructions of Lipsi are encoded using a
single byte, except branch operations and ALU operations
with immediate operands. For these instructions, a second
byte is used to store either the address of the target branch
or the value of the immediate operand.

Figure 2: the datapath of Lipsi.

On the hardware side, Lipsi consists of an accumulator
register (A), a program counter (PC), 16 additional regis-
ters and a single on-chip memory. Its datapath is shown in
Figure 2. The memory is accessible through 2 ports: one for
reads, the other one for writes. Memory Addresses are 9-bits
values. The lower half of the 9-bit memory space stores up
to 256 bytes of instructions, while the upper half stores first
16 additional registers (R[x]) followed by up to 240 bytes of
data. R[X] can be used to store intermediate results when
performing ALU operations.

The hardware implementation of Lipsi is written in Chisel [5],
and it has been synthesized to the DE2-115 FPGA board.
It comes with a very simple timing model, as a single mem-
ory is connected to Lipsi. Two clock cycles are required to
execute an ALU instruction: one for fetching the instruction
and one for accessing the data and executing the ALU op-

eration. Loading A with a value in R[x] also takes 2 cycles
while writing to R[x] only takes 1 cycle due to the sepa-
rated read/write ports to the memory. Updating R[x] is
performed while the next instruction is being fetched from
the read port. Memory store and load operations use the ad-
ditional registers R[x] to store the targeted memory address.
Those operations thus perform three memory accesses: one
for fetching the instruction, another to retrieve the memory
address from R[x], and finally a last one to perform the mem-
ory operation at the specified memory address. A memory
load thus takes 3 cycles, while a memory write takes only 2
cycles as the last access occurs meanwhile the next instruc-
tion is being fetched. The i/o operation takes only 1 cycle.
Finally, an ISS written in Scala is also available.

type len_t = bits(8) /* 8-bit architecture */
register A : len_t /* Accumulator */
register PC : len_t /* Program Counter */
register nextPC : len_t /* For branch instructions */
register din : len_t /* i/o instruction, input port */
register dout : len_t /* output port */

We now present the formal SW model of Lipsi using the Sail
language. We first define the architectural state of Lipsi, i.e.
its accumulator A, its program counter PC and the ports used
by the i/o instruction, i.e. din and dout for respectively the
input and output ports. The nextPC register is used to store
the address of the branch, i.e. the second byte of a branch
instruction when it is decoded. All these variables are 8-bits
registers, as in the hardware implementation of Lipsi.

Memory model. The structure Memory represents the
memory of Lipsi. It embeds respectively the instruction and
data spaces, which are defined as a vector of bytes. These
vectors are organized in downward memory addresses. Fi-
nally, a vector of registers Rs represents the additional reg-
isters R[x] of Lipsi.

type memory_data = vector(240, dec, bits(8))
type memory_inst = vector(256, dec, bits(8))
struct Memory = { Inst: memory_inst, Data: memory_data }
register Rs : vector(16, dec, bits(8)) /* R[x] */

We now show the formal specification of the write opera-
tions, for both the memory space but also for R[x]. The
function mem_write updates the content of Memory with the
value v at the memory address adr. Either the instruction
or the data vector of Memory gets updated, depending on
the value of the Most Significant Bit (MSB) of adr, a 9-bit
value. Note that the data vector is updated only if adr does
not target Rs.

val mem_write : (bits(9), bits(8), Memory) -> vector
↪→ (256, dec, bits(8))

function mem_write (adr, v, mem) = {
if (adr[8] == 0b1) then {
if (adrbits_to_adrno(adr[7..0]) >= 16) then
plain_vector_update (mem.Data, length(mem.Data) - 1

↪→ - adrbits_to_adrno(adr[7..0]), v);
else return mem.Data;

} else {
plain_vector_update(mem.Inst, length(mem.Inst) - 1 -

↪→ adrbits_to_adrno(adr[7..0]),v);
}}

The function reg_write updates R[x] and shares with the
function mem_write a similar signature. A string representing
the name of register, noted r, is however used instead of a
memory address. r is mapped into an offset in the data
vector using the functions reg_name and regbits_to_regno. X

is the setter function to update Rs with the value v, which
uses the overload feature of Sail to abstract read (not shown)
and write accesses (function wX, signature not shown).

function wX (r, v) = if r < 16 then { Rs[15 - r] = v; }
overload X = {rX, wX}
val reg_write: (string, bits(8))->unit /* eq. to void */
function reg_write (r, v) = {
X(regbits_to_regno(reg_name(r)), v); }

Finally, the overload feature of Sail is used to abstract the
organization of the memory. Writing to R[x] or the memory
to implement the semantic of instruction is performed by
simply calling the function lipsi_write. Similar functions
are used for read operations (shown in the next paragraph).

overload lipsi_write = {mem_write, reg_write}

Instruction and timing models. We now present the
part describing the semantic of instructions. We have mod-
eled in Sail all the ISA of Lipsi. We only show the use of Sail
to decode and execute ALU instructions that rely on regis-
ters. First, Sail supports the definition of scattered functions
and unions allowing to group the mapping decode, execute

functions and the AST union ast of an instruction in one
place. The AST type ALU_TYPE_REG represents the consid-
ered ALU instructions. The mapping encdec_alu_func_reg

matches a binary value to a constant value representing the
requested ALU operation. The mapping decode matches the
machine code of instructions to the associated AST node
within ast. The concatenation operator @ is used to ex-
tract, from the input bit vector, the requested ALU oper-
ation (func) and the index of the additional register (reg).
Finally, the function execute implements the semantics of
the instructions by first reading the value from the spec-
ified additional register, i.e. reg_val and then performing
the specified ALU operation on reg_val and A. accureg is
an accessor to A, for reading or writing.

scattered union ast
scattered mapping decode
scattered function execute

union clause ast = ALU_TYPE_Reg: (alu_func_reg, regbits)

mapping encdec_alu_func_reg: alu_func_reg<->bits(3) = {
LIPSI_ADD <-> 0b000,
LIPSI_SUB <-> 0b001,
...
LIPSI_XOR <-> 0b110,
LIPSI_LD <-> 0b111

}
mapping clause decode = ALU_TYPE_Reg(func, reg) <->

0b0 @ encdec_alu_func_reg(func) @ reg

function clause execute ALU_TYPE_Reg(func, reg) = {
let reg_val: len_t= lipsi_read(regbits_to_regno(reg));
let ret : len_t = match func {
LIPSI_ADD => reg_val + accureg(),
LIPSI_SUB => accureg() - reg_val,
...
LIPSI_XOR => reg_val ^ accureg(),
LIPSI_LD => reg_val

};
accureg(ret);

}

For the timing model, we simply use a register to repre-
sent clock cycles. This register is incremented by the clock
cycles associated with each instruction being decoded. The

formal SW model executes instructions in single steps, which
is also equivalent to an instruction-level simulation of the in-
put program. However, this clock register tracks in a cycle-
accurate manner the timing behavior of each instruction.

3. PRELIMINARY EVALUATION RESULTS
Semantic discrepancies. We identified several seman-

tics discrepancies when we performed the trace equivalence
between traces from the formal SW model, the simulators
and the circuit. These discrepancies concern not only the
functional semantic but also on the timing semantic, justi-
fying the need for formalization and verification of timing
models. First, the instructions sh and brl, specified in the
ISA of Lipsi, are not implemented in the Chisel hardware
design of Lipsi. Next, the instructions adc and sbb give out-
put that are equivalent to respectively the add and the sub

instructions, which is not the expected functional behavior.
A more interesting discrepancy concerns the i/o instruc-

tion. The specification of Lipsi allows to identify up to 16
different ports using bits [3:0] in the encoding of the i/o in-
struction. However, the hardware implementation of Lipsi
only uses a single i/o port, the one with value index 0, to ex-
change values with the accumulator A: one for outputting
the value of A and the other one to load a new value in
A. Any other index value than 0 leads to a silent drop of
the next instruction (PC + 1), i.e. the execution continues
at PC + 2. Even if this unprocessed instruction leads to
be interpreted as an ALU operation (default decoding), the
value of the accumulator is not modified as it is guarded by
a boolean value, not set by default. Note that contrary to
the previous discrepancies, this difference was not explicitly
documented in the hardware implementation of Lipsi.

Finally, while the instruction exit takes 3 cycles in the
Lipsi circuit, it only takes 1 cycle in the Lipsi simulator.
Our goal is to detect timing discrepancies and not to point
out functionality issues in the considered design. However,
such findings demonstrate that we can detect any kind of
semantic discrepancy between the specified ISA and imple-
mentations of it. Formal SW model complexity. Chisel

Table 1: Source lines of code (SLOCs).
Chisel Verilog SW model (Sail)

Memory 20 59 116
ISA 161 449 189

provides some high-level constructs to raise the level of hard-
ware design abstraction, as it is embedded in the Scala pro-
gramming language. Scala promotes functional-style pro-
gramming and uses a strong static type system to facilitate
concise and reusable code. Chisel then generates classical
Verilog HDL. Table 1 shows the source lines of code (SLOC)
of both the memory part and ISA part (i.e. datapath shown
in Fig 2) of the hardware implementation of Lipsi in Chisel,
the generated Verilog and our formal SW model in Sail.
Both the ISA of Lipsi in Chisel and the formal SW model
share approximately the same amount of SLOCs, respec-
tively of 161 and 189 SLOCs. However, note that Lipsi is
a tiny processor, the complexity of our formal SW model is
thus expected to stay below the SLOCs required in Chisel to
design more complex processors. As expected the SLOCs for
Verilog is higher than in Chisel but is less than the SLOCs
of our formal SW model in Sail for the memory part. This

is explained by the fact that Sail provides helper function to
manage memory only when a ELF format is used. We thus
had to define our memory model from scratch, resulting in
116 SLOCs.

Detection of interferences. We now briefly report an
illustration of the possible use of the built timing model: the
detection of memory interferences. We thus consider three
different input binaries to be run in our formal SW model of
Lipsi, to represent a multi-core setting of Lipsi. Each Lipsi
core is identified by an index. Besides, as each Lipsi has its
private memory, we rely on the i/o instruction to emulate
the access to a shared device. Note that we only emulate
the access to a shared device, not the device itself nor its
arbitration policy. If two i/o accesses occur at the same
time, we thus assume that the one coming from the Lipsi
with the smallest index wins the access. The other Lipsi
cores continue their execution as if their accesses were valid,
as we are mostly interested in timing properties of programs
not in their functional correctness.

For the input binaries, we reuse the same memory model
for the spacing of memory accesses as in [10]. In this model,
programs are represented as a sequence of memory requests
separated by a given number of processor clock cycles, rep-
resenting the amount of computation that is performed be-
tween two memory accesses. We assume a composable com-
puter architecture [9], which ensures that the distance be-
tween requests is independent of the execution of other pro-
grams. The only interference between the independent pro-
grams thus stems from accesses to the emulated shared de-
vice, i.e. the memory.

The sequences of memory requests of our three input pro-
grams are: (A : 2, 24, 12), (B : 14, 4, 2) and (C : 26, 6). Pro-
gram A is made of 2 loops and thus generates i/o accesses
at the (absolute) times 2, 26 and 38. Program B is made
of a single loop and generates i/o accesses at the (absolute)
times 14, 18 and 20. Finally, program C is also made of a
single loop and generates i/o accesses at the absolute (times)
26 and 32. It is then trivial to detect that an interference is
going to occur at time 26 between program A and C.

Our next step is to modify the input binaries, by adding
appropriate nop instructions (ALU operations that do not
change the current value of A) or by introducing a delay

instruction, as in Patmos or PRET, to space out i/o accesses.
While a straightforward algorithm can solve this problem
for programs with a single path, the presence of multiple
paths in input programs lead to an interesting optimization
problem of minimizing the number of interferences.

4. RELATED WORK
Our approach increases the confidence in the formal se-

mantics of ISA with the help of an ISS, providing a de
facto procedure to actually verify an ISS. There are sev-
eral works [6, 11], centered on the verification of ISS. The
ISS presented in [6] is symbolic and addresses both func-
tional and timing properties in processors using assertions
in a similar way with our procedure as another symbolic
ISS, which is constructed over an instruction-level abstrac-
tion [11]. We can also leverage existing formal SW models,
such as [1] or [8] to extend their functional parts with a tim-
ing behavior. Besides, the K framework, which was recently
used for a formal executable semantics of x86-64 ISA [8],
is another option we have not yet considered so far [2] to
design our formal SW model.

5. CONCLUSIONS
In this paper, we have presented how the Sail language

is used to describe a formal SW model enriched with tim-
ing behaviors to reason about the timing properties of CPSs.
We have reported functional but also temporal semantic dis-
crepancies between the Lipsi specification and its hardware
implementation written in Chisel. We have also discussed
possible use of such formal SW models to handle memory
interferences and their complexity compared to hardware
description of them in Chisel and Verilog.

We are currently working on automatically generate for-
mal HW models directly from the HDL code of processors to
co-validate these formal models and their timing behaviors.
As Lipsi is a simple processor, we have ongoing work on
popular RISC-V designs, with complicated timing models
due to pipelining, multi-level caches and speculation mecha-
nism. Finally, another goal is to apply this approach to tim-
ing anomalies detection [4, 12] and minimization of memory
interferences.

6. REFERENCES
[1] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray,

R. M. Norton, P. Mundkur, M. Wassell, J. French, C. Pulte,
S. Flur, I. Stark, N. Krishnaswami, and P. Sewell. ISA
semantics for ARMv8-a, RISC-V, and CHERI-MIPS.
PACMPL, 3(POPL):71:1–71:31, 2019.

[2] M. Asavoae. K semantics for assembly languages: A case study.
Electr. Notes Theor. Comput. Sci., 304:111–125, 2014.

[3] M. Asavoae, I. Haur, M. Jan, B. B. Hedia, and M. Schoeberl.
Towards formal co-validation of hardware and software timing
models of cps. In Proc of Model-Based Design of Cyber
Physical Systems (CyPhy’19), October 2019. To appear.

[4] M. Asavoae, B. B. Hedia, and M. Jan. Formal executable
models for automatic detection of timing anomalies. In 18th
International Workshop on Worst-Case Execution Time
Analysis, WCET 2018, pages 2:1–2:13, 2018.

[5] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,
R. Avižienis, J. Wawrzynek, and K. Asanović. Chisel:
Constructing hardware in a scala embedded language. In
Proceedings of the 49th Annual Design Automation
Conference, DAC ’12, pages 1216–1225. ACM, 2012.

[6] D. L. Beatty and R. E. Bryant. Formally verifying a
microprocessor using a simulation methodology. In Proc. of the
31st Conf. on Design Automation, pages 596–602, 1994.

[7] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L.
Guernic, and R. de Simone. The synchronous languages 12
years later. Proceedings of the IEEE, 91(1):64–83, 2003.

[8] S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and G. Rosu.
A complete formal semantics of x86-64 user-level instruction set
architecture. In Proc. of the 40th PLDI, pages 1133–1148,
2019.

[9] S. Hahn, J. Reineke, and R. Wilhelm. Towards compositionality
in execution time analysis: definition and challenges. SIGBED
Review, 12(1):28–36, 2015.

[10] F. Hebbache, M. Jan, F. Brandner, and L. Pautet. Shedding
the shackles of time-division multiplexing. In 2018 IEEE
Real-Time Systems Symposium (RTSS), pages 456–468, 2018.

[11] B. Huang, H. Zhang, P. Subramanyan, Y. Vizel, A. Gupta, and
S. Malik. Instruction-level abstraction (ILA): A uniform
specification for system-on-chip (soc) verification. ACM Trans.
Design Autom. Electr. Syst., 24(1):10:1–10:24, 2019.

[12] M. Jan, M. Asavoae, M. Schoeberl, and E. A. Lee. Formal
semantics of predictable pipelines: a comparative study. In 25th
Asia and South Pacific Design Automation Conference
(ASP-DAC), Beijing, China, January 2020. To appear.

[13] I. Liu et al. A PRET microarchitecture implementation with
repeatable timing and competitive performance. In 2012 IEEE
30th international conference on computer design (ICCD),
pages 87–93. IEEE, 2012.

[14] M. Schoeberl. Lipsi: Probably the smallest processor in the
world. In Architecture of Computing Systems - ARCS 2018 -
31st International Conference, pages 18–30, 2018.

[15] M. Schoeberl, W. Puffitsch, S. Hepp, B. Huber, and
D. Prokesch. Patmos: A time-predictable microprocessor.
Real-Time Systems, 54(2):389–423, Apr 2018.

Reasoning about non-functional properties using compiler
intrinsic function annotations

Shashank Jadhav
Hamburg University of

Technology
shashank.jadhav@tuhh.de

Mikko Roth
Hamburg University of

Technology
mikko.roth@tuhh.de

Heiko Falk
Hamburg University of

Technology
heiko.falk@tuhh.de

Christopher Brown
University of St Andrews

cmb21@st-andrews.ac.uk

Adam Barwell
University of St Andrews

adb23@st-andrews.ac.uk

ABSTRACT
Embedded systems often need to adhere to time and en-
ergy constraints. With the increasing popularity of embed-
ded systems, the interest in evaluating and optimizing non-
functional properties like execution time and energy of these
systems is increasing.

In this paper, we describe a Resource-usage Estimate Ex-
pression Language (REEL), which allows the user to argue
about these properties, within the source code, in a com-
piler understandable manner. Furthermore, we discuss the
integration of REEL within a compiler framework. We, also
show the propagation of REEL annotations within the com-
piler, and how they can be exploited to make decisions based
on the non-functional properties within the source code. Fi-
nally, we explore REEL’s potential to perform ILP-based
optimizations.

Keywords
Compilation, Annotations, Non-functional Properties, Func-
tion Inlining

1. INTRODUCTION
Modern embedded systems, often, are subjected to con-

straints like time and energy consumption. Depending upon
the physical and functional aspects of these systems, the
severity of the correctness of these systems may vary. There-
fore, the non-functional properties like time and energy con-
sumption are needed to be taken into consideration while de-
veloping for these systems. For embedded systems that are
categorized as real-time, it is paramount that they should
meet their deadlines. As embedded systems are becoming
more common, there is an effort to strive for reliable and
energy-efficient systems. Generating an energy-efficient code
that guarantees a response within the specified time con-
straint or deadline is a way to tackle this issue.

Common compilers are likely to perform optimizations,
which can lead to reasonably optimized code, but without
any guarantees on execution times. When it comes to em-
bedded systems, this often is not sufficient. We have to
take into consideration fundamental properties like, e.g., the
Worst-Case Execution Time (WCET). If we can ensure the
WCET of the code is within a specified deadline, we can
guarantee the real-time nature of an embedded system. If
such properties can be estimated by static analysis methods,

that are difficult to perform before compiling for a partic-
ular platform with appropriate optimizations enabled, they
should be integrated into the compilation process. The com-
piler can then make correct decisions depending on such
properties, allowing more generic code designs.

In this paper, we introduce the Resource-usage Estimate
Expression Language (REEL), which is a collection of com-
piler intrinsic functions. It enables transparency and easy
access to information about non-functional properties pro-
vided by the compiler from within the users’ source code. It
allows the user, or another tool for that matter, to reason
about non-functional properties using the compiler’s capa-
bilities.

1 /* The WCET of this for -loop is important. */
2 for (i = 0; i < 100; ++i)
3 a +=2;
4 /* This application should further run in

either energy -efficient or high -performance
mode , depending on the for -loop’s WCET. */

Consider the code snippet above, in which the WCET of
the for-loop is crucial for the user to make decisions about
the applications’ execution mode. In such cases, having ac-
cess to the non-functional properties of the code is essential.
Therefore, it would be useful if the user can annotate the
code to steer the compiler to generate a suitable binary and
provide the essential data.

We will consider REEL and its ongoing implementation
within an existing compiler framework from the embedded
system, in this case, the WCET-aware C Compiler (WCC).
We will also explore the optimization potential, that the user
can exploit during compilation by using REEL annotations
within the source code.

This paper is organized as follows: Section 2 provides an
overview of the related work and background on the compiler
framework used. Section 3 describes the semantics and im-
plementation of REEL Annotations. Section 4 talks about
the integration of REEL annotations within WCC. Section
5 follows two different REEL annotations within WCC. We
close with a conclusion and a brief look at future work.

2. BACKGROUND

2.1 Contract Specification Language
A Contract Specification Framework Drive is introduced

by Brown et al. [2], which includes an Embedded Do-

main Specific Language, the Contract Specification Lan-
guage (CSL). CSL allows the user to reason about the
energy, time, and security properties of their code in an
architecture-independent way. Reasoning about the worst,
best, and average cases are possible for both time and en-
ergy cases. In case of security, CSL allows capturing the se-
curity level concerning fault injection, and power- and time-
related side-channel attacks. The user needs to annotate
their source code with predefined CSL-functions, that have
to be placed before a regular C-statement to reason about
the statement’s non-functional properties.

The Drive framework can call external tools, such as
WCC, for obtaining the necessary estimations and infor-
mation about non-functional properties of the source code.
REEL is being developed in conjunction with the University
of St. Andrews, to have a usable interface between the two
frameworks.

2.2 WCET-Aware C Compiler Framework
The WCET-Aware C Compiler (WCC) [4] is a C compiler

consisting of sophisticated WCET-oriented analyses and op-
timizations. It currently supports the ARM7TDMI from
ARM and TriCore TC1796 and TC1797 processors from In-
fineon. WCC is currently being extended to support the
ARM Cortex-M0 and Leon3 from Cobham Gaisler.

WCC has two intermediate representations (IRs): one
high-level C-like IR (ICD-C) and another assembler-like low-
level IR (ICD-LLIR). The ICD-C framework is a data struc-
ture that provides a machine-independent IR for C code. On
the other hand, ICD-LLIR is a data structure that provides
a retargetable machine-dependent low-level IR for compiler
back-ends. Various optimizations can be carried out on each
IR-level. WCC offers WCET-aware optimizations during
the compilation process due to its tight integration with a
static WCET analyzer tool called aiT [1].

Additionally, WCC can perform WCET- and Energy-
aware multi-objective optimizations. It can, also, perform
ILP-based optimizations, to find optimal solutions that are
derived deterministically, as described in, e.g., [5].

3. REEL ANNOTATIONS
CSL, a high-level language, is independent of any tool or

compiler, and therefore a source code annotated with CSL
is architecture-independent. To reason about physical and
architecture-specific properties, such as energy, WCET, etc.,
it needs values or estimations for specific architectures. On
the contrary, REEL is a collection of compiler intrinsic C-
functions used to annotate C source code and provides es-
timations for specific architectures. REEL annotations sit
between CSL and compiler level, offering an interface for
obtaining such properties automatically in the future, as en-
visioned in [2].

REEL annotations enable the user to argue about the non-
functional properties of the code. It is done by adding calls
to the compiler intrinsic functions before regular C state-
ments, much in the same way as is done in CSL. The user
will be able to make decisions within their code, based on the
nature of the non-functional properties. This information
is injected into C-variables defined in the REEL function’s
argument-list, wherever it is appropriate. The user can also
declare deadlines or limits on the energy consumption of a
particular piece of code, by asserting within the source code.
These REEL assertions will be treated as constraints while

performing ILP-based optimization.
These annotations are expressed as regular ANSI-C com-

pliant function calls in the source code. The user can an-
notate the source code with these REEL functions, defined
in the REEL header file, which describes the meaning of
each REEL annotation and provides information on their
argument types. The function bodies for REEL annotations
that provide their implementations are defined locally within
the compiler. The user can inform the compiler about the
important parts of the code in terms of non-functional prop-
erties using REEL annotations. For example, the following
REEL annotations can inform the compiler that the user
requires the WCET value of the code snippet immediately
after the annotation.

1 void __reel_worst_time(unsigned long long *var
);

Here, the variable var always refers to the WCET of the
immediate next non-REEL C statement. If a user has some
information about the non-functional properties of the code
snippet, then the user can use the following annotation to
inform the compiler about their values and the confidence
level with which the user knows this information.

1 void __reel_worst_time_manual(
2 unsigned long long *var ,
3 unsigned long long dValue ,
4 const _Bool cLevel);

Depending upon the confidence level cLevel, this anno-
tation assigns either the user-provided default WCET value
or a WCET value derived by a static WCET analysis to
the variable var. Similar annotations can be used by the
user if the user needs information in regards to the energy
consumption, average-case execution time (ACET), etc. of
the code snippets. Therefore, these values obtained by per-
forming analyses can be used to make decisions within the
application. These values should not be used within the
analyzed code section itself, as it makes the analysis result
dependent on itself.

Furthermore, __reel_assert provides C-level contracts
to assert non-functional properties during compile-time.

1 void __reel_assert(_Bool expr);

This annotation provides a boolean C expression expr,
which should be asserted by the compiler. The expression
to be asserted is treated as integer-linear inequations within
the compiler, which are never translated into actual ma-
chine code, contrary to other REEL annotations. This can
help the user to deal with objectives like time and energy
consumption for embedded systems at the source-code level.
The user can define deadlines for embedded systems, which
can be treated as integer-linear constraints while performing
ILP-based optimizations within a compiler like WCC.

4. INTEGRATING REEL ANNOTATIONS
INTO WCC

In this section, we describe the approach to realize REEL
annotations within the WCC compiler framework, cf. also
Figure 1. As mentioned before, WCC treats REEL anno-
tations as compiler-known functions. The function bodies
for REEL annotations that provide their implementations
are defined locally within WCC in a dedicated C file. This

ICD-LLIR

Parser

Energy
Analysis

Code
Selector

Code
Generator

Annotated
ANSI-C
Source
(CSL)

Annotated
ANSI-C
Source
(REEL)

ICD-C

aiT WCET
Analysis

ICD-LLIR

WCET-Aware
ICD-LLIR

Optimizations

WCET-Aware ICD-C
Optimizations &
 Back-Annotation Memory

Layout

Optimized
Assembly

Linker
Script

WCC

Inject
 Analysis
Results

into
REEL

Annotations

Translate
 REEL

Annotations
from ICD-C

to LLIR

Inline
REEL

Function
Calls

Collect
REEL

Function
Calls

Inject
REEL

Function
 Bodies

Figure 1: Integration of REEL Annotations within
WCC

C file is transparently injected during WCC’s compilation
process, in the beginning, before the source files are parsed,
as shown in Figure 1.

By using WCC’s high-level intermediate representation
ICD-C, REEL annotations within the source code are col-
lected. To link these REEL annotation calls with their ac-
tual compiler-internal implementations, WCC inlines REEL
function templates into which the analysis values are later
injected. This way, all occurrences of REEL function calls
are replaced by their respective function bodies, whose code
is already injected previously within WCC using the C file.

Then ICD-C is translated into LLIR during WCC’s code
selection stage. For Leon and ARM architectures, WCC del-
egates code selection to external GCC instances, while for
TriCore an internal implementation is used. As the external
GCC is fully unaware of REEL annotations and WCC’s in-
ternal mechanisms, it is very difficult to maintain a proper
translation between the C-source level and the assembly-
level. To tackle this issue, WCC exploits DWARF-2 debug-
ging information [3]. DWARF-2 is a standardized extension
of the binary object code that enables symbolic, source-level
debugging. It provides an inherent mapping from assembly-
level code to its original provenience at the source code-
level. WCC propagates REEL annotations from ICD-C level
to LLIR level by correctly exploiting the GCC-generated
DWARF-2 debugging location information.

During code selection, it is necessary to properly identify
the locations of code generated by the REEL function defini-
tions. Therefore, WCC maintains a dictionary relating the
ICD-C constructs to their LLIR counterparts. Every trans-
lation from an ICD-C basic block to an LLIR basic block
is maintained with the help of a map. This way WCC can
keep track of all the occurrences of these REEL annotations
too at the assembly level. It is necessary to maintain this
mapping so that the analyses for timing and energy can be
performed at the assembly level.

WCC performs the required time and energy analyses at

the LLIR level and annotates back this information to the
LLIR at the granularity of individual basic blocks. De-
pending upon the scope of the REEL annotations within
the LLIR, this information is aggregated such that it ex-
actly covers the whole range of assembly-level code that the
REEL annotation refers to at the source-level. For example,
if a user requires information about the WCET value of a
for-loop, WCC uses loop nesting to acquire a list of LLIR
basic blocks associated with that for-loop and aggregates the
WCET values of those basic blocks.

Once the aggregated data is collected at the LLIR level,
WCC injects it into the assembly code that corresponds to
the REEL construct and thus gets embedded into the bi-
nary. This data can also be exploited by the compiler opti-
mizations, and thus allows the user to steer the compilation
process.

5. EXAMPLE IMPLEMENTATION

5.1 REEL Worst Time
In this sub-section, we will consider a full imple-

mentation of one representative REEL annotation, i.e.,
__reel_worst_time defined in Section 3. WCC’s internal
implementation of this compiler-known REEL annotation
looks as follows:

1 void __reel_worst_time(unsigned long long *var
)

2 {
3 *var = 42;
4 }

This REEL annotation assigns WCET estimates to the
variable var, given as a pointer parameter. A WCET value
shall be assigned to this variable, which at first holds 42 as a
dummy value. The WCET value assigned to this variable al-
ways refers to the WCET of the immediate next non-REEL
C statement following the REEL annotation.

Consider the example C-source code from Section 1 anno-
tated with a REEL annotation:

1 unsigned long long rWCET;
2 __reel_worst_time(&rWCET);
3 for (i = 0; i < 100; ++i)
4 a +=2;
5 if (rWCET < 10000)
6 /* Execute energy -efficient mode. */
7 else
8 /* Execute high -performance mode. */

Here, a for-loop is annotated with a __reel_worst_time

annotation. The value of variable rWcet is associated with
the WCET of the following for-loop. Depending on the
WCET value of the for-loop, the user is deciding either to
perform an energy-efficient execution or to perform a high-
performance execution. This code snippet is transformed
via inlining into

1 unsigned long long rWCET;
2 *(&rWCET) = 42;
3 for (i = 0; i < 100; ++i)
4 a +=2;
5 if (rWCET < 10000)
6 /* Execute energy -efficient mode. */
7 else
8 /* Execute high -performance mode. */

If we are compiling this code for a ARM Cortex-M0 ar-
chitecture, after code selection the above mentioned source
code will be translated to the following assembly sequence:

1 .L1:
2 mov r6, #0 % b = 0
3 mov r3, #42 % rWCET = 42
4 mov r5, #0 % i = 0
5 b .L3
6 .L2:
7 add r6, r6, #2 % a += 2
8 add r5, r5, #1 % ++i
9 .L3:

10 cmp r5, #99 % i < 100
11 bls .L2

In the above assemble code snippet, the if-else state-
ment is omitted for the sake of brevity. As it can be
seen, the assembly-level basic block .L1 features a mov in-
struction that corresponds to the original REEL annotation
__reel_worst_time(&rWCET);. It assigns the dummy
value of 42 to the register r3 that holds the variable rWCET.
This variable is supposed to represent the WCET of the en-
tire for-loop in the above example. Thus, WCC performs
a static WCET analysis of the generated assembly code by
using aiT ’s analyzer. If, for example, aiT determines that
the WCET value of this for-loop is 420 clock cycles, WCC
will finally update the mov instruction corresponding to the
REEL annotation by

1 mov r3, #420 % rWCET = 420

Once this WCET value is replaced at the assembly code-
level, this value can be accessed and used during run-time for
various purposes like any other variable. In this example, the
compiler could also discard the unused branch as soon as the
value is known. Thus both cases can be taken into account
during design time, without worrying about the properties
of the final executable, as the compiler would make the right
decision once the WCET has been determined. This makes
the application more generic and easier to adjust for different
target platforms or optimization levels.

5.2 REEL Assert
In this sub-section, we will consider a full implementation

of __reel_assert, defined in Section 3. By using REEL as-
sertion a user can provide a boolean C expression which is
passed through WCC. WCC collects this boolean C expres-
sion and treats it as an integer-linear inequation.

A C-source code containing a REEL assert would look like
as follows:

1 unsigned long long rWCET;
2 __reel_worst_time(&rWCET);
3 for (i = 0; i < 100; ++i)
4 a +=2;
5 /* The WCET value of the for -loop should be

less than 10000. */
6 __reel_assert(rWCET < 10000);

Unlike other REEL annotations, for __reel_assert,
WCC collects the boolean expression and removes the asser-
tion call from the source code. This boolean expression can
be passed down to the ILP-based optimizations to be investi-
gated in the near future. In the above-mentioned example,
WCC collects the boolean expression rWCET < 10000. By
using assert, the user is indicating that the WCET of the

for-loop needs to be less than 10000. Once WCC performs
an initial WCET analysis, the WCET value of the for-loop,
associated with __reel_worst_time, is injected within the
source.

Once rWCET is known, a linear-inequation is added to the
ILP model as a constraint. The optimization then tries to
find a solution that fulfills this assertion. If the assertion is
not fulfilled by any possible solution, WCC will let the user
know that the assertion is unrealistic, and a solution does
not exist in such a scenario.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented REEL annotations, with which

the user can argue about and obtain information about non-
functional properties, like WCET, Energy, and security, at
the source code level via annotations. It enables the user or
other tools to obtain information about non-functional prop-
erties, and steer the compilation and optimization process.
It also allows the user to make use of these non-functional
properties, as the information is injected into user-defined
variables to be used within the application.

We also discussed our implementation of REEL within
a WCET-aware C compiler and showed an example imple-
mentation of two different REEL annotations. Furthermore,
we showed that REEL assertions can be used by the user to
provide constraints on the non-functional properties within
the source code. These constraints will be taken into consid-
eration by WCC while performing ILP-based optimizations,
and WCC will try to find optimized solutions based on user-
provided assertions.

As a next step, we will evaluate REEL annotations on
a number of benchmarks and perform ILP-based optimiza-
tions to test our techniques. We plan to extend our work
by taking into consideration other non-functional properties
like energy. Our intention is also to extend the WCC and
REEL framework to take security aspects of the code into
consideration and see its behavior against WCET and En-
ergy.

Acknowledgments
This work is part of a project that has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 779882.

7. REFERENCES
[1] G. AbsInt Angewandte Informatik. ait worst-case

execution time analyzers, 2019.

[2] C. Brown, A. D. Barwell, Y. Marquer, C. Minh, and
O. Zendra. Type-driven verification of non-functional
properties. In PPDP, 2019. Accepted for publication.

[3] Dwarf debugging information format.
http://dwarfstd.org/, 1993.

[4] H. Falk and P. Lokuciejewski. A Compiler Framework
for the Reduction of Worst-Case Execution Times.
Real-Time Systems, 46(2):251–298, 2010.

[5] D. Oehlert, A. Luppold, and H. Falk. Bus-aware static
instruction spm allocation for multicore hard real-time
systems. In 29th Euromicro Conference on Real-Time
Systems (ECRTS 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

InterNoC: Unified Deterministic Communication For
Distributed NoC-based Many-Core

Eleftherios Kyriakakis
Technical University of

Denmark
Kgs. Lyngby, Denmark

elky@dtu.dk

Jens Sparsø
Technical University of

Denmark
Kgs. Lyngby, Denmark

jspa@dtu.dk

Martin Schoeberl
Technical University of

Denmark
Kgs. Lyngby, Denmark

masca@dtu.dk

ABSTRACT
Network-on-Chip is a popular paradigm for scalable many-core
communication. There is a trend in modern system-on-chip to in-
tegrate more functionality. This combined with recent research for
network-on-chip in the aerospace industry, gives room for design
space exploration in new architectural paradigms for distributed
and real-time many-core communication. In this paper, we present
InterNoC, a deterministic communication scheme for distributed
network-on-chip many-core that allows for unified IP-based time-
triggered communication. It is hypothesized that such an archi-
tecture will efficiently minimize communication complexity in dis-
tributed many-core systems as well as provide hard-bounded end-
to-end latency guarantees. We extend the real-time multi-core plat-
form T-CREST by introducing a time-triggered NoC-based switch-
ing mechanism combined with a NoC packet to Ethernet frame traf-
fic controller. The proposed architecture will be evaluated in an ex-
perimental InterNoC network that implements a 36-core real-time
system distributed over four FPGA devices.

1. INTRODUCTION
The shift to chip multi-processors (CMPs) in real-time systems

is inevitable as emerging technologies in the field of industrial au-
tomation and industrial internet of things continue to increase the
demand for performance on the edge of the network while main-
taining strict requirements in low power consumption [12]. To
meet these requirements, the number of cores in modern many-
core system-on-chip continues to scale and thus the requirements
on resources and bandwidth of traditional buses become demand-
ing. Network on-chip (NoC) have proven to be a viable solution
for scalable many-core on-chip interconnection as they allow for
efficient all-to-all communication [4].

Most research in the field of NoC focuses on improving the func-
tional characteristics of the architecture as well as analyzing the ap-
plication mapping strategies to such many-core systems. Over the
years, few works have been presented that discuss the use of NoC
for inter-chip communication, particularly in the field of real-time
systems. In this paper, we envision a prototype network architec-
ture that allows for a unified deterministic communication scheme
for distributed real-time many-core systems. It is hypothesized, that
such an architecture will allow real-time many-core applications
to deploy tasks on cores in a locality agnostic way. Essentially,
a task will execute the same code regardless if it needs to com-
municate with other tasks found on- or off-chip. We identify two
possible ways to extend a NoC over physically distributed CMPs:
1) the local NoC communication (i.e. flits) gets encapsulated in an
inter-chip communication protocol or 2) the Ethernet network pro-
tocols are pulled into the local NoC communication, abstracting
away any on- and off-chip communication details from the appli-

cation. In this paper, we focus on investigating the implementation
of the second option as it abstracts away from the application any
details about the internal architecture and routing of the NoC and
allows to integrate heterogeneous systems.

The contribution of this paper is a first exploration of the idea
of distributed CMP real-time systems that aims to provide seam-
less and scalable inter-chip time-triggered communication using
the Internet Protocol (IP). It is based on the time-division multi-
plexed NoC architecture Argo, the time-predictable processor Pat-
mos and an Ethernet controller extension. The communication is
realized by implementing a new software abstraction layer between
NoC packets and Ethernet IP frames. Bounded latency guaran-
tees and contention-free communication is achieved by enforcing a
network-wide time-triggered schedule.

The rest of the paper is organized in 7 sections: Section 2 pro-
vides the user with a background of the related work in the field
of NoC-based inter-chip communication. Section 3 provides the
reader with a background on the fundamental components the pro-
posed communication is built on. Section 4 presents the proposed
architecture and describes its integration with the T-CREST plat-
form. Section 5 provides a preliminary evaluation of the feasibil-
ity and characteristics of the proposed architecture. Section 6 de-
scribes the future scope of this project and the immediate research
focus points. Finally, Section 7 concludes the paper.

2. RELATED WORK
Inter-chip communication has been previously explored in the

context of distributing the processing resources of a NoC and the
following works present different techniques for implementing an
off-chip bridge for NoC system-on-chip [9, 11, 20]. In this work,
we implement Ethernet as the physical link for the inter-chip NoC
communication as it allows for greater interoperability that can take
advantage of different industrial Ethernet technologies. It also fa-
cilitates for software development as applications can communicate
using a single protocol regardless if they are on the same chip or
distributed over multiple devices.

More recently, in [1] the authors propose a mixed avionics full-
duplex Ethernet (AFDX) and NoC communication between many-
core applications. The proposed communication model is moti-
vated by real-time use-cases in the field of avionics and health
monitoring the authors investigated different application mapping
strategies concerning the effects of contention on the worst-case
traversal time of communication flows. Moreover, in [2] the au-
thors propose a function mapping strategy in mixed AFDX/NoC
communication that aims to minimize flow contentions and thus
provide bounded jitter.

Another related distributed real-time system is presented in [19].
The authors propose and implement the Mock Turtle architecture,

which is based on 32-bit RISC-V processor cores. On-chip com-
munication is provided by a shared memory mechanism while off-
chip communication is implemented using the white-rabbit net-
work [16]. As shared memory communication does not scale well
and with a cache coherence protocol is hardly time predictable, we
use a NoC for on-chip communication.

Finally, in contrast to previous works the proposed architecture
does not suffer from contention as it is based on a network-wide
time-triggered schedule and a time-division multiplexing (TDM)
NoC design. The software driver handling the time-triggered com-
munication is implemented on the time-predictable Patmos proces-
sor allowing for worst-case execution time (WCET) analysis. The
building blocks of this architecture allow for a bounded end-to-end
communication latency that can be statically calculated as shown
in Section 5.

3. BACKGROUND
This section aims to briefly introduce the existing architecture

components, namely the processor and the NoC architecture, which
the proposed InterNoC design uses for the implementation. Both of
them are part of the open-source research platform T-CREST [13],
which is an FPGA-based many-core platform that has been devel-
oped for on-going research in real-time applications.

3.1 Argo NoC
Argo [17] is a packet-switched and source-routed NoC that uses

TDM to guarantee bandwidth and latency. It allows for determinis-
tic unicast message-passing communication over virtual channels,
which is implemented using dedicated direct-memory access (DMA)
controllers for each source-end of every virtual channel. The DMAs
are integrated with a TDM mechanism in the network-interface
(NI), eliminating the need for buffering and flow control. Accord-
ing to the TDM schedule, each virtual channel gets a time-slot dur-
ing which it can start sending a message. These time-slots are as-
signed according to a statically scheduled period.

The TDM mechanism is implemented in each Argo NI as TDM
counter. This TDM counter indexes a schedule table that in turn
points to an entry in the DMA table containing the respective coun-
ters and pointers for a DMA access. The NI exposes two interfaces
to the processor core, a configuration interface and a data interface.
The data interface allows the processor to exchange data with the
NI’s dual-port scratch-pad memory. The configuration provides ac-
cess to both the schedule table as well as the DMA controller.

It is worth noting, that Argo supports on-the-fly schedule re-
configuration. This can be done with zero delays experienced by
any on-going messages in a virtual channel communication as de-
scribed in [17], but using this mechanism is outside the scope of
this work.

3.2 Patmos
Patmos [15] is a time-predictable WCET-optimized, dual-issue

RISC processor that has been designed with a focus on WCET anal-
ysis. It uses special WCET-optimized instruction and data caches
along with private scratchpad memories for instructions and data.
It is supported by an LLVM-based [10] compiler, also optimized
for WCET and by the WCET analysis tool platin [6].

The tool platin performs static analysis to compute the WCET
of a certain code segment by using the information generated and
preserved during compilation to determine a control flow graph.
Together with low-level timing information of the processor archi-
tecture, it can calculate a safe WCET bound of the analyzed code
segment.

4. ARCHITECTURE
The architecture of InterNoC is building on top of the statically

scheduled TDM Argo NoC (see Section 3.1), but the communi-
cation concept can be applied to any NoC architecture as long as
it can guarantee bandwidth allocation. Moreover, the NoC cores
are implemented using the Patmos processor, allowing for time-
predictable and statically WCET analyzable execution of software
tasks. This combination allows the proposed architecture to have a
fully deterministic communication scheme.

The proposed architecture defines two types of NoC cores, (1) a
computation core and (2) a gateway core that is interfaced with an
Ethernet controller and is responsible for handling incoming and
outgoing traffic. This is illustrated in Figure 1, where core 0 is
assigned the role of the gateway core.

Ethernet
Controller

router router

router router

core
0

core
2

core
3

core
1

CMP A

Ethernet
Controller

router router

router router

core
0

core
2

core
3

core
1

CMP B

IP Packet

Local NoC Msg

IP PacketIP Packet

192.168.1.2

192.168.1.4192.168.1.3

192.168.2.2

192.168.2.3 192.168.2.4

Ethernet Switch

192.168.1.1 192.168.2.1

Figure 1: Local and distributed NoC communication concept
over IP

Taking advantage of existing Ethernet technologies, communica-
tion is performed as a mix of NoC packets and IP traffic. Each core
is statically assigned an IP address and the message-passing library
of Argo is extended to allow for this translation between from IP
packets to NoC messages.

When an application wants to transmit a message it constructs
an IP packet and passes the data to the driver. Consecutively, the
driver checks if the subnet of the requested IP address is on- or
off-chip. If the destination is on-chip it uses the respective NoC
virtual channel and writes the IP packet to the corresponding DMA
to reach the destination computation core. If the destination subnet
IP address is off-chip, the driver uses the respective NoC virtual
channel pointing to the gateway core and writes the IP packet to
the respective buffer.

Each gateway core executes two periodic tasks. The first task
is responsible for collecting incoming IP packets from the on-chip
computing cores, encapsulating them into Ethernet frames and for-
warding them at specific time-slots using the Ethernet controller.
The second task is responsible for polling the Ethernet controller
for incoming IP packets and depending on the destination IP ad-
dress creating the NoC channel and transmitting the incoming IP
packet to the respective NoC node.

Due to the difference in time granularity between the local NoC
schedule and the Ethernet transmission, each gateway core per-
forms a store-and-forward scheme and maintains separate buffers
per NoC channel for the incoming NoC packets, which it needs for
to reconstructs the respective IP packets. For example, if a NoC
packet can transfer a maximum of two words of data (64 bits) per
NoC TDM slot, then the on-chip transmission of a maximum size
Ethernet frame (1518 bytes) requires 190 NoC TDM slots to com-
plete. This is further discussed in Section 5.

All the components of the presented architecture are developed
as open-source and are hosted under the T-CREST project GitHub
repository https://github.com/t-crest/ .

5. EVALUATION
This section provides an initial evaluation of the scalability and

feasibility of the presented architecture. The proposed communi-
cation is composed of two types of traffic:

1. Intra-CMP, referring to the on-chip NoC communication

2. Inter-CMP, referring to the off-chip communication that pro-
cessing cores can access via Ethernet.

A full evaluation of the intra-CMP communication for Argo has
been already presented in [14, 18]. In this evaluation, we try corre-
late the results with the proposed IP-NoC abstraction layer’s added
overhead and the additional inter-chip communication scheme.

Figure 2 presents the constraints for the inter-chip time-triggered
communication that define the schedule period (length). These are
the total number CMPs, the number of cores per CMP and the num-
ber of frames available for transmission/reception by each core.

CMP 1

Core 1 Core 2 ...

Frame #0

Schedule Period

Frame #1

CMP 2 CMP 3 CMP 4 No. of CMP

No. of cores per CMP

No. of frames per core

IP Packet Length

Core 9

Figure 2: Constraints defining the inter-CMP schedule period

The evaluation is motivated by three industrial Ethernet traffic
classes, defined in [5], that specify the schedule period require-
ments. The available bandwidth for inter-CMP communication
is assumed to be 100 Mbps, as this is commonly used in real-
time communication protocols such as the TTEthernet [8]. Table 1
presents the number of frames per schedule period that can be ex-
changed using the inter-chip links, by taking into account two types
of frames, 1) full Ethernet frames of 1518 bytes and 2) minimum
Ethernet frames of 64 bytes.

Table 1: Available frames versus inter-CMP schedule period

Class Schedule Period (ms) No. of Frames
Full frames Min. frames

1 100 833 19531
2 10 83 1953
3 0.25 – 1 2 – 8 48 – 195

In most industrial use-cases the period of real-time traffic con-
straints the frame size. Assuming a hard real-time schedule pe-
riod of 1 ms that aims to cover an all-to-all communication sched-
ule, with min. frame size of 64 bytes (6 bytes of IP payload).
This means that M CMPs containing N cores share a bandwidth
of 195 frames or 1.17 MBps that each carries 6 bytes of IP pay-
load. For example, a system composed of M = 4 then each CMP
has 44 time-slots available for inter-CMP communication. This can
be seen as a trade-off between the number of cores per CMP and the

assigned bandwidth to each CMP core. The application designer is
responsible for minimizing the off-chip communication flows. The
subject of task mapping strategy is outside the scope of this work.

The worst-case traversal time (WCTT) of the proposed archi-
tecture is end-to-end bounded since the Argo NoC operates on a
TDM schedule and the planned inter-CMP communication is time-
triggered. Thus, the WCTT of a packet in the presented architec-
ture can be statically expressed by WCT Te2e in Equation 1. The
WCT Te2e is composed of three parts, the worst-case traversal time
of the NoC as WCT Tnoc, the worst-case traversal time of the Ether-
net link as WCT Teth and the worst-case execution time WCETdriver
of the abstraction layer that performs the store-forward and the
translation between NoC and IP packets.

The WCTT of the NoC is presented in Equation 2. WCWTnoc is
the worst-case waiting time that a NoC packet can experience and
is equal to the period of the NoC TDM schedule, SizeIP is the size
of the transmitted/received IP packet, Bnoc is the bandwidth of the
NoC channel, Lnoc is the end-to-end latency of the NoC and Tnoc is
the NoC schedule period.

Finally, the worst-case traversal time over Ethernet is presented
in Equation 3. The WCWTeth is the worst-case waiting time an Eth-
ernet frame can experience before starting the transmission, Sizeeth
is the size of the Ethernet frame, Beth is the available bandwidth of
the Ethernet connection and Lswitch is the Ethernet switch latency.

WCT Te2e =WCT Teth +2∗ (WCT Tnoc +WCETdriver) (1)

WCT Tnoc =WCWTnoc +
SizeIP

Bnoc
∗Tnoc +Lnoc (2)

WCT Teth =WCWTeth +2∗ Sizeeth

Beth
+Lswitch (3)

Following is a short example of an experimental setup composed
of four CMPs with nine cores each communicating over a single
Ethernet switch. Assuming a bi-torus topology of the NoC we can
safely assume that the worst-case latency Lnoc is equal to one TDM
NoC period. For a 3x3 Argo NoC the schedule period is 10 clock
cycles [14]. Furthermore, we assume that the architecture is im-
plemented on FPGA technology with 80 MHz clock. To calculate
the WCT Te2e between two CMPs, first, we calculate the WCTT
for Min. size IP frame, for each NoC, to be WCT Tnoc = 1.25 µs.
Secondly, we calculate the WCTT for Ethernet, assuming Beth =
100Mbps and Lswitch = 3.9 µs [7]. According to Table 1 the system
can support a schedule period of 0.25 ms, where each core is al-
lowed to transmit one frame per period, thus WCT Teth = 260.24 µs.
Finally, we calculate WCT Te2e = 266.64 µs+WCETdriver. In fu-
ture works, a WCET analysis of the abstraction layer driver will
allow for the exact calculation of the end-to-end WCTT.

6. DISCUSSION AND FUTURE WORK
The proposed architecture is hypothesized to allow building In-

ternet applications on-top of a deterministic IP-NoC abstraction
layer that efficiently connects distributed real-time CMPs.

We plan to evaluate the communication on an experimental setup
that implements a 36-core architecture distributed over four physi-
cally separate devices, similar to what was visualized in Figure 2.
The system is implemented in four Altera Cyclone IV FPGA de-
vices [3] that each implements a 3x3 NoC and communicate over
Ethernet using a standard off-the-shelf switch. Such a system would
be otherwise impossible to fit on a single FPGA device, something
that emphasizes the importance of this communication scheme for

FPGA-based many-core real-time systems. We plan to implement
the experimental setup on a TTEthernet network and integrate the
off-chip time-triggered communication with the TTEthernet sched-
ule. We will investigate distributed systems schemes such as client-
server, publish-subscribe and remote process call built on top-of-
the presented communication scheme.

Finally, since the abstraction layer implements IP, it allows for
the physical communication link to be extended to other technolo-
gies such as wireless. However, this requires different mechanisms
to guarantee determinism which are outside the scope of this work.

7. CONCLUSION
In this paper, we proposed a new paradigm of unified communi-

cation for NoC-based CMPs. The proposed architecture allows to
minimize communication complexity and improve real-time sys-
tems scalability by extending the TDM Argo NoC using an IP Eth-
ernet frame to NoC packets abstraction layer and a time-triggered
off-chip communication scheme. The presented communication
scheme extends the Argo message-passing library and the devel-
oped software API is statically WCET analyzable as it is imple-
mented on the time-predictable processor Patmos.

A first evaluation of the scalability and design constraints of the
proposed communication was presented. It revealed that an appli-
cation mapping strategy must aim to minimize off-chip communi-
cation links, if hard real-time cycle time needs to be guaranteed.
Furthermore, it was shown that the end-to-end communication de-
lay can be guaranteed in a statically analyzable way.

8. ACKNOWLEDGEMENTS
This research has received funding from the European Union’s

Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 764785, FORA—Fog Com-
puting for Robotics and Industrial Automation.

9. REFERENCES
[1] L. Abdallah, J. Ermont, J.-L. Scharbarg, and C. Fraboul.

Towards a mixed noc/afdx architecture for avionics
applications. In 2017 IEEE 13th International Workshop on
Factory Communication Systems (WFCS), pages 1–10.
IEEE, 2017.

[2] L. Abdallah, J. Ermont, J.-L. Scharbarg, and C. Fraboul.
Reducing afdx jitter in a mixed noc/afdx architecture. In
2018 14th IEEE International Workshop on Factory
Communication Systems (WFCS), pages 1–4. IEEE, 2018.

[3] ALTERA. Cyclone IV FPGA Device Family Overview,
March 2016.

[4] L. Benini and G. De Micheli. Networks on chips: A new soc
paradigm. computer, 35(1):70–78, 2002.

[5] P. Danielis, J. Skodzik, V. Altmann, E. B. Schweissguth,
F. Golatowski, D. Timmermann, and J. Schacht. Survey on
real-time communication via ethernet in industrial
automation environments. In Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA),
pages 1–8. IEEE, 2014.

[6] S. Hepp, B. Huber, J. Knoop, D. Prokesch, and P. P.
Puschner. The platin tool kit - the T-CREST approach for
compiler and WCET integration. In Proceedings 18th
Kolloquium Programmiersprachen und Grundlagen der
Programmierung, KPS 2015, Pörtschach, Austria, October
5-7, 2015, 2015.

[7] Hewlett-Packard Development Company, L.P. ProCurve
Switch 1700 Series, March 2007.

[8] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer.
The time-triggered ethernet (tte) design. In Eighth IEEE
International Symposium on Object-Oriented Real-Time
Distributed Computing (ISORC’05), pages 22–33. IEEE,
2005.

[9] E. Kyriakakis, K. Ngo, and J. Öberg. Implementation of a
fault-tolerant, globally-asynchronous-locally-synchronous,
inter-chip noc communication bridge on fpgas. In 2017 IEEE
Nordic Circuits and Systems Conference (NORCAS):
NORCHIP and International Symposium of System-on-Chip
(SoC), pages 1–6. IEEE, 2017.

[10] C. Lattner and V. S. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In
International Symposium on Code Generation and
Optimization (CGO’04), pages 75–88. IEEE Computer
Society, 2004.

[11] W. H. Minhass, J. Öberg, and I. Sander. Implementation of a
scalable, globally plesiochronous locally synchronous,
off-chip noc communication protocol. In 2009 NORCHIP,
pages 1–5. IEEE, 2009.

[12] S. Saidi, R. Ernst, S. Uhrig, H. Theiling, and B. D.
de Dinechin. The shift to multicores in real-time and
safety-critical systems. In Proceedings of the 10th
International Conference on Hardware/Software Codesign
and System Synthesis, pages 220–229. IEEE Press, 2015.

[13] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley,
R. Capasso, J. Garside, K. Goossens, S. Goossens,
S. Hansen, R. Heckmann, S. Hepp, B. Huber, A. Jordan,
E. Kasapaki, J. Knoop, Y. Li, D. Prokesch, W. Puffitsch,
P. Puschner, A. Rocha, C. Silva, J. Sparsø, and A. Tocchi.
T-CREST: Time-predictable multi-core architecture for
embedded systems. Journal of Systems Architecture,
61(9):449–471, 2015.

[14] M. Schoeberl, F. Brandner, J. Sparsø, and E. Kasapaki. A
statically scheduled time-division-multiplexed
network-on-chip for real-time systems. In 2012 IEEE/ACM
Sixth International Symposium on Networks-on-Chip, pages
152–160. IEEE, 2012.

[15] M. Schoeberl, W. Puffitsch, S. Hepp, B. Huber, and
D. Prokesch. Patmos: A time-predictable microprocessor.
Real-Time Systems, 54(2):389–423, Apr 2018.

[16] J. Serrano, M. Lipinski, T. Wlostowski, E. Gousiou,
E. van der Bij, M. Cattin, and G. Daniluk. The white rabbit
project. 2013.

[17] R. B. Sørensen, L. Pezzarossa, M. Schoeberl, and J. Sparsø.
A resource-efficient network interface supporting low
latency reconfiguration of virtual circuits in time-division
multiplexing networks-on-chip. Journal of Systems
Architecture, 74(Supplement C):1–13, 2017.

[18] J. Sparsø, E. Kasapaki, and M. Schoeberl. An area-efficient
network interface for a tdm-based network-on-chip. In
Proceedings of the Conference on Design, Automation and
Test in Europe, pages 1044–1047. EDA Consortium, 2013.

[19] T. Wlostowski, F. Vaga, and J. Serrano. Developing
distributed hard-real time software systems using fpgas and
soft cores. 2015.

[20] Y. Yin and S. Chen. Design and implementation of a
inter-chip bridge in a multi-core soc. In 2009 4th
International Conference on Design & Technology of
Integrated Systems in Nanoscal Era, pages 102–106. IEEE,
2009.

A Preliminary Examination of Schedulability
under Lock Servers∗

Catherine E. Nemitz
The University of North Carolina at Chapel Hill

nemitz@cs.unc.edu

ABSTRACT
Allowing nested resource access in a real-time system intro-
duces several challenges. Addressing these challenges within
a synchronization protocol often leads to significant protocol
overhead. Recently, a protocol-independent method was de-
veloped that significantly reduces this overhead; lock servers
manage the execution of complex protocols, largely indepen-
dently from the tasks that require resource access. However,
some lock server configurations change the blocking caused
by the underlying protocol. This leaves an as-of-yet unan-
swered question: how does the use of lock servers impact
schedulability? I present a preliminary examination of that
question and briefly explore how the assignment of tasks to
lock servers can impact schedulability.

Keywords
multiprocessor locking protocols, nested locks, real-time lock-
ing protocols, priority-inversion blocking

1. INTRODUCTION
Real-time systems, those which require timing guaran-

tees as a component of system correctness, require an effi-
cient synchronization protocol to enable safe resource shar-
ing while meeting deadlines. A particular challenge to pro-
tocol efficiency is the presence of nested resource requests,
which occur in real-world systems [1, 3, 5] when multiple
resources must be held simultaneously.

Synchronization protocols are necessary to ensure safe re-
source sharing, but contribute two fundamental types of de-
lay to task execution. Blocking occurs when a task must wait
due to the protocol managing access to resources. Blocking
varies between protocols based on how each protocol orders
tasks to grant resource access. The other delay introduced
by locking protocols is overhead—the time required to exe-
cute the protocol logic and determine which task(s) may be
granted access to resources at each time.

Until recently, approaches taken by locking protocols to
handle nested resource access either (i) artificially limit nest-
ing [8, 14], (ii) may cause significant blocking [6, 7, 9, 14, 15],

∗Work supported by NSF grants CNS 1409175, CNS
1563845, CNS 1717589, and CPS 1837337, ARO grant
W911NF-17-1-0294, and funding from General Motors. This
material is based upon work supported by the National Sci-
ence Foundation Graduate Research Fellowship Program un-
der Grant No. DGS-1650116. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

or (iii) cause significant overhead [10]. A recently developed
method [12] allows the reduction of protocol overhead and,
depending on the configuration, may change the computa-
tion of worst-case blocking. This reveals a need—to fully
examine the tradeoffs of overhead and blocking under this
new approach in the context of schedulability.

In light of this, I take the uniform variant of the contention-
sensitive real-time nested locking protocol (U-C-RNLP), as a
case study and explore the impacts of the various lock server
configurations on schedulability. While one lock server con-
figuration tends to outperform all others in this preliminary
study, the results also show that with better accounting tech-
niques and methods of task allocation, the other configura-
tions may lead to higher schedulability in more scenarios.

Organization. I begin by giving necessary background on
the system model and on related work Sec. 2. Next, I present
preliminary schedulability results Sec. 3. Finally, I conclude
and present directions for future work in Sec. 4.

2. BACKGROUND AND PRIOR WORK
I begin by describing the system model before giving rel-

evant details about the different lock server configurations
and the functionality of the U-C-RNLP.

System Model. In this paper, I assume the standard spo-
radic task model, in which an arbitrary task is denoted τi.
As described in more detail in Sec. 2, clustered scheduling
is required for some lock server configurations, so I assume
Clustered Earliest-Deadline-First (C-EDF) scheduling.

When a task τi requires access to one or more resources,
it issues a request Ri. I focus on a spin-based locking pro-
tocol, in which τi busy waits until it is granted access to
its resources, after which it executes non-preemptively un-
til completing at most Li time units later. The maximum
critical-section length is denoted Lmax.

Lock Servers. Lock servers [12] build on an idea fundamen-
tal to remote core locking [11] by isolating the execution of
the lock logic to a few processes to better utilize the cache(s).
This is the mechanism that allows such a drastic reduction
in overhead. There are four fundamental lock server types,
which are distinguished by locality and mobility.

Let us begin by assuming a single lock server and exploring
the two types of mobility. A static lock server is pinned to a
single core. In contrast, a floating lock server moves between
cores. More specifically, when a task is busy-waiting for
access to its required resource(s), it can instead assume the
role of the lock server; until it is satisfied, it cannot continue
its execution, but it can execute the lock logic on behalf of

Protocol
Worst-Case

Acquisition Delay
Overhead (µs)
on Platform 1

Overhead (µs)
on Platform 2

U-C-RNLP (ci + 1) · Lmax 23.5 29.2
U-C-RNLP + SGLS (ci + 1) · Lmax 13.5 8.0
U-C-RNLP + SLLS (ci,s + 1)(Lmax,1 + Lmax,2) 8.7 2.8
U-C-RNLP + FGLS (ci + 1) · Lmax 11.5 9.1
U-C-RNLP + FLLS (ci,s + 1)(Lmax,1 + Lmax,2) 10.8 3.1

Table 1: Blocking bounds and overhead of each lock server configuration with the U-C-RNLP.

other tasks. In general, a static lock server will result in
lower overhead than a floating lock server, as eliminating
mobility can allow lock state to remain in the L1 cache.

Now let us consider the locality options. A global lock
server executes the protocol logic on behalf of all tasks, while
a local lock server handles only a subset of all tasks. The
local lock server configurations originally presented [12] des-
ignate one lock server per CPU socket. A set of local lock
servers tend to have lower overhead than a global lock server,
as some level of cache affinity can be maintained. Combin-
ing both distinctions, a set of static local lock servers will
have the lowest overhead of the four possible configurations.
However, the use of local lock servers comes with a tradeoff:
an additional synchronization mechanism is required in or-
der to ensure tasks managed by different lock servers execute
safely. This changes the worst-case blocking for the proto-
col used, which I describe in more detail after presenting the
basic functionality of the locking protocol I consider.

U-C-RNLP. Though lock servers provide a means for re-
ducing overhead that is protocol independent, they require
use of some protocol. For this work, I focus on the Uniform
C-RNLP (U-C-RNLP) variant of the C-RNLP [10].

The U-C-RNLP maintains a table of waiting and satisfied
requests that indicates when each request will be satisfied.
When a new request is issued, it is added to the first (“ear-
liest”) row in which there are no requests for an overlapping
set of resources. Entire rows are satisfied concurrently; when
a request completes, it is removed from the table and, if it
was the last request in its row, it indicates that any requests
in the subsequent row may become satisfied immediately.

The worst-case blocking for a request Ri handled by the
U-C-RNLP is thus dependent on the number of other re-
quests that conflict (require one or more of the same re-
sources) with Ri. This is the contention that Ri may ex-
perience and is denoted ci. This leads to the bound of the
U-C-RNLP (without any lock server) shown in Table 1. Es-
sentially, there are at most ci+1 rows of requests that will be
satisfied before Ri is satisfied, and it may take up to Lmax

time units for all requests of a given row to complete.
When lock servers are used, the worst-case acquisition de-

lay depends on the configuration. With a single lock server,
as with the Floating Global Lock Server (FGLS) or the
Static Global Lock Server (SGLS), the blocking remains un-
changed from that of the basic U-C-RNLP protocol without
lock servers. However, with multiple lock servers, like with
the Floating Local (FLLS) and Static Local (SLLS) con-
figurations, additional coordination is required between the
different lock servers before resource access may be granted.

Refining the notion of a maximum critical-section length
per local lock server allows a tighter bound to be computed.
The maximum critical-section length of any request man-
aged by Lock Server 1 (resp., Lock Server 2) is denoted

Lmax,1 (resp., Lmax,2). Additionally, I refine the contention
of a request Ri to specify the number of contending requests
also served by Lock Server s, which is denoted ci,s. The
bounds on acquisition delay for the U-C-RNLP with each
lock server configuration is shown in Table 1.

3. SCHEDULABILITY ANALYSIS
In this section, I describe my evaluation methodology and

present the results. This evaluation is centered around the
question of schedulability, but synchronization protocol over-
head and blocking must first be accounted for. I computed
both of these components and then incorporated them into
the open-source schedulability toolkit SchedCAT [2].

3.1 Overhead
Synchronization protocol overhead is platform dependent.

To accurately compare the tradeoffs of different lock server
configurations, overhead must be computed on any test plat-
form. For this preliminary investigation, I explore two plat-
forms. Platform 1 is a dual-socket, 8-cores-per-socket Intel
CPU platform. The second platform I consider, Platform
2, is a dual-socket, 18-cores-per-socket Intel CPU platform.
Both platforms have three cache levels, with the lowest level
shared across an entire socket, but not between sockets.
Based on this two-socket structure, for the local lock server
configurations, I use one local server per socket.

In order to measure the overhead of each configuration, I
used the methodology described in [12]. I varied critical-
section lengths, testing Li ∈ {1, 15, 100}µs with nesting
depth of either 2 or 4. The highest overhead for each con-
figuration tended to be for nesting depth of 2 and Li = 1µs,
which is depicted in Fig. 1 for both platforms. The highest
overhead values I measured are recorded in Table 1; these
are the values I incorporated into the schedulability study
by inflating the execution time of a task.

3.2 Blocking
To compute blocking, I use the bounds presented in Ta-

ble 1. In the implementation of these computations in the
SchedCAT framework, I also made a refinement to tighten
the analysis, by applying a period-based constraint [13], as
it may not always take Lmax for each row of requests to
complete. Instead, I use a set of the largest critical-section
lengths; I account for the number of times each critical sec-
tion could delayRi based on the relative periods of the tasks.
Once I have computed the blocking a task may encounter, I
inflate its execution time by this amount.

3.3 Schedulability
The taskset under analysis is divided into clusters by a

Worst-Fit bin packing heuristic, which considers the utiliza-
tion of a task to be its “weight” and the bin size to be U = 1.

2 4 6 8 10 12 14 16
Number of Tasks

0

5

10

15

20

25

T
o
ta

l
O

v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS

(a) Platform 1

0 5 10 15 20 25 30 35 40
Number of Tasks

0

5

10

15

20

25

30

T
o
ta

l
O

v
e
rh

e
a
d
 (

m
ic

ro
se

co
n
d
s)

U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS

(b) Platform 2

Figure 1: Total protocol overhead.

Category Name Value

Critical-Section Short [1,15]
Length (µs) Bimodal [1,15] or [15,100]

Moderate [15,100]

Period (ms) Short [3,33]
Moderate [10,100]

Table 2: Named parameter distributions.

After accounting for the blocking and overhead a task may
incur, I apply Baruah’s G-EDF schedulability test [4] to each
cluster individually. If all clusters pass this test, the taskset
is deemed schedulable.

I examined a range of scenarios; the parameter values are
summarized in Tables 2 and 3. I focused on nested re-
quests; non-nested requests can be handled efficiently by
other means [13]. Also, I assumed each task issues at most
one request. For each value of system utilization consid-
ered, 100 tasksets were examined. To analyze the static lock
server configurations, I assumed an entire core was dedicated
to each server. I reevaluate this pessimistic decision below.

Platform 1. I begin with a series of observations from the
72 scenarios explored on Platform 1. Fig. 2 represents one
such scenario, in which tasks have short periods, 50% of
tasks issue a request, and the nesting depth is 2.

Obs. 1. The schedulability of the U-C-RNLP with the
FGLS is always as good or better than that of the U-C-RNLP
with no lock server.

Category Options

Task Utilization [0.1,0.4]
Period Short, Long

Percentage Issuing Requests
5%,10%,20%,
50%, 80%, 100%

Critical-Section Length
Short, Bimodal,
Moderate

Number of Resources 64
Nested Probability 1.0
Nesting Depth 2, 4

Table 3: Schedulability study parameter choices. For each range
of values, a value is selected uniformly at random.

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS

Figure 2: Schedulability on Platform 1 under a scenario in
which tasks have short periods, 50% of tasks issue a request,
and the nesting depth is 2.

This is illustrated in Fig. 2, and is as expected; these
two protocol configurations have the same blocking, but the
FGLS leads to reduced overhead.

Obs. 2. The performance of the FLLS relative to the base-
line U-C-RNLP is dependent on the percentage of tasks that
require resource access.

If the percentage of tasks issuing requests is at most 10%,
FLLS is as good or better than the baseline in 98.6% of
scenarios. If instead 50% or more of the tasks issue requests,
FLLS is worse than the baseline in 93.1% of scenarios.

Obs. 3. The SLLS is always the worst option, and the
SGLS is almost always the second worst.

These poor results despite significantly lower overhead
highlights the need to develop a better method of ensuring
rapid lock server response to newly issued requests while also
allowing an analysis method that is not overly pessimistic.
For example, a high-priority task could be dedicated to this
without requiring the dedication of an entire core.

Platform 2. Next I considered performance on Platform
2. The same scenario depicted in Fig. 2 for Platform 1 is
shown in Fig. 3 for Platform 2.

Obs. 4. Similar performance trends hold for Platform 2.

Relative to the baseline, the FGLS and FLLS are more
dominant on Platform 2 for systems with requests with short
critical-section lengths; FGLS is better than the baseline
in 95.8% of the scenarios and if at most 50% of tasks is-
sue requests, the FLLS configuration is always better than
the baseline. However, for other critical-section lengths, the

0 5 10 15 20 25 30 35 40
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0
H

R
T
 S

ch
e
d
u
la

b
ili

ty

NOLOCK
U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS

Figure 3: Schedulability on Platform 2 under a scenario in
which tasks have short periods, 50% of tasks issue a request,
and the nesting depth is 2.

2 4 6 8 10 12 14 16
System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

H
R

T
 S

ch
e
d
u
la

b
ili

ty NOLOCK
U-C-RNLP
U-C-RNLP + SGLS
U-C-RNLP + SLLS
U-C-RNLP + FGLS
U-C-RNLP + FLLS
U-C-RNLP + SLLS (by L)
U-C-RNLP + FLLS (by L)

Figure 4: Schedulability on Platform 1 under a scenario in
which tasks have short periods, 10% of tasks issue a request,
and the nesting depth is 4. (Note: the U-C-RNLP + FGLS
line is equivalent to that for the U-C-RNLP + FLLS.)

FLLS performs less well relative to the baseline on Platform
2, and is as good or better than the baseline only when 5%
of tasks issue requests.

3.4 Methods for assigning tasks to clusters
I developed a basic heuristic to attempt to reduce block-

ing for local lock server configurations by leveraging the per-
cluster definitions of maximum critical-section length. I ex-
plore this with a set of scenarios with bimodal critical-section
lengths and for all percentages of tasks issuing requests ex-
cept 100% (my assignment method performs poorly even at
80%). I assigned any τi with Ri with Li ≤ 15µs to Cluster 1
and τi with Ri with Li > 15µs to Cluster 2. All tasks that
did not issue requests were then assigned with Worst-Fit.

Obs. 5. Different assignment techniques greatly impact the
schedulability under local lock server configurations.

For the FLLS configurations, switching to the assignment
heuristic described above clearly improved schedulability in
40.0% of the 20 scenarios, tested on both Platform 1 and
Platform 2. Similarly, the SLLS improved in 32.5% of sce-
narios. (These improvements ignore the 32.5% of scenarios
for both platforms in which there was no significant change.)

Switching assignment heuristics also resulted in scenar-
ios in which the FLLS with the new critical-section-length-
dependent allocation method (labeled “by L” in Fig. 4) out-
performed all other configurations. One such scenario is
depicted in Fig. 4, in which tasks had short periods, 10% of
tasks issued a request, and the nesting depth was 4.

4. CONCLUSIONS
I have explore the impact of lock server configurations on

task system schedulability. While a single configuration, the
Floating Global Lock Server, emerged as most effective in
this preliminary study, the performance of other configu-
rations can clearly be improved. With better methods for
assigning tasks to clusters, schedulability under local lock
servers improved. Additionally, more fine-grained methods
for accounting for static lock servers would likely improve the
results under those options significantly. For example, other
tasks could be allowed to execute on the same cores and sim-
ply incur a penalty for each time the lock server may need
to execute. In the future, I also plan to explore the tradeoffs
of lock server configurations on four-socket systems; four lo-
cal lock servers could be employed on such a platform, but
doing so effectively will likely require further work on allo-
cating tasks to clusters in order to reduce blocking.

5. REFERENCES
[1] AUTOSAR Release 4.4, Classic Platform,

Specification of Operating System.
https://www.autosar.org/, 2019.

[2] SchedCAT: Schedulability test collection and toolkit.
https://github.com/brandenburg/schedcat, 2019.
Accessed: 2019-02-07.

[3] D. Bacon, R. Konuru, C. Murthy, and M. Serrano.
Thin locks: Featherweight synchronization for Java. In
PLDI ’98.

[4] S. Baruah. Techniques for multiprocessor global
schedulability analysis. In RTSS ’07.

[5] B. Brandenburg and J. Anderson. Feather-trace: A
lightweight event tracing toolkit. In OSPERT ’07.

[6] A. Burns and A. Wellings. A schedulability compatible
multiprocessor resource sharing protocol - MrsP. In
ECRTS ’13.

[7] D. Faggioli, G. Lipari, and T. Cucinotta. The
multiprocessor bandwidth inheritance protocol. In
ECRTS ’10.

[8] P. Gai, G. Lipari, and M. Di Natale. Minimizing
memory utilization of real-time task sets in single and
multi-processor systems-on-a-chip. In RTSS ’01.

[9] J. Garrido, S. Zhao, A. Burns, and A. Wellings.
Supporting nested resources in MrsP. In Ada-Europe
International Conference on Reliable Software
Technologies ’17.

[10] C. Jarrett, B. Ward, and J. Anderson. A
contention-sensitive fine-grained locking protocol for
multiprocessor real-time systems. In RTNS ’15.

[11] J. Lozi, F. David, G. Thomas, J. Lawall, and
G. Muller. Remote core locking: migrating
critical-section execution to improve the performance
of multithreaded applications. In USENIX ATC’12.

[12] C. Nemitz, T. Amert, and J. Anderson. Using lock
servers to scale real-time locking protocols: Chasing
ever-increasing core counts. In ECRTS ’18.

[13] C. Nemitz, T. Amert, and J. Anderson. Real-time
multiprocessor locks with nesting: optimizing the
common case. Real-Time Systems, 55(2), 2019.

[14] H. Takada and K. Sakamura. Real-time scalability of
nested spin locks. In RTCSA ’95.

[15] B. Ward and J. Anderson. Supporting nested locking
in multiprocessor real-time systems. In ECRTS ’12.

The temporal correlation of data in a multirate system

Evariste Ntaryamira
Inria, Paris

evariste.ntaryamira@inria.fr

Cristian Maxim
IRT System X, Saclay

cristian.maxim@irt-
systemx.fr

Liliana Cucu-Grosjean
Inria, Paris

liliana.cucu@inria.fr

ABSTRACT
Technologies within embedded real-time systems are con-
tinuously evolving making them intelligent; at some point
they can achieve targeted functions autonomously. Such sys-
tems are extended with capability of sensing the surround-
ing environment and deciding on their own. In addition to
the feasible scheduling policy, the correctness of such deci-
sions highly depends on the quality of the used input data.
Thereby, the data management within such systems must
fulfill some properties in order to guarantee their correct
functioning. In this paper we address the problem of data
temporal correlation and validity when the system schedul-
ing properties are defined. We present preliminary results
on expected properties of the architectures and underline
future work.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
scheduling, data, real-time

1. INTRODUCTION AND RELATED WORK
The software embedded in a real-time system is composed

of a large number of applications communicating through
shared variables. These systems have the capability of mak-
ing functional decisions autonomously. For instance, the
autonomous vehicles are extended with capability of sensing
the surrounding environment and navigating on their own
by making driving decisions. Additionally to the traditional
vehicle functions autonomous vehicles are equipped with al-
gorithms that ease to infer the identity of the objects in the
neighborhood. These algorithms work on the data propagat-
ing from different paths where these data may be resulting
from a same or different source application.

In this paper we consider that the data traversing differ-
ent paths result from a same source application and only
the data produced during a same execution step are meant
to be further associated. However, the propagation delays
from the source to the associating application may differ
from one path to another for different reasons. Hence, wait-
ing queues are used to temporally store the data from the
shortest paths until the corresponding data from the longest
path arrive. In this paper we propose how to compute the
minimum size (later referred to as optimal size) for each of
the waiting queues in order to economize the memory re-
source utilization.

Contribution In this paper we study the temporal cor-
relation of the data propagating along several paths taking
into account the timing properties of the system schedul-
ing. We consider the inter-task communication model (cir-
cular buffer) offering a predictable data management be-
tween communicating applications.

Paper structure. In Section 2 we present the system
and the communication models with the associated nota-
tions and we formulate the correlation problem. In Section 3
we introduce our first contribution; the data reading strat-
egy easing the correlation process is proposed in 3.1.1, a for-
mal method computing the Data Consistent Time Interval
in 3.1.2, the formal methods to compute the buffers opti-
mal sizes in 3.1.3 and 3.2.2 and, finally, the proposed data
correlation approach is presented in 3.2.1. We conclude and
present future work in Section 4.

1.1 Motivating example
An example illustrating the need of associating correlated

data is the FADE system [8], represented on the Figure 1.
FADE is a vehicle detection and tracking system composed
of a set of image processing components in charge of de-
tecting the characteristics (detection of shadows, headlights,
etc.) related to the presence of a vehicle in the neighbor-
hood. For the performance optimization reasons, the image
processing is done in a multi-resolution mode. Thereby, only
the central part of the image is processed in the high reso-
lution mode (for detecting vehicles being far away) and the
periphery of the image is treated in the low resolution mode
for detecting closer vehicles.

precisely, the high resolution image initially produced by
the IAA1 is sent to both the CDA2 and the IPA3. Further,
the CDA application reads the high resolution image as in-
put. The latter is cropped, decimated and processed and,
finally, a low resolution image is produced at the CDA out-
put port. Further, the low and high resolution images are
associated and fused in order to infer the identity of the
targeted object.

Obviously, the associated data are shifted by a certain
delay induced by the processing of the CDA. In order to
avoid potential performance degradation, the IPA instances
must read (from each of the buffers) the data resulting from
the same execution step of the IAA [7]. In such a context
we say that the used data are temporally correlated and, in
our paper, we aim to efficiently address the data temporal

1Image Acquisition Application
2Crop and Decimate Application
3Image Processing Application

IAA

CDA

IPA

H
ig

h
re

so
lu

-

ti
on

im
ag

e

High resolution image

Low resolution image

Figure 1: The vehicle detection and tracking system.

correlation problem.

1.2 Related works
The problem related to the association of the data pro-

duced during the same execution step (having the same age)
has been addressed during the last decades. N. Pontisso and
al. in [3, 4] proposed approaches to manage data matching
in periodic systems without considering strict properties on
the system scheduling; that is, earlier the implementation
stage. Their work differs from ours in the sense that the cor-
relation of the data produced during the same execution is
ensured taking into account the task system scheduling prop-
erties. The FIFO waiting queues are managed sequentially
(linearly) while in our work we consider the FIFO buffer to
be managed circularly. The circular buffer organization is
described in the Section 2.2.

Authors in [7] consider the circular buffer communication
model but without considering the task system scheduling
properties. In order to ensure the temporal correlation be-
tween data from different paths, the communication model
is organized as follows: each data sample is double stamped
with two different dates; the timestamp and timeOfIssue.
The first, considered as the date of birth of the data sample,
is given by the application that initially generated it and
is remained unchanged.At the execution completion of each
application the data a timeOfIssue is added. At the end
of the paths, the reader application will retrieve the recent
data having the same timestamp from the connected buffers
In our work we do not time stamp the samples.

2. MODELS AND ANNOTATIONS
In this section, we introduce the system and the commu-

nication models as well as the notion of functional chains.

2.1 System Model
We consider a system τ of n periodic tasks {τ1, τ2, · · · , τn}

scheduled preemptively on one processor according to fixed-
priority scheduling algorithm. Each task τi is described by
the tuple (Ci, Ti), where Ci is the worst-case execution time
and Ti is the period of the task τi. We assume that all tasks
are released simultaneously and they have implicit deadline;
that is, the deadline is equal to period.

Without any loss of generality, we consider that the tasks
are ordered from the highest to the lowest priority and the
larger is the task period the lower is the priority. Hence,
if i < j, then τi has a higher priority than τj . Each task
τi generates an infinite number of successive jobs τi,j |j =
1, · · · ,∞. We consider that tasks share data through buffers
and a task may belong to two different classes: producer or
consumer. The shared buffer can be accessed for writing by
a single producer while one or multiple consumers can read

from it. The data propagation order between tasks does not
impact an execution order between those tasks. We describe
the data dependencies between the tasks by a graph.

We denote by G = (V,E) such graph, where V is the set
of tasks {τ1, · · · , τn}, E the set of edges and (τi, τj) ∈ E if
τj consumes data produced by τi.

The graphGmay contain different data propagation paths.
Hence, we define Π = {pth1, · · · , pthm} where m is the
number paths in Π. A same producer may produce data
for several consumers belonging to different paths. For in-
stance, on the Figure 2, the output data of τ1 is utilized by
τ2 and τ4 belonging; respectively, to pth1 and pth2 where
pth1 = {τ1, τ2, · · · , τ5} and pth2 = {τ1, τ4, τ5}. Accord-
ingly, τ1 is called the data dispatching task or simply the
dispatcher whereas τ5 is called the data associating task or
simply the associator.

τ1

τ2

τ4

τ5

τ3

Figure 2: System tasks model

Tasks whose instances consume data produced by the dis-
patcher are referred to as direct successors or simply succes-
sors. Similarly, tasks that produce data for the associator
are referred to as direct predecessors or simply predecessors.

2.2 Communication model
Our communication model is the circular buffer. A circu-

lar buffer is a FIFO data structure that considers memory to
be managed circularly; that is, the read/write indices loop
back to 0 after it reaches the buffer length [1].

Figure 3: Example of
the circular buffer

It has a fixed size allocated
once at the system run-time.
tail and head are the point-
ers indicating the reading
and writing positions. Each
time a new data sample is
inserted into the buffer, the
head pointer is incremented
and likewise, when the data
is read the tail pointer is in-
cremented. tail and head are
initially set to 0. The mod-
ulo operation is performed to

reset head or tail to 0, every time the maximum index is
reached.

The choice of a circular buffer is motivated by:
1. The data sample already written in the buffer slot never

changes the address until it is overwritten: it avoids the
data shifting from slot to the next one as it it the case for a
sequential buffer. Shifting data is a resource consumption
which may lead to unpredictable behavior.

2. The utilization of the circular buffer offers a high degree of
the communication predictability and no dynamic memory
allocation: the required size is computed offline consider-
ing the timing characteristics of the communicating tasks.

3. The circular buffer is easy to implement.

From what precedes, we consider a set of buffers {β1, · · · , βx},
where each buffer βx, in addition to tail and head, is char-
acterized by its cardinality |βx|; that is, its size. The size of
the buffer gives the information about the number of data
samples that can be stored. Each data sample is described
by the tuple 〈dID, dV alue〉 where dID is an integer defined
as the data identifier and dV alue is the data sample value.

We consider a single buffer shared between a single pro-
ducer and one or several consumers.

2.3 Correlation problem formalization
We consider a set of k data paths {pth1, · · · , pthk} ∈ Π

where the data flowing along the all k paths are initially
generated by a same task referred as the dispatcher task
and denoted by τdsp. These paths are later associated by
a same task referred to as the associator task and de-
noted by τas. Accordingly, we call the {τdsp1 , · · · , τdspk}
and {τas1 , · · · , τask}, respectively, the successors to τdsp
and predecessors to τas. For a set of k paths, the data tem-
poral correlation is required if pth1 ∩ pth2 ∩, · · · ,∩ pthk =
{τdsp, τas}.

Correlation problem formalization:

correl(τas) = τdisp{pth1(τdsp1 , τas1), · · · , pthk(τdspk , τask)}
where k is the number of paths involved in the propagation

of the data produced by τdsp until τas.

3. DATA CORRELATION MAINTENANCE
We consider a multirate system where the shared buffer

is accessed asynchronously in a non-blocking fashion4. We
decrease the uncertainty in the data management usually
induced by the utilization of the arbitration mechanisms (i.e
semaphores, synchronisation protocols, etc.). The later may
provoke unpredictable behavior such as the priority inversion
problems and possible deadlock formations [2, 5, 6].

Considering that communicating tasks may sample at dif-
ferent rates, we split the correlating problem into 3 sub-
problems, namely:

Problem 1. Ensuring that all {τdsp1 , · · · , τdspk} propa-
gate the same data produced by τdsp.

Problem 2. Setting τas to read the data resulting from
the same execution step of τdsp.

Problem 3. Computing the optimal size for the buffer
such that Problem 1&2 have at least a solution.

Definition 1 (Optimal size). A buffer size denoted
by |βdsp| is optimal if it is the smallest size of βdsp such that
if the data read by at least one of the successors can be read
by the remaining successors before being overwritten.

3.1 Setting all successors to read the same data
We consider a set of task pairs (τdsp, τdspj) ∈ E|j ∈ [2, k),

where k is the number of tasks that read the data produced
by τdsp. Let βdsp be the buffer where τdsp instances write and
the {τdsp1 , · · · , τdspk} read their respective inputs. Given
that we are dealing with a multirate system, it is obvious

4Shared variable (buffer) is accessed without any arbitration
mechanism such as semaphores or any kind of synchroniza-
tion protocols.

that some data samples produced by τdsp may be overwrit-
ten before being read by all the k successors or can be read
several times. Thus, in order to solve the Problem 1, it is
required that if a given data sample is read by at least an
instance of one of the τdspj then this sample should not be
overwritten before all the {τdsp} consume it.

3.1.1 Data reading management

As mentioned previously, each time an instance of the
producer task completes, the head pointer is incremented.
We denote by lp{τdspj} the task of lower priority among
{τdsp1 , · · · , τdspk} tasks that read the data produced by τdsp.
In order to set all the successors to read the same data
sample from βdsp the following principle is imposed:
• (i):∀{τdsp1 , · · · , τdspk} the value of tail is set by an

instance of lp{τdspj} at its completion. We assume
that the lp{τdspj} instances are always the last ones
to read the data produced by τdsp which is responsi-
ble of pointingwhere to write next time (head value).
Accordingly, the value of tail is given by the position
where an instance of τdsp previously wrote; that is,
head− 1. Formally,

taillp{τdspj } ← head− 1 (1)

• (ii): Each time an instance of any of the {τdsp1 , · · · , τdspk}
is activated, it reads from the position pointed by tail
pointer. We should note that the tail value is set by
lp{τdspj} at its completion time.

tailτdspj ← taillp{τdspj } (2)

Further, we compute the maximum time delay that the
read data can stay into the buffer before being overwritten
while considering that the buffer size is optimal. We call this
delay the Data Consistent Time Interval that we denote
by DCTI and formally computed using the Equality 3.

3.1.2 Computing the DCTI

The Theorem 1 provides the formal way to computing the
DCTI.

Theorem 1. We consider {τdsp1 , · · · , τdspk} where k is
the number of successors to τdsp. The DCTI is found when
τdsp and lp{τdspj} are released simultaneously in such a man-
ner that the response time of the current instance of lp{τdspj}
is equal to the period of τdsp and the next instance of lp{τdspj}
executes for its worst case response time. Formally,

DCTI = Tlp{τdspj } +Rlp{τdspj } − Cdsp (3)

where Tlp{τdspj } and Rlp{τdspj } are, respectively, the period

and the worst case response time of lp{τdspj} and Cdsp the
worst case execution time of τdsp.

Proof: The Equality 3 is detailed as follows

DCTI = Tdsp − Cdsp︸ ︷︷ ︸
(a)

+Tlp{τdspj } − Tdsp︸ ︷︷ ︸
(b)

+Rlp{τdspj }︸ ︷︷ ︸
(c)

where
• (a): If τdsp and lp{τdspj} were released simultaneously

and the response time of lp{τdspj} is equal to Tdsp, it
means that by the time the data produced by τdsp is
tagged (at the completion of lp{τdspj} instance), the
maximum time this data will have been into the buffer
is given by Tdsp − Cdsp.

• (b): Since the execution completion of the current in-
stant of lp{τdspj} happened at a time instant equal to
Tdsp, the release time of the next instance of lp{τdspj}
is going to happen at a time instant given by Tlp{τdspj }−
Tdsp.
• (c): The next data to be read is going to be tagged

at the execution completion of the next instance of
lp{τdspj}. If the latter executes for a time equal to
its worst case response time, then, the time interval
between the previous and the current tagged data is
the largest possible computed by the Equation 3.

3.1.3 Computing the optimal size of the buffer βdsp

The maximum time delay that can separate two consec-
utive read data is the DCTI. Accordingly, the formal way
to compute the optimal value of |βdsp| is given by the The-
orem 2.

Theorem 2. We consider {τdsp1 , · · · , τdspk} where k is
the number of successors to τdsp. We denote by βdsp the
buffer where τdsp instances write.The optimal value of |βdsp|
is equal to the number of τdsp instances that can be re-
leased and complete their execution within a time given by
the DCTI if Tdsp < Tlp{τdspj } or it is equal to 1 otherwise.

Formally,

|βdsp|=
{⌈

DCTI
Tdsp

⌉
, if Tdsp < Tlp{τdspj }.

1, Otherwise
(4)

Proof: The DCTI time defines the largest time that can
separate two consecutive read data by the {τdsp1 , · · · , τdspk}
where k is the number of successors to τdsp. The read data
(tagged at the execution completion of an instance of the
lp{τdspj}) should not be overwritten before the next instance
of lp{τdspj} completes.

In other words, there should be a sufficient buffer slots
to keep the all data samples produced within the DCTI
time interval. Otherwise, the read data may be overwritten
before the new data is set available to reading. Hence, the
system of equations 4 is correct.

3.2 Maintaining data temporal correlation
The results in Section 3.1 guarantee that each data that

propagate through different paths are read by all {τdspj}kj=2

where k is the number of paths that propagate the data
meant to be associated by τas. Moreover, different data
paths may have different propagation delays for the data
propagating from τdsp to τas. In the Sections 3.2.1 and 3.2.2
we propose a solution to this situation.

3.2.1 The correlating approach
When an instance of lp{τdspj} tags the data to be read,

the dID of the tagged data sample is incremented. The
tagged data is propagated trough different paths and all data
related to it will have this same dID. So, when an instance
of the associator task (τas) is activated it reads the data
samples having the same dID from all the buffers where
{τas1 , · · · , τask} output their computation results.

We assume that lp{τdspj} belongs to the path with the
largest data propagation delay from τdsp to τas.

3.2.2 Setting the buffers sizes
We consider a set of k paths, {pth1, · · · , pthk}, through

which the data produced by τdsp propagate until τas. We

denoted by The largest propagation delay it can take for the
data to propagate from τdsp to τas is referred to the worst
case data propagation delay that we denote by wcdpdτdsp→τas .

Additionally, we plan to compute, for each the pthi ∈ Π,
the smallest time delay it can take for the data to propagate
from τdsp to τas and we denote it by min{delay〈pthi〉}. This
calculation is presented here as a conjecture left as future
work.

Conjecture 1. We consider (τasi , τas) ∈ E|i ∈ {2, · · · , k}
where k is the number of paths trough which the data pro-
duced by τdsp propagate until τas and τasi the last task be-
longing to pthi path. Let βasi be the buffer where τasi writes
the outputs meant to be consumed by τas. Formally,

|βasi |=
⌈

wcdpdτdsp→τas

min{delay〈pthi〉}

⌉
(5)

4. CONCLUSION AND FUTURE WORKS
In this paper we have presented preliminary results on the

consideration of both data propagation and the fulfilement
of real-time constraints. Our future work includes the proof
of our conjecture as well as the application of results on a
drone use case study.

5. REFERENCES
[1] EmbedJournal. Implementing circular buffer in c. .

[2] T. Kloda, A. Bertout, and Y. Sorel. Latency analysis
for data chains of real-time periodic tasks. In 23rd IEEE
International Conference on Emerging Technologies and
Factory Automation, ETFA, pages 360–367, 2018.

[3] N. Pontisso. Association cohérente de données dans les
systèmes temps réel à base de composants: Application
aux logiciels spatiaux. PhD thesis, Institut National
Polytechnique de Toulouse, 2009.

[4] N. Pontisso, P. Quéinnec, and G. Padiou. Analysis of
distributed multi-periodic systems to achieve consistent
data matching. Concurrency and Computation:
Practice and Experience, (n° 2):pp. 234–249, 2013.

[5] J. Schlatow and R. Ernst. Response-time analysis for
task chains in communicating threads. In 2016 IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 245–254, 2016.

[6] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority
inheritance protocols: An approach to real-time
synchronization. IEEE Trans. Computers, 1990.

[7] B. Steux. RTMAPS, un environnement logiciel dédié à
la conception d’applications embarqués tems-réel.
Utilisation pour la détection automatique de véhicules
par fusion radar/Vision. PhD thesis, Ecole des mines
de Paris, France, 2001.

[8] B. Steux, C. Laurgeau, L. Salesse, and D. Wautier.
Fade: a vehicle detection and tracking system featuring
monocular color vision and radar data fusion. In
Intelligent Vehicle Symposium, IEEE, 2002.

Formal Verification of Real-time Networks

Lucien Rakotomalala Marc Boyer
ONERA / DTIS

Université de Toulouse
F-31055 Toulouse – France

firstname.name@onera.fr

Pierre Roux

ABSTRACT
Embedded real-time networks must ensure guaranteed de-
lays. Network calculus is a theory providing bounds on such
delays. This mathematical theory currently relies on, hu-
man made, pen and paper proofs. The current work offers
to formalize such proofs in Coq, an automated proof checker.
We formalize a subset of the theory large enough to handle
a complete proof of bounds on a representative case study.

Keywords
network-calculus, Coq, real-time network

1. INTRODUCTION
Nowadays, real-time systems are pervasive in embedded

applications such as the aerospace or automotive industries.
Such applications being critical, it is mandatory to establish
a high degree of confidence in their functional and tempo-
ral behaviour. Whereas a lot of work is available on func-
tional verification, this paper focuses on temporal correct-
ness. Analysis methods in this regard do exist and they are
mathematically proved. However, these proofs are only re-
viewed and verified by humans which implies a substantial
risk of error, due to their complexity or subtle hypotheses.

Therefore, some mistakes can be made during the writing
and reviewing process of a proof. A major source of mis-
takes is the omission of an implicit hypothesis when reusing
a previous results. Such omissions have occurred several
times in real-time analysis proofs. For example, it has been
recently discovered that some self-suspension consideration
was inexact 20 years after publication of the original paper
[14]. As another example, an error in real-time analyses of
the CAN bus, was discovered only 13 years after the original
publication [9].

We aim at increasing the confidence in mathematical proofs
by automating the proofreading process. This can be made
by a computer running a proof assistant. Such tools are
developed by computer scientists and mathematicians for
nearly half a century. We can for instance mention Coq, Is-
abelle or PVS [3, 15, 16]. We can use one of them to formally
define mathematical objects, enunciate theorems and finally
describe proofs of these theorems. A computer is then able
to automatically check these proofs.

As a first advantage to the use of a proof assistant, the con-
fidence in the correctness of the proofs is reduced to the ab-
sence of bugs in the tool, the coherence of the implemented
logic and potential axioms used. On this last point, the tool
allows to know exactly which axioms are used in each proof.

Another advantage is to identify where and how hypothe-
ses are used by a proof. In extreme cases, it happens that
some hypotheses are in fact unused in the course of a proof.
To check this, it is enough to remove the considered hypoth-
esis and attempt a recompilation of the proof.

Finally, a proof assistant enables a simpler and safer reuse
of the results: an application of a theorem is only possible
when all hypotheses are collected. Thus, it is not possible
to forget hypotheses.

The proof assistant we use in this paper is Coq [3], devel-
oped by Inria, based on a small kernel and extended by a
large sets of libraries.

The kernel implements an intuitionistic logic. Our confi-
dence is based on this reduced kernel that ultimately check
all Coq proofs. This kernel uses a low level language that is
simple but hardly usable by humans. Coq thus provides an
interface to make it operable, it interprets user’s commands
to elaborate a proof in the kernel language.

Coq comes with a standard library providing mathemat-
ical models and properties. Other libraries go beyond this
standard set, such as the Mathcomp [12] or the Coquelicot
[4] libraries. The correctness of these libraries relies on the
fact that they are checked by the kernel.

In order to formalize proofs on a specific problem, a Coq
user first defines a mathematics model (the modeling of the
problem). Then she expresses some properties of the model
(stating lemmas or theorems) and eventually writes Coq
commands to prove these properties.

During this process, Coq checks that definitions and state-
ments of properties are well formed and that the proofs hold.

Our proofs will focus on embedded networks and will use
an analysis method of temporal properties on these net-
works: the network calculus (NC). This theory heavily relies
on tropical algebra through the dioid of min-plus functions.

As previously described, our first step will consist in writ-
ing NC definitions in the Coq language. Secondly, NC re-
sults found in the literature will be prove within Coq. Only
a NC expert can check that the Coq definitions match with
the ones in the literature. Thus our models have to be read-
able even without a deep Coq expertise. In contrast, the
second step, proof writing, does not need to be checked by
a human since the compilation guarantees the proofs.

While our final goal is to be able to verify a full industrial
network, our current contributions are:

• an extension of the Coq Mathematical Components li-
brary of algebraic structures,

• formal definitions and proofs of some typical network cal-

culus theorems,

• an application on a first case study, handling 5 flows
through 5 servers with FIFO policy.

Section 2 presents related works on proof assistants and
real-time network analyses. Then, Section 3 presents our
formal development. Section 4 is a case study on a perfor-
mances analyses of a network. Finally, we conclude with
Section 5 and explain our future work in Section 6.

2. RELATED WORK
Network calculus tools take as input the description of a

network and compute delay bounds. The validity of these
bounds relies on both the correctness of the network calculus
theorems (produced by authors and checked by reviewers)
and the correctness of the implementation (relying on devel-
oper skills).

Formally proving correct implementation was the aim of
[11], using the proof assistant Isabelle. Our goal is to prove
both theory and implementation correctness, using another
proof assistant, Coq.

Our work is part of the project RT-proofs [2]. The main
objective of this project is to lay the foundations for computer-
assisted formal verification of timing analysis results. Many
works have been performed already, for example a verifica-
tion of a CAN schedulability analysis with Coq [10].

Finally, a library for the development of machine-checked
schedulability analysis using Coq is also available [8]

3. NETWORK CALCULUS WITH COQ
The Network Calculus theory is based on the min-plus

dioid [5]. Thus, our first contribution consists in adding this
algebraic structure to the Mathcomp library (Sections 3.1,
3.2). We then formalize main NC results (Section 3.3). Some
metrics on the Coq development are given in Section 3.4.

3.1 Algebraic structures
We use some of the existing elements in the Mathcomp

library [12] to define the algebraic structure of complete
dioids. The Mathcomp library provides some algebraic struc-
tures useful in our case (monoids, rings,...) but not dioids.

So, with the help of this library, we add a description of
the dioid structure as defined by [13].

Definition 1 (Dioid). A set D with two operators ⊕
and ⊗ is called a dioid if

• ⊕ is associative and commutative and admits a neutral
element 0̄

• ⊗ is associative and admits a neutral element 1̄

• ⊗ is left and right distributive over ⊕
• 0̄ is absorbing for ⊗
• ⊕ is idempotent, i.e: ∀a ∈ D, a⊕ a = a

A dioid is said to be complete if it is closed for infinite sum
and if the product distributes over infinite sums on both
sides.1 Under some assumptions, a subset of a complete
dioid remains a complete dioid.
1All these algebraic structures and their properties have
been developed using only intuitionistic logic. Even proofs
on infinite sums don’t require classical reasoning since we
only prove results based on the hypothesis that such sums
do exist. In contrary, the next section will deal with real
numbers whose formalization in the Coq standard library
requires classical logic with the excluded middle axiom.

Theorem 1. Let D be a complete dioid with operators ⊕
and ⊗. Any D′ ⊆ D including 0̄ and 1̄ and stable for ⊕, ⊗
and infinite sums is also a complete dioid.

We can then define the kleene operator, useful in NC.

Definition 2 (Kleene operator). Let D be a com-
plete dioid with operators ⊕ and ⊗, the kleene operator on
a ∈ D is: a∗ =

⊕+∞
i=0 a

i with a0 = 1̄ and ai+1 = a⊗ ai

By using this definition, we can state the next theorem.
This result is shared with language theory.

Theorem 2. Let D be a complete dioid with ⊕ and ⊗, for
all a, b in D, a∗ ⊗ b is the least solution of x = (a⊗ x)⊕ b.

There exist many other results on dioids [5, 13]. Among
them we prove 78 properties useful for NC.

All of these results have been submitted as a pull request
on the Mathcomp library2.

3.2 Instances
To use these properties in the NC context, we have to

prove that sets of interest are dioids. This implies to:

• give a set D,

• give operators ⊕, ⊗ and their neutral elements,

• prove that dioid properties (cf. Definition 1: associativity,
commutativity...) hold.

NC handles functions on real values: F : R+ → R, with
R = R

⋃{−∞,+∞}, and uses the following two operators:

• minimum: (f ∧ g)(t) = min(f(t), g(t))

• convolution: (f ∗ g)(t) = inf
06s6t

{f(t− s) + g(s)}

Theorem 3. The set of functions F with ⊕ = ∧ and
⊗ = ∗ is a complete dioid.

Depending on the authors and even on the papers, NC
results handle either F or some specific subsets:

• F+ : R+ → R+
,

• F↑: subset of non-decreasing elements of F+.

Theorem 4. The sets F+ and F↑ with ⊕ = ∧ and ⊗ = ∗
are complete dioids.

This is proved by using Theorem 1. One contribution of
our work is to explicit which subset is needed for each result.

To develop these constructions, we use results of the Co-
quelicot library [4]: the set R and its properties.

3.3 Network calculus

3.3.1 Model
NC models data flows by the cumulative amount of data

at a point in a network at time t.

Definition 3 (Cumulative function). A function f :
R+ → R+ is a cumulative function if f :

• is non-decreasing: ∀t, d ∈ R+, f(t) 6 f(t+ d),

• starts at 0: f(0) = 0,

• is left-continuous.

2https://github.com/math-comp/math-comp/pull/357

d
a
ta

A

Dd(A,D)

Figure 1: Illustration of the notion of delay

The set of cumulative functions is denoted C. They are non-
decreasing because they represent a cumulative amount of
data and this one can not decrease. We consider that flows
do not contain data before t = 0, so C functions start in 0.

A server is a relation between two cumulative functions:
A for arrival and D for departure of the server.

Definition 4 (Server). A server S ⊆ C × C satisfies:

• ∀A ∈ C, ∃D ∈ C, (A,D) ∈ S
• (A,D) ∈ S ⇒ D 6 A

The first property means that, for all arrival there exists a
departure. The second property means that departure can
not happen before arrival so D 6 A.

Another notion of NC we use is called arrival curve. It is
used to constrain cumulative functions.

Definition 5 (Arrival curve). Let A ∈ C be a cu-
mulative function. The function α ∈ F↑ is an arrival curve
for A if A 6 A ∗ α.

To specify servers, NC uses the notion of minimal service.
We define it below, first using mathematics, then in Coq.

Definition 6 (minimal service). Let S be a server and
β ∈ F+. The server S is said to offer a minimal service
curve β if: ∀(A,D) ∈ S =⇒ A ∗ β 6 D.

Definition is_min_service (S : C → C → Prop) (beta : Fplus)
:= forall A D, S A D → A ∗ beta 6 D.

The notation Fplus represents the set F+ presented in
Section 3.2. (S : C → C → Prop) means that S is a relation
on C. The term S A D signifies (A,D) ∈ S and the arrow →
stands for logical implication in Coq.

3.3.2 Properties
To analyze temporal network performances, NC defines a

notions of delay. The delay experienced by the flow whose
arrival is A and departure is D is denoted d(A,D), illus-
trated in figure 1. A formal definition can be found in [5].

Different policies for servers are defined in NC. One of
them is the First-In First-Out policy. In such a server, each
packet is served after all previously arrived packets have
been served. For this policy, a NC theorem bounds the delay
experienced by each packet. We proved this theorem in Coq.

Finally, NC provides a method to compute a contract on
the output of a server,i.e., an arrival for the next server.

3.4 Coq development overview
Table 1 gives some metrics on our Coq development. It

can first be observed that the number of definitions in In-
stances is higher compared to Dioid and NC. This difference
has no significant meaning: it comes from a difference in Coq
programming style between the two libraries.

Definitions Properties Lines Lines/prop.
Dioid 19 78 1616 21
Instances 108 159 2888 18
NC 26 52 2253 43

Table 1: Summary Table of Coq definitions and
property done

Figure 2: Network Topology

More interestingly, the ratio between the number of lines
and the number of properties in Dioid and Instances is lower
than in NC. This means that Dioid and Instances contain
properties which only require short proofs, never exceeding
10 lines and most of time taking only one. On the contrary,
NC requires larger, more complex, proofs.

These definitions and properties are very much inspired
from a NC textbook [5], giving pen and paper proofs of NC
properties. It is thus possible to compare pen and paper to
Coq versions of these proofs. Formalizing pend and paper
proofs in Coq provides several benefits. As expected, some
typos have been found but we also found a few mistakes
in proofs, which we had to fix3. More interestingly, some
results appeared to be over specified: Coq helped us to sim-
plify the hypotheses. Lastly, some properties have been both
simplified and generalized: pen and paper proofs valid only
for specific dioid instances have been leveraged to any dioid,
with a shorter proof.

4. CASE STUDY
In this section, we work on a simple network with a par-

ticular topology shown on Figure 2. In this network, we con-
sider that data transmissions are periodic with a 20 Mbits
per second rate. The frame sizes are fixed to 1 Kbyte The
scheduling policy for each server is FIFO, as introduced in
subsection 3.3.2. The speed rate of each server is fixed to
100 Mbits per second. Servers are assumed to have no la-
tency. Flows 1, 2 and 3 converge on the leftmost switch
and share its output port. The next switch separate them:
flow 1 goes up and competes with flow 4 on the output port
of the upper switch. Flow 3 symmetrically goes down and
meets the flow 5. All flows then converge to the rightmost
switch, flows 1, 2 and 3 sharing one output port and flows 4
and 5 the other.

The objective is, for each flow, to bound the delay when
crossing the entire network. To do so, we have written a
Coq proof which consists in two steps. A first step considers
each server and its crossing flows individually, and applies
the Coq results presented in the previous sections. The sec-
ond step consists in combining local results with respect to

3For example, in proof of theorem 6.2, a confusion was made
between > and >, invalidating the proof.

Flow 1 2 3 4 5
Delays bound (µs) 601.6 368 601.6 233.6 233.6

Table 2: Delay bound for each flow

the topology presented in Figure 2. This leads to algebraic
expressions of the delays (in the min-plus dioid) whose nu-
merical values are computed using the min-plus calculator
from RTaW [1]. This tool implements the algorithms from
[6] whose pen and paper proofs have not been formalized in
Coq yet. The results are presented in Table 2.

5. CONCLUSION
The aim of this work was to formalize (using Coq) results

on delay bounds of real-time network (using the NC theory).
This required the formalization in Coq of the algebraic

structure of complete dioids. We rely on the Mathcomp
library and we shared our development to this library. Then,
we built specific instances of complete dioids used in NC with
the help from the Coquelicot library.

Last, we developed a set of NC definitions and results,
sufficient to perform the complete proof of a first case study.

Thus, we obtained a Coq development of 6757 lines con-
taining a definition of the algebraic structure of dioids, in-
stances of dioids and NC results. This work took one year,
considering that the main author was a newcomer to both
Coq and the NC theory.

Several benefits come with this formal development: we
found a few mistakes in proofs from [5], which we had to
fix. More interestingly, some results appeared to be over
specified: Coq helped us to reduce the hypotheses. Last,
some results have been generalized while simplifying their
proofs.

Finally, the results are applied to a first case study. We
used here a tool from RTaW to compute the final numerical
results but Coq is used to prove the correctness of the com-
puted expressions and all properties used to obtain these
expressions.

We notice that there are three possible kinds of modifi-
cations of our case study. First, a modification of its nu-
merical values (throughput, packet sizes...) does not change
the Coq proof, since only numerical parameters of the final
computation are affected. Second, a modification of the ser-
vice policy requires to prove new theorems related to the
new policy, but does not change the global structure of the
proof. Finally, a modification in the network topology or
routing breaks the structure of the proof.

6. FUTURE WORK
One may wonder how the work done for this small case

study is relevant for realistic configurations.
Verification of actual embedded network, like AFDX [7]

requires only two more results: on static priority scheduling
and packetisation. We plan to add such Coq proofs.

In our case study, we use an external tool to compute the
value of analytic expressions. We plan to either have Coq
compute them by itself or verify the values computed by the
external tool. This will allow us to have a complete Coq
validation of performances bounds values.

The change of routing implies a manual modification of
the proof. However, the structure of the proof is very repet-

itive, and quite a direct mapping of the network topology.
We plan to automatize this part: either inside Coq, using
dedicated tactics, or collaborating with an external tool, as
done in [10].

7. REFERENCES
[1] Real time at work. http://realtimeatwork.com/.

[2] RT-proofs main page. https://rt-proofs.inria.fr/.

[3] Y. Bertot and P. Castéran. Interactive theorem
proving and program development. Coq’Art: The
Calculus of inductive constructions. 01 2004.

[4] S. Boldo, C. Lelay, and G. Melquiond. Coquelicot: A
user-friendly library of real analysis for coq. Math. in
Computer Science, 9(1):41–62, Mar 2015.

[5] A. Bouillard, M. Boyer, and E. Le Corronc.
Deterministic Network Calculus: From Theory to
Practical Implementation. 10 2018.

[6] A. Bouillard and E. Thierry. An algorithmic toolbox
for network calculus. Discrete Event Dynamic
Systems: Theory and Applications, 18, 03 2008.

[7] M. Boyer, N. Navet, and M. Fumey. Experimental
assessment of timing verification techniques for AFDX.
In 6th European Congress on Embedded Real Time
Software and Systems, Toulouse, France, Feb. 2012.

[8] F. Cerqueira, F. Stutz, and B. B. Brandenburg.
PROSA: A case for readable mechanized
schedulability analysis. In 28th Euromicro Conference
on Real-Time Systems, ECRTS 2016, Toulouse,
France, July 5-8, 2016, pages 273–284, 2016.

[9] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien.
Controller area network (can) schedulability analysis:
Refuted, revisited and revised. Real-Time Systems,
35(3):239–272, Apr 2007.

[10] P. Fradet, X. Guo, J.-F. Monin, and S. Quinton.
CertiCAN: A Tool for the Coq Certification of CAN
Analysis Results. In RTAS 2019 - 25th IEEE
Real-Time and Embedded Technology and Applications
Symposium, pages 1–10, Montreal, Canada, Apr. 2019.

[11] E. Mabille, M. Boyer, L. Fejoz, and S. Merz. Towards
certifying network calculus. In Interactive Theorem
Proving, Rennes, France, July 22-26, 2013.

[12] A. Mahboubi and E. Tassi. Mathematical Components.
2018.

[13] M. Minoux and M. Gondran. Graphs, Dioids and
Semirings. New Models and Algorithms, volume 41 of
Operations Research/Computer Science Interfaces
Series. Springer, 2008.

[14] G. Nelissen, J. Fonseca, G. Raravi, and V. Nélis.
Timing analysis of fixed priority self-suspending
sporadic tasks. In 2015 27th Euromicro Conference on
Real-Time Systems, pages 80–89, July 2015.

[15] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A
prototype verification system. In D. Kapur, editor,
11th International Conference on Automated
Deduction (CADE), volume 607 of Lecture Notes in
Artificial Intelligence, pages 748–752, Saratoga, NY,
jun 1992. Springer-Verlag.

[16] M. Wenzel, L. C. Paulson, and T. Nipkow. The
isabelle framework. In O. A. Mohamed, C. Muñoz,
and S. Tahar, editors, Theorem Proving in Higher
Order Logics, pages 33–38, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

Interdependent Multi-version Scheduling in
Heterogeneous Energy-aware Embedded Systems

Julius Roeder
University of Amsterdam
Amsterdam, Netherlands
Email: j.roeder@uva.nl

Benjamin Rouxel
University of Amsterdam
Amsterdam, Netherlands

Email: benjamin.rouxel@uva.nl

Sebastian Altmeyer
University of Augsburg

Augsburg, Germany
Email: sebastian.altmeyer@
informatik.uni-augsburg.de

Clemens Grelck
University of Amsterdam
Amsterdam, Netherlands
Email: c.grelck@uva.nl

Abstract—High-performance heterogeneous multi-core embed-
ded systems are increasingly popular in various fields. Embedded
systems engineers need to reason about more than just functional
correctness of applications; they also need to reason about
energy, time and security (ETS). In this paper, we sketch our
coordination language and scheduling approach to enable ETS-
aware applications. We present an Integer Linear Programming
(ILP) based scheduler on a real life drone application, that
minimizes energy consumption, guarantees timing and offers
security.

Index Terms—energy-aware scheduling, heterogeneous multi-
core, real-time scheduling, coordination.

I. INTRODUCTION

Increasing demand for processor performance, low power
consumption and reducing heat dissipation, has lead to a
surge in demand for high-performance multi-core embedded
systems [1]–[4]. Powerful embedded systems, such as the
Odroid-XU4 [5] and Nvidia Jetson [6], are multi-/many-
core heterogeneous systems; however, with great performance
comes great energy consumption (at least relative to traditional
embedded systems). Furthermore, not only performance and
energy consumption are important, but also security as deci-
sions made by autonomous systems can save or cost lives.
Thus, an engineer needs to take all three, time, energy and
security (ETS), into account.

To tackle these challenges and enable end users to reason
about ETS-characteristics of applications, we borrow from and
combine two so far disjoint established research fields, namely
coordination and real-time scheduling [7], they have so far
addressed our targeted problem from very different angles and
with very different motivations and intentions.

An application organized according to the coordination
paradigm consists of a collection of interacting, indepen-
dent, identifiable black-box components, i.e. the coordination
language is used to describe the task graph of the given
application. Components, also known as actors or tasks1, i.e.
represent application features, sequential building blocks of
application, implemented in a general purpose programming
language. Each component has defined functional properties,
communication and interaction with other parts of the same
application. Hence, coordination describes the flow of data
through the different parts of an application [8]. Coordination
is a well established computing paradigm with a plethora of
languages, abstractions and approaches; for a survey see [9].

1Components and tasks will be used hereafter interchangeably.

An application described in a coordination language can
then be mapped and scheduled using techniques from the real-
time scheduling domain. The literature on real-time scheduling
algorithms for multi-core architectures is vast, with many
properties (e.g. type of scheduling algorithm, task model) and
are classified in three main categories: partitioned, global and
hybrid [1]. Similarly to [10], in this paper we propose an
Integer-Linear-Programming (ILP) based approach to produce
schedules. According to the taxonomy proposed by Davis and
Burns [1] our approach can be classified as static, partitioned,
time-triggered and non-preemptive.

Different approaches to minimizing energy consumption of
an application on heterogeneous multi-core hard-real time sys-
tems are surveyed in [11]. Our ILP based scheduler addresses
energy and security as equally important as time. The ILP
scheduler can be used to generate schedules for multi-version
concurrent applications, executing on heterogeneous platforms
(e.g. Odroid-XU4).

In Section II, we briefly describe the architecture model,
task model and coordination approach. In Section II-B, we
illustrate the coordination approach with a use-case from the
area of unmanned aerial vehicles. In Section III, we describe
our current ILP formulation and our approach towards deriving
static schedules. In Section III-B, we show the viability of our
ILP scheduler on the use-case, while targeting the Odroid-
XU4.

II. ARCHITECTURE MODEL, TASK MODEL AND
COORDINATION APPROACH

We consider a heterogeneous multi-core architecture
(Odroid-XU4 [5]) based on the ARM big-LITTLE architecture
[12]. This architecture consists of a heterogeneous CPU, with
four energy efficient cores (i.e. LITTLE cores) and four high
performance, deep pipeline cores (i.e. big cores). Additionally,
the architecture contains a Mali GPU [5]. In such a heteroge-
neous platform, multi-version components can be scheduled on
different computational units, e.g. a component implemented
with OpenCL [13] can be scheduled on the GPU or the CPU.

In this work, we consider Directed Acyclic task Graphs
(DAG). In a graph G = (V,E), the set of nodes/vertices V
represents the components and the set of edges E represents
data dependencies between components. An edge between two
components is present when they depend on each other, i.e.
the source component needs to be completed before the sink

1

can be executed. The task graph is expressed with the help of
a coordination language.

A. Coordination

A coordination language is independent from the actual
code, but it guides the scheduler on how this code should
be executed. An example is the coordination language S-Net
[8]. However, like other coordination approaches S-Net merely
addresses functional aspects of coordination programming and
does not include non-functional requirements, i.e. time and
security. Our coordination language [14], implemented as a
Domain Specific Language (DSL), allows to incorporate the
ETS-characteristics of the application.

Given the focus of the safety-critical embedded systems do-
main, we exclusively work with the system-level programming
language C. Hence, a component is technically a callable C
function with certain restrictions on its functional behaviour,
together with a set of non-functional properties, i.e. timing,
energy and security. Therefore, each component has specific
ETS-characteristics that are crucial to determine the best
mapping and schedule. Additionally, each component can have
multiple implementations with equivalent functional require-
ments, but different ETS-characteristics. Thus, a component
can have the previously mentioned multiple versions.

Our DSL coordination language allows users to spec-
ify component-specific and system-wide ETS-constraints, ex-
pressed as: 1) deadlines on the response-time of a component,
2) energy budgets of the entire system and 3) minimum
security levels of each component.

B. Coordination illustrated by drone use case

Figure 1 shows the graph representation of an application
that will be executed on a drone. Due to space limitation, we
will not present this use-case with our coordination language.
The application is currently under development at the Univer-
sity of Southern Denmark (SDU) and Sky-Watch, an industrial
partner [15]. The application records and analyses a video on
the fly and is executed on the aforementioned Odroid-XU4.

Image Capturing

Object Detector
Implementations:

Fast, less
accurate

Slow, very
accurate

GPU version

Video Encryption
Implementations:

Encryption 1

Encryption 2

Encryption 3

Ground Speed
State:

• Previous frame

Decision Send Message

Save Video

Legend

Source

Sink

Component

Implementation

Broadcast:

Synchronizer:

Fig. 1. Drone application coordination model

The application is organized as seen in Figure 1:
• Image Capturing: A frame is streamed to the computer.
• Broadcast: A frame is broadcasted to three components.
• Video Encryption: The scheduler selects the encryption

level based on the ETS-characteristics of each encryption
level.

• Video Encryption & Save Video: The frame is en-
crypted and saved to disk.

• Object Detection: The frame is analysed by the Darknet
Neural Network, Tiny Darknet Neural Network [16] or
OpenCV [17] , depending on the ETS-characteristics of
each.

• Ground Speed: Computes the ground speed of the drone.
• Synchronizer: The results of the previous components

(Object Detection & Group Speed) are synchronized and
sent to the final Decision component.

• Decision & Send Message: A decision is made and sent
to the ground station.

The two neural networks (Darknet and Tiny Darknet [16])
differ in their complexity. The Tiny Darknet neural network is
much smaller and therefore can run inference approximately
70 times faster on the Odroid-XU4, at the price of reduced
accuracy. Thus, scheduling one or the other version of the
Object Detection component can have a large impact on the
run time.

We aim at building a complete toolchain and workflow
to compile a coordinated application to a final executable as
presented by Figure 2.

Coordination file

Timing & energy
information file

Syntactic &
semantic
analyses

Scheduling
policy generator

Code
generator

Components
object files

Target
compiler & linker

Binary file

Config file

Coordination Compiler

Fig. 2. Coordination workflow

A major part of our approach is to improve scheduling
policies, represented by the Scheduling policy generator in
Figure 2. Hence, in the following section we introduce our
first version of a multi-version ILP based scheduler. A more
thorough description of the rest of the toolchain and coordi-
nation language can be found in [14].

III. SCHEDULING

Once the different components are identified and defined via
the coordination technique, we need to schedule the different
components, i.e. assign components to different cores or co-
processors (spatial mapping) and in a given order (temporal
mapping). On top of different versions of the same compo-
nents, the ETS-characteristics also differ depending on the
exact execution unit (big core vs. LITTLE core vs. GPU) of
a heterogeneous system. This increases the state space of the
scheduling as we need to schedule the different components

2

TABLE I
ILP VARIABLES AND CONSTANTS

Function predecessors(p) retrieves all predecessors of p, where p ∈ τ

Sets

B Set of cores
τ Set of all components
vp All versions of component p, where p ∈ τ
O Set of sinks

Constants

DC Deadline of component set
DS Minimum security level
Cp,m Run time of component p on core m, where

p ∈ τ , m ∈ B
Ep,m Energy consumption of component p on

core m, where p ∈ τ , m ∈ B
Sp,m Security level of component p on core m,

where p ∈ τ , m ∈ B
Fp,i Run time of version i of component p,

where i ∈ vp, p ∈ τ
Gp,i Energy consumption of version i of com-

ponent p, where i ∈ vp, p ∈ τ
Hp,i Security of version i of component p,

where i ∈ vp, p ∈ τ
M Sum of run time of all components on all

cores
Integer
Variables

DE Energy constraint of component set
ρp Start time of component p, where p ∈ τ

Binary
Variables

wp,m component p mapped to core m, where p ∈
τ , m ∈ B

ap,i version i of components p is selected,
where i ∈ vp, p ∈ τ

samep,q components p and q are scheduled on the
same core, where p, q ∈ τ

orderp,q Same core variable order p to q, where
p, q ∈ τ

depending on the overall application ETS-constraints and the
ETS-characteristics of each implementation of each compo-
nent.

As a starting point for the space-time scheduling we used
Integer Linear Programming (ILP) to generate static schedules
for the aforementioned drone use-case. ILP refers to a class
of constrained optimization problems and is used to tackle
problems in scheduling. All variables in an ILP problem
are integers, constrained by linear inequalities. The objective
function is a linear function of the variables, that needs to be
either minimized or maximized.

A. ILP Formulation
The set of integer variables needed for the scheduler can be

found in Table I.
Objective function The goal is to minimize the energy

consumption DE over all components of the application
eq. (1):

minimize DE =
∑

p∈τ

∑

m∈B

(
Ep,m × wp,m

)
(1)

where, Ep,m is the energy consumption of component p on
core m and wp,m is a binary variable indicating if component
p is executed on core m.

Time and Security constraints Besides energy consump-
tion, we also need to constrain the time and security aspects
of the application. Thus, eq. (2) guarantees that the sinks
of the application are finalized before the deadline DC . The
finalization time of every sink o ∈ O is the sum of the start
time ρo and the worst-case execution time Co,m of sink o
executed on core m. Equation (3) ensures that every executed

component p has a security level Sp,m equal or above the
minimum security level DS .

∑

m∈B

(
ρo + Co,m × wo,m

)
6 DC , ∀o ∈ O (2)

∑

m∈B
Sp,m × wp,m > DS , ∀p ∈ τ (3)

Mapping one component to one core Equation (4) ensures
that component p is mapped on one and only one processor.

∑

m∈B
wp,m = 1,∀p ∈ τ (4)

Single version constraint Equation (5) enforces that ex-
actly one and only one version of a component is selected,
represented by ap,i = 1.

∑

i∈vp
ap,i = 1, ∀p ∈ τ (5)

Determining ETS-characteristics Equations (6) to (8) im-
pose that the energy, time and security of a component (Ep,m,
Cp,m, Sp,m) are equal to the respective ETS-characteristics
(Gp,i,Fp,i, Hp,i) of the version that is selected when ap,i = 1.

Ep,m =
∑

i∈vp
(ap,i ×Gp,i), ∀p ∈ τ,∀m ∈ B (6)

Cp,m =
∑

i∈vp
(ap,i × Fp,i), ∀p ∈ τ, ∀m ∈ B (7)

Sp,m =
∑

i∈vp
(ap,i ×Hp,i), ∀p ∈ τ, ∀m ∈ B (8)

Prevent overlapping on same core To prevent the overlap-
ping of components on the same core we introduce three addi-
tional constraints. Equation (9) calculates if two components
are assigned to the same core (samep,q). Instead of a logical
or, a summation over B is sufficient, due to the uniqueness
of wp,m. The logical and (∧) can be linearized, see [18] for
details. Equation (10) determines the order of tasks p, q, which
can be p then q (orderp,q) or q then p (orderq,p). Equation (11)
prevents two tasks running on the same core to execute at the
same time and enforces the correct task order. The start time
of p (ρp) has to be larger than the end time of q (ρq +Cq,m).

samep,q =
∑

m∈B
wp,m ∧ wq,m,∀(p, q) ∈ (τ × τ), p 6= q (9)

samep,q = orderp,q + orderq,p, ∀(p, q) ∈ (τ × τ), p 6= q (10)
ρp + (1− orderq,p)×M > ρq + (Cq,m × wq,m),

∀(p, q) ∈ (τ × τ)∀m ∈ B, p 6= q (11)

The constraint eq. (11) must only be activated when two
tasks are mapped on the same core (orderq,p = 1). Hence, a
nullification with a big-M notation is applied [19]. M , defined
in eq. (12), is the sum of the maximum run time of all
components p. Thus, due to the large value of M the left
hand side of eq. (11) is always larger than the right hand side,
if orderq,p = 0.

M =
∑

p∈τ
max(Cp,m) (12)

Data dependencies in task graph In order to comply with
the data dependencies in the task graph we introduce the

3

following constraint eq. (13). It ensures, that if one component
p depends on the data of another component q, the start time
of p (ρp) is larger than the end time of q (ρq + Cq,m).

ρp >ρq +
∑

m∈B
(Cq,m × wq,m),∀p ∈ τ,∀q ∈ predecessors(p)

(13)

B. Example Use Case
We demonstrate the generation of a static schedule of

the drone use case using the ILP formulation presented in
Section III-A. Not all component implementations of the
algorithm are fully functional at the current stage of the
project. We rely on values measured at development time, to
demonstrate the scheduling and coordination techniques. Once
full implementations and corresponding ETS properties will be
known, we will replace these hypothetical values with actual
ones. The described ETS-characteristics of a component differ
per computational unit, thus the heterogeneity of the Odroid-
XU4 can be taken into account.

Depending on parameters (i.e. energy budget, deadline,
minimum security level), the ILP identifies different schedules.
One schedule resulting from the ILP formulation is shown
in Figure 3. Components are executed in the right order,
according to dependencies, on different computational units
without overlap.

0 1 2 3 4 5 6 7

LITTLE 0

LITTLE 1

LITTLE 2

big 0

big 1

big 2

big 3 ImageCapture:0
VideoEncryption:0
ObjectDetection:0

GroundSpeed:0
Decision:0

SaveVideo:0
SendMessage:0

Time units

Fig. 3. Possible schedule for the drone use case showing which version of a
component is scheduled and mapped on which computational unit.

As opposed to Figure 3, we increased the general security
level to generate the second schedule presented in Figure 4.
A higher security level lead the scheduler to pick different
component versions, e.g. video encryption, and increased the
energy consumption by 2 units. Once again the schedule
respects component dependencies, while picking different ver-
sions and computational units due to requirement changes.

IV. CONCLUSION

In this paper, we briefly introduced the coordination
paradigm to describe an application. We also presented an ILP
formulation that allows us to generate different static schedules
depending on ETS-characteristics and constraints. We further
demonstrate its application on a realistic use case.

Furthermore, to enable the use of our coordination and
scheduling layer for larger problems we will explore schedul-
ing heuristics. Additionally, when all component implemen-
tations will be functional we will test the impact of our
scheduling policy on real hardware and measure the impact
on run time and energy consumption.

0 1 2 3 4 5 6 7

LITTLE 0

LITTLE 1

LITTLE 2

big 0

big 1

big 2

big 3 ImageCapture:0
VideoEncryption:2
ObjectDetection:0

GroundSpeed:0
Decision:0

SaveVideo:0
SendMessage:0

Time units

Fig. 4. Alternative schedule for the drone use case with higher security
requirements.

ACKNOWLEDGMENT

The project has received funding from the European Unions
Horizon2020 research and innovation programme under grant
agreement No 779882.

REFERENCES

[1] R. Davis and A. Burns, “A survey of hard real-time scheduling algo-
rithms for multiprocessor systems,” in ACM Computing Surveys, 2011.

[2] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis, and T. Nolte,
“Contention-free execution of automotive applications on a clustered
many-core platform,” in Real-Time Systems (ECRTS), 2016 28th Eu-
romicro Conference on, pp. 14–24, IEEE, 2016.

[3] H. Rihani, M. Moy, C. Maiza, R. I. Davis, and S. Altmeyer, “Response
time analysis of synchronous data flow programs on a many-core
processor,” in Proceedings of the 24th International Conference on Real-
Time Networks and Systems, pp. 67–76, ACM, 2016.

[4] B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut, “Hiding communication
delays in contention-free execution for spm-based multi-core architec-
tures,” in 31th Euromicro Conference on Real-Time Systems (ECRTS19),
2019.

[5] “Odroid-xu4.” https://wiki.odroid.com/odroid-xu4/odroid-xu4. Ac-
cessed: 2019-09-06.

[6] “Nvidia jetson.” https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems-dev-kits-modules/. Accessed: 2019-09-06.

[7] “Teamplay public deliverable 7.5: Achievements in the technical work
packages m9.” https://gitlab.inria.fr/TeamPlay Public/TeamPlay Public
Deliverables/blob/master/D7.5.pdf, 2018. Accessed: 2019-09-05.

[8] C. Grelck, S.-B. Scholz, and A. Shafarenko, “Asynchronous stream
processing with s-net,” International Journal of Parallel Programming,
vol. 38, no. 1, pp. 38–67, 2010.

[9] G. Ciatto, S. Mariani, M. Louvel, A. Omicini, and F. Zambonelli,
“Twenty years of coordination technologies: State-of-the-art and per-
spectives,” in International Conference on Coordination Languages and
Models, pp. 51–80, Springer, 2018.

[10] B. Rouxel, S. Derrien, and I. Puaut, “Tightening Contention Delays
While Scheduling Parallel Applications on Multi-core Architectures,”
ACM Trans. Embed. Comput. Syst, vol. 16, no. 20, pp. 1–20, 2017.

[11] S. Z. Sheikh and M. A. Pasha, “Energy-efficient multicore scheduling
for hard real-time systems: A survey,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 17, no. 6, p. 94, 2018.

[12] ARM Ltd., “White Paper: big. LITTLE Technology : The Future of
Mobile,” p. 12, 2013.

[13] “Opencl.” https://www.khronos.org/opencl/. Accessed: 2019-09-09.
[14] J. Roeder, B. Rouxel, and C. Grelck, “Towards time-, energy- and

security-aware functional coordination,” in IFL 2019 - 31st Symposium
on Implementation and Application of Functional Languages, 2019.

[15] EU H2020, “TeamPlay Project,” 2018. https://teamplay-h2020.eu/.
[16] J. Redmon, “Darknet: Open source neural networks in c.” http://pjreddie.

com/darknet/, 2013–2016.
[17] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.
[18] G. G. Brown and R. F. Dell, “Formulating integer linear programs: A

rogues’ gallery,” INFORMS Transactions on Education, vol. 7, no. 2,
pp. 153–159, 2007.

[19] I. Griva, S. G. Nash, and A. Sofer, Linear and nonlinear optimization,
vol. 108. Siam, 2009.

4

PRUDA: An API for Time and Space Predictible
Programming in NVDIA GPUs using CUDA

Reyyan Tekin, Houssam-Eddine ZAHAF, Giuseppe Lipari
Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL, Lille, France

{firstname.familyname}@univ-lille.fr

ABSTRACT
Recent computing platforms combine CPUs with different
types of accelerators such as Graphical Processing Units
(GPUs) to cope with the increasing computation power needed
by complex real-time applications. NVIDIA GPUs are com-
pound of hundreds of computing elements called CUDA cores,
to achieve fast computations for parallel applications.

However, GPUs are not designed to support real-time ex-
ecution, as their main goal is to achieve maximum through-
put for their resources. Supporting real-time execution on
NVIDIA GPUs involves not only achieving timely predictable
calculations but also to optimize the CUDA cores usage.

In this work, we present the design and the implemen-
tation of PRUDA (Predictable Real-time CUDA), a pro-
gramming platform to manage the GPU resources, there-
fore decide when and where a real-time task is executed.
PRUDA is written in C and provides different mechanisms
to manage the task priorities and allocation on the GPU.
It provides tools to help a designer to properly implement
real-time schedulers on the top of CUDA.

1. INTRODUCTION
Many real-time applications such as computer vision, surveil-

lance systems, etc. demand complex processing on a large
amount of data. Classical multiprocessor platforms combin-
ing only CPUs are not able to satisfy the real-time require-
ments of such systems as they require computing capabilities
in the order of teraflops.

Recently, NVIDIA have provided computing platforms
combining CPUs with different types of specialized comput-
ing unit such as GPUs, Deep Learning Accelerating (DLA),
etc., on the same chip. These platforms can offer suitable
solutions to meet deadlines for emerging complex real-time
applications. However, the complexity of the software, com-
bined with the complexity of the hardware architecture,
makes it difficult to analyse the temporal behavior of such
systems. Moreover, these accelerators are not fundamen-
tally designed to execute real-time tasks. Therefore, they
do not provide proper hardware and software mechanisms
to schedule real-time tasks.

Several works [1, 3, 5] have attacked the problem of pro-
viding support to real-time systems onto GPUs from dif-
ferent perspectives. Kato et al. have proposed platforms
(TimeGraph and RGEM) for non-preemptive scheduling for
graphical tasks in GPU [5], [4]. Authors in [1] tried to study
how a GPU takes scheduling decisions based on benchmark-
ing of the Jetson TX2 platform. Capodieci et al. in [2]
modified the proprietary NVIDIA driver to implement an

event-driven scheduler allowing to use fine grain preemption
levels provided by recent GPUs under different policies such
as EDF and fixed priority. GPUSync [3] is a platform able
to control scheduling within the GPU using locks. The work
in [2] has closed sources whereas GPUSync [3] platform does
not provide tools to freely implement real-time schedulers.
In both works, GPU is used as a single core platform.

Contributions..
In this work, we develop PRUDA, a platform that im-

plements different strategies to control real-time execution
within a GPU using CUDA. PRUDA provides a control over
priorities and task allocation and parallel execution within
the same GPU at the same time. The different primitives
of PRUDA allows implementing several real-time scheduling
policies using different strategies. The platform is currently
under active development: we are working on implementing
special verison of EDF (GRUB) and Fixed priority schedul-
ing policies with PRUDA.

The remainder of this paper is structured as follows. GPU
architecture and its known scheduling mechanisms are de-
tails in Section 2. Section 3 presents the task and architec-
ture models. We reserve Section 4 to define how priorities
and allocations are controlled within a GPU using our plat-
form. In Section 5, we overview the implementation of real-
time schedulers using PRUDA. We draw our conclusions in
Section 7.

2. GPU PROGRAMMING AND PRUDA PRIM-
ITIVES

A GPU is compound of one or more streaming multiproces-
sors (SMs) and one or more copy engines (CEs). Streaming
multiprocessors are able to achieve computations (kernels),
whereas copy engines execute memory copy operations be-
tween different memory spaces. Programming the GPU re-
quires dividing parallel computations into several grids, and
each grid to several blocks. A block is a set of multiple
threads. A GPU can be programmed using generic plat-
forms such OpenCL or proprietary independent APIs. We
use CUDA, a NVIDIA proprietary platform, to have a tight
control on SMs and CEs in the C programming language
and using the NVIDIA compiler.

When a kernel is invoked by CPU code, it submits com-
mands to the GPU. How and when commands are executed,
is hidden by constructors for intellectual property concerns.
Authors in [1] have tried to reveal some GPU scheduling se-
crets by benchmarking a Jetson TX2 (abbreviated TX2 in
the rest of this paper). It is compound of 6 ARM-based CPU

SM0 (128 cores) SM1 (128 cores)

Cpy. Engine

Denver CPUs)

A57 CPUs

NVIDIA PASCAL GPUCPU Islands

Shared Main Memory

Figure 1: Jetson TX2 Architecture

cores, along with an integrated NVIDIA PASCAL-based
GPU as shown in Figure 1, all running onto Ubuntu. The
GPU in the TX2 is compound of 256 Cuda cores, divided
into two SMs and one copy engine. CPUs and GPU share
the same memory module. From a programming perspec-
tive, one may either allocate two separate memory spaces
for CPU and GPU using malloc and CudaMalloc primitives
respectively. The programmer may use a memory space vis-
ible logically by the CPU and the GPU called CUDA uni-
fied memory (even for discrete GPUs), therefore no memory
copies are needed between CPU and GPU tasks such mem-
ory spaces (buffers) allocated using the CudaMallocManaged
primitive. The current version of PRUDA supports CUDA
unified memory to avoid dealing with memory copy opera-
tions, as it will be shown in PRUDA architecture. An exten-
sion to separate memory spaces is under development and
will be soon available.

Typical Cuda programs are organized in the same way.
First, memory is allocated both on CPU and GPU. Further,
memory copies are operated between CPU and GPU. Then,
the GPU kernel is launched, and finally results are copied
back to the CPU by memory copy operations.

Regarding kernel execution within the GPU, authors in
[1] affirm that all threads of any block are executed by only
one SM, however different blocks of the same kernel may be
executed on different SMs. In Figure 2, the green kernel is
executed on both SM0 and SM1, the red SM is executed
only on SM0. The kernel execution order and mechanisms
are driven by internal closed-source NVIDIA drivers (in our
case of study). A PRUDA user may obtain the SM where a
given block/thread is executing by using the pruda get sm()
function. PRUDA allows also enforcing the allocation of
a given kernel to a specific SM by using PRUDA function
pruda allocate to sm(int sm id), where the sm id is the id of
the target streaming multiprocessor. Implementation details
about how these functions work can be found in the PRUDA
description section.

To enforce an execution order between different kernels,
we use a specific data structure, called Cuda Stream. A cuda

SM0

SM1

Kernel 1

Kernel 2

Figure 2: Example of Kernel scheduling in GPU

void *pruda_task(void * arg) {

struct timespec_t next;

p_kernel_t *pk = (p_kernel_t *)(arg);

while (1) {

// memory copy operation

clock_gettime(CLOCK_REALTIME, &next);

pruda_subscribe(pk->kernel,p->priority)

timespec_addto(next, pk->T);

clock_nanosleep(CLOCK_REALTIME, 0, &next, 0);

}

}

Figure 3: Pseudo-code of PRUDA task

stream has a FIFO behavior. Therefore, kernels submitted
to a Cuda stream are executed one after the other in a se-
quential fashion. Therefore, synchronization between two
consecutive kernels is implicitly achieved. This property will
be used later to implement non preemptive EDF and fixed
priority real-time scheduling policies.

In Cuda, the user may define several streams. A prior-
ity might be set between different streams. Therefore, if a
stream A has a higher priority than stream B, all kernels of
A are meant to execute before kernels that are submitted to
B. If a kernel in B is executing, and a kernel is activated on
A, the GPU might preempt the kernel of B, to execute the
kernel of A according to the GPU preemption level (we will
show this behaviour in our benchmarks). We highlight that
fine-grain preemption capabilities are available in NVIDIA
GPUs starting from the PASCAL architecture. For exam-
ple, if a preemption is set at a block level, preemption will be
achieved when all already executing blocks finish their exe-
cution. Recent VOLTA GPUs allow even finer preemption
levels.

Even if it is possible to create more than 2 streams, only
two levels of priority are available in the Jetson TX2 plat-
form. These properties will be used later to approximate
EDF and fixed priority preemptive scheduling policies.

Other PRUDA functions will be detailed later.

3. SYSTEM MODEL
In this paper, we are only interested in GPU programming

and scheduling. While this paper provides real-time support
to GPUs, we do not provide any schedulability analysis yet,
the analysis is work in progress.

We assume that all tasks in the system are programmed
used PRUDA, therefore only PRUDA tasks are in concur-
rence in GPU. Each task τi is characterized by its deadline
Di and its period Ti. Tasks are strictly periodic, therefore
the exact time between two successive activations of task τi
is equal to Ti. The jth instance of task τi must finish it
execution no later than Ti × j + Di, otherwise it misses its
deadline. The task may be scheduled using fixed priority,
therefore it may be characterized by parameter priority Pi.
From the implementation perspective, each PRUDA tasks
is a instance of a periodic CPU thread as shown in the al-
gorithm of Figure 3.

The PRUDA task starts by parsing the kernel parame-
ters which are the kernel code, priority, deadline and period.

Further it starts the periodic task behavior. The task get
the current time and computes the next instance activation
time next. Later, the GPU job is registered in the correct
(according to the desired scheduling policy) GPU run-queue
(see PRUDA architecture in Figure 4). Once the PRUDA
CPU thread launched the kernel, it sleeps until the next
activation. Another scheduling entity checks the run-queue
state and schedule the highest priority tasks first according
to (i) one of the strategies details into the next section and
(ii) to the desired scheduling policy.

The memory copy operation line achieves memory copies.
This operation may need to copy several buffers from CPU
to GPU and vice-versa. The current version of the platform
use Cuda unified memory, therefore memory coherency is
achieved automatically by the NVIDIA Driver.

The GPU may be scheduled as a single core platform
or a parallel platform where each streaming multiproces-
sor is an independent core by the mean of the PRUDA
allocate to sm(· · ·) function. The allocation to a given SM

is achieved by testing if the task is in the correct SM, if yes,
the computation is achieved, otherwise the thread on the
wrong SM is killed.

4. TEMPORAL AND SPATIAL CONTROL
OF PRUDA TASKS ON GPU

Our platform integrates several strategies to implement
scheduling decisions. These strategies have different perfor-
mances and overheads.

4.1 Single-stream strategy
The first strategy, called single-stream , uses one Cuda

stream to enforce kernel scheduling decision. The sched-
uler uses three queues: a task queue (tq) which contains all
PRUDA tasks list; an active kernels queue rq which contains
the active PRUDA jobs; and the stream queue sq, which con-
tains kernels that will be submitted to GPU. When a kernel
is activated, it is added to the correct active kernel queue
rq via the pruda subscribe(· · ·) function. Further, if Cuda
stream queue sq is empty, it is moved from the rq to sq if it
is the highest priority job according to the given scheduling
policy using pruda resched function.

As only one Cuda stream is used, once the pruda task
is executing, it can not be preempted by another higher
priority task, therefore only non preemptive scheduling al-
gorithms can be implemented using this strategy. However,
we would like to highlight that we allow pruda user to abort
the current kernel under execution by calling pruda abort()
function.

This strategy is simple and easy to implement. It pro-
vides an implicit synchronization between active tasks, i.e.
if task B is in the stream queue while A is running, B will
wait until A finishes its execution before starting without
overlapping. However, the use of this strategy involves re-
serving all the GPU resources (both SMs) for a single pruda
task at a time, even if this task is not using all GPU cores,
therefore resource are wasted. In the next strategies, we will
show how to overcome these limitations.

4.2 Multiple stream: preemption enabling
In the second strategy, called multiple streams, PRUDA

creates multiple streams to take scheduling decisions, allow-
ing concurrent kernel execution on GPUs and preemption.

First, we recall that the TX2 allows only two priority
levels. Therefore, we create only two streams: one with
high priority and the other with low priority. The queue
of the high priority stream is denoted by h-sq, the second
stream queue is denoted by l-sq. We recall that using sev-
eral streams allow asynchronous and concurrent execution
between the two streams, however within the same stream
the execution is always FIFO.

When a task is active, it is added to the correct ready-task
queue rq. Further, the scheduler checks one of the following
situations:

1. h-sq = ∅∧ l-sq = ∅ : the scheduler will allocate the task
to the l-sq queue, therefore the task will be submitted
immediately to the GPU.

2. h-sq = ∅∧ l-sq 6= ∅ : the scheduler checks that the
activated task has a higher priority than the task in
l-sq. If yes, the task is inserted into the high priority
queue h-sq, therefore it preempts the task in the l-sq if
possible. Otherwise, no scheduling decision are taken.

According to the scheduling decisions mechanism described
in the text above, only one preemption is allowed when a
task is already in execution. For example, if a task C arrives
after B has preempted A, task C must wait until B finishes
even if it is the highest priority active job. We are currently
developing schedulability analysis for such limited preemp-
tion system. We would like also to highlight that preempted
tasks, will continue to use GPU resources if the high priority
task is not using all of the GPU resources.

Even if this strategy solves preemption limitations of the
previous one, it is more complex. It uses also a GPU as a
single core. In the next section, we use each SM in the GPU
as a single processor allowing parallel execution within the
GPU. We highlight also that the preemption at instruction
level can not be guaranteed as the later is decided by the
NVIDIA closed internals. However, we ensure that the pre-
emption can be achieved at block boundaries, therefore the
worst preemption cost is in the order of the block execution.

4.3 SMs as cores strategy
The third strategy uses the GPU in similar way as the

previous one; therefore two streams are created and with the
same queue configuration. However, we allow tasks to call
the function pruda allocate to sm(· · ·), thus using a GPU as
a multiprocessor rather than a single core. We consider two
types of pruda tasks : the ones that are allocated to a given
SM and the other that are not (we consider that the PRUDA
tasks, not calling the allocation function as tasks requiring
the GPU exclusively).

In addition to the scheduling structures described for the
previous strategy, this strategy uses one queue per SM : sm0-
q and sm1-q. When a task is active, if it uses both SMs, no
other task will be scheduled at the same time, therefore it
will be added to l-sq or h-sq similarly as in the previous
strategy. Otherwise, it uses a single SM and it is assigned to
the correct SM queue. Later, the two job having the high-
est priority in sm0-q and sm1-q are scheduled first by being
inserted in l-sq and h-sq. This allows parallel execution on
both streaming multiprocessor. This strategy allows using
the GPU of TX2 as a 2-core platform.

In fact, the allocation function tests if a given block-
/thread is in the correct SM: if yes, it continues onward

P6

P5

P4

P3

P2

P1

...

pruda add task

task queue (tq)

Active task queue (rq)

pruda subscribe

steam queues

h-sq

l-sq

pruda resched

SM0-q

SM1-q

p
ru

d
a

a
ll
o
c

p
ru

d
a

re
sc

h
ed

GPU internals

SM0 SM1

pruda check

pruda abort

Figure 4: PRUDA global overview

execution, otherwise it exits. Therefore, the user has either
to take that into account when using the block and thread
indexes, or he/she must use new functions we provide to cal-
culate indexes. The thread and block indexing mechanism
we provide is simple but effective. The user is free to use
the Cuda indexes, or our platform indexes, as long as there
is no conflict. We highlight here that both of the previous
strategies do not require any modification in the kernel code
nor in the programming fashion (indexing). Although this
method is more complex to implement than the two previous
ones, it provides both temporal and spatial tasks execution
control on GPUs. Analyzing the behavior of this final strat-
egy is a challenging theoretical question, that is considered
for future work.

5. REAL-TIME POLICIES USING PRUDA
Implementing real-time schedulers using PRUDA is sim-

ple. In fact, it requires implementing the pruda subscribe
function and the pruda resched function. The goal of the
first is to put the active task in the correct queue according
to its priority. If the scheduling algorithm is fixed priority,
it has to put it directly in the corresponding priority queue.
If the algorithm is EDF, it requires calculating the priority
and further inserting the task into the correct queue. The
goal of the second function is to select which active task
to select and in which Cuda stream queue it should be in-
serted, therefore to be submitted to the GPU. The user is
also able to call pruda abort to exit the execution of a given
kernel to mix real-time with non real-time tasks if desired.
The description of PRUDA provided in the current and the
previous section is described in Figure 4. We highlight that
pruda functions (except subscribe and resched) can be used
even for non pruda tasks.

6. PRUDA API
All three strategies are integrated into the Pruda C++

API. We also have implemented for the single stream strat-
egy both EDF and Fixed priority algorithms.

First of all, the API (Figure 4) requires the user to im-
plement its kernel using CUDA. Further, the first step is to
initialize the pruda scheduler by invoking function:

pruda init sched(method t method, policy p);
where method is either SINGLESTREAM for the first strat-
egy, MULTIPLESTREAMS for the second and for the MUL-
TIPROC third. The policy P is the scheduling policy. The
current version supports EDF or FP.

Once the scheduler has been initialized, we add kernels to
the task queue tq by invoking function:
pruda add kernel(p kernel t kern, int gs, int bs, int p);

where kern is the a pointer to the kernel function, gs is the
grid size, bs is the block size and p is the task priority if
fixed priority policy is selected.

Once all pruda kernels have been added, the function
pruda start is invoked to start all periodic threads. Mem-
ory operations are implicitly achieved by the mean of Cuda
unified memory, however explicit memory copies are under
development to be soon supported.

7. CONCLUSION
In this paper, we have presented PRUDA, a program-

ming interface to develop real-time scheduler on the top of
Cuda. PRUDA provides different strategies to control tem-
poral and space behavior of real-time tasks on the GPU.
In future work, we plan to provide tools to analyze the real-
time behavior of PRUDA tasks. In fact, scheduling real-time
tasks does not allow free preemption and has a very limited
number of priorities. These limitations has to be taken into
account in the analysis of PRUDA tasks behavior to ensure
the respect of timing constraints. We are also planing to de-
velop a tool for tracing pruda tasks along with the NVIDIA
nvprof profiling tool.

8. REFERENCES
[1] Tanya Amert, Nathan Otterness, Ming Yang, James H

Anderson, and F Donelson Smith. Gpu scheduling on
the nvidia tx2: Hidden details revealed. In RTSS’2017,
pages 104–115. IEEE, 2017.

[2] Nicola Capodieci, Roberto Cavicchioli, Marko
Bertogna, and Aingara Paramakuru. Deadline-based
scheduling for gpu with preemption support. In
RTSS’2018, pages 119–130. IEEE, 2018.

[3] Glenn A Elliott, Bryan C Ward, and James H
Anderson. Gpusync: A framework for real-time gpu
management. In RTSS’2013, pages 33–44. IEEE, 2013.

[4] Shinpei Kato, Karthik Lakshmanan, Aman Kumar,
Mihir Kelkar, Yutaka Ishikawa, and Ragunathan
Rajkumar. Rgem: A responsive gpgpu execution model
for runtime engines. In 2011 IEEE 32nd Real-Time
Systems Symposium, pages 57–66. IEEE, 2011.

[5] Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar,
and Yutaka Ishikawa. Timegraph: Gpu scheduling for
real-time multi-tasking environments. In Proc. USENIX
ATC, pages 17–30, 2011.

JRWRTC’2019 Keyword Index

Keyword Index

Abstract interpretation 9
Annotations 25

Cache analysis 9
Communication model 29, 37
Compilation 25
Coordination 45
Coq 41
CUDA 5, 49

Determinism 17

Embedded networks 13
Energy-aware scheduling 45
Ethernet 13

Formal semantics 21
Function inlining 25

GPU scheduling 49
GPUs 5

Heterogeneous multi-core 45

IEC 61850 17
Inter-chip 29
Internet protocol 29

Memory interferences 21
Message-passing 29
Model-checking 1
Multiprocessor locking protocols 33

Nested locks 33
Network modeling 17
Network-calculus 41
Network-on-chip 29
Non-functional properties 25

Parallel programming 49
PLRU cache 9
Priority-inversion blocking 33

Real-time 1, 17, 29, 37, 49

1

JRWRTC’2019 Keyword Index

Real-time locking protocols 33
Real-time network 41
Response-time bounds 5

Sail language 21
Satellites 13
SAVOIR-OSRA 13
Space and time scheduling 37, 45, 49
Static analysis 9
Substation Automation System 17

Time Sensitive Network (TSN) 13
Time-division multiplexing 29
Time-triggered 29
Timing anomaly 1
Timing model 21

WCET 1

2

JRWRTC’2019 Author Index

Author Index

Ahmed-Nacer, Abdelaziz 17
Allioux, Coralie 1
Altmeyer, Sebastian 45
Amert, Tanya 5
Asavoae, Mihail 21

Bai, Zhenyu 9
Barwell, Adam 25
Boyer, Marc 13, 41
Brown, Christopher 25

Chaine, Pierre-Julien 13
Chevrier, Vincent 17
Cucu-Grosjean, Liliana 37

Docquier, Théo 17

Falk, Heiko 25

Grelck, Clemens 45

Haur, Imane 21
Houssam Eddine, Zahaf 49

Jadhav, Shashank 25
Jan, Mathieu 21

Kyriakakis, Eleftherios 29

Lipari, Giuseppe 49

Maxim, Cristian 37
Mäıza, Claire 9
Monniaux, David 9

Nemitz, Catherine 33
Ntaryamira, Evariste 37

Pagetti, Claire 13
Pontnau, Ludovic 17

Rakotomalala, Lucien 41
Roeder, Julius 45
Roth, Mikko 25

1

JRWRTC’2019 Author Index

Roux, Pierre 41
Rouxel, Benjamin 45

Schoeberl, Martin 29
Song, Ye-Qiong 17
Sparsoe, Jens 29

Tekin, Reyyan 49

Wartel, Franck 13

2

