
Edge-to-Edge Resource Discovery using Metadata
Replication

Ilir Murturi, Cosmin Avasalcai, Christos Tsigkanos and Schahram Dustdar
Distributed Systems Group

TV Wien
Vienna, Austria

{imurturi, c.avasalcai, c.tsigkanos, dustdar}@dsg.tuwien.ac.at

Abstract-Edge computing has been recently introduced as an
intermediary between Internet of Things (loT) deployments and
the cloud, providing data or control facilities to participating
loT devices. This includes actively supporting loT resource
discovery, something particularly pertinent when building large
scale, distributed and heterogeneous loT systems. Moreover, edge
devices supporting resource discovery are required to meet the
stringent requirements prevalent in loT systems including high
availability, low-latency, and privacy. To this end, we present
a resource discovery platform for loT resources situated at
the edge of the network. Our approach aims at providing a
seamless discovery process that is able to (i) extend the covered
area by deploying additional edge nodes and (ii) assist in the
development of new loT applications that target already available
resources. Within our proposed platform, devices located in a
certain proximity connect and form an edge-to-edge network
that we call an edge neighborhood - our edge-to-edge metadata
replication platform enables participating devices to discover
available resources. Our solution is characterized by absence of
centralization, as edge nodes exchange metadata about available
resources within their scope in a peer-to-peer manner.

Index Terms-Edge Computing, Internet of Things, Resource
Discovery

I. INTRODUCTION

The VISIOn of Edge Computing and Internet of Things
(loT) is an composite system where interconnected edge
nodes provide and manage a huge number of resources. The
convergence between two concepts changes the way we today
conceptualize loT as a large number of things connected to the
Internet, which are often distributed [1]. Hence, in the future
the loT needs to be thought of as an ecosystem of discrete
computing resources connected to the Internet-enabled devices
[2] - at the edge of network [3]. When this vision will be
implemented fully, millions of loT resources will be available
and linked. This brings new challenges in edge computing such
as performing resource discovery and resource management in
a fast, convenient and user-friendly manner.

Resource discovery [4] is an important challenge in any
distributed system such as distributed clouds [5], peer-to-peer
networks [6], and grids [7]. It is essential to achieve pervasive
behavior, in which it devices and services making up the
Internet of Things perceive available resources and utilize
them. In loT systems, such pervasive behavior is only con
sidered locally and achieved by taking into account available

resources located in the VICInIty of the user (i.e., a meeting
room) or in a local context (i.e., the overall apartment).
Moreover, stringent requirements (i.e., high availability, low
latency, privacy [8]) of loT systems have recently suggested
the architectural placement of a computing entity closer to
the network edge [9]. Hence, edge computing is seen as a
promising approach to support the loT in scenarios where it
is required to achieve low communication latency and high
availability between the edge node and the end-users [10].

To overcome these shortcomings, edge devices can be
introduced as an intermediary entity between applications
and surrounding loT resources. These edge entities are het
erogeneous devices which may offer various computational
resources to local devices [11]. In addition, an edge device
may collect information about the other resources available
in their environment. These resources can be referred to as
computational, sensing, context data or other types of domain
specific resources that software-intensive devices may take ad
vantage of to achieve their goals. loT applications may utilize
different capabilities of an edge device benefiting from high
connectivity and awareness of other surrounding resources.
However, in order to meet the stringent and unpredictable
requirements of loT applications, therefore a wider view
of available resources is required. Thus, edge devices may
collaborate by exchanging information about their surrounding
resources and providing a service discovery for a local loT
applications.

We assume that resources share their functionality descrip
tions to the nearest edge device. We define two types of
resources on the basis of their access types: public resources
(i.e., resources can be shared) and private resources (i.e.,
resources can only be accessed locally). Each edge device
collects resource descriptions in its vicinity and shares the
public ones with the rest of the edge devices. Hence, other
edge devices receive public descriptions and store them locally.
Since all edge nodes are connected in a Peer-to-Peer (P2P)
fashion and performing a resource discovery algorithm on the
entire network is computationally demanding, we propose a
solution where all devices found in a certain proximity will
connect, forming an edge-to-edge network that we call an
edge neighborhood. By applying our proposed approach in
such a neighborhood, all resources shared in that specific area

 978-1-7281-2365-3/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 14,2022 at 16:34:59 UTC from IEEE Xplore. Restrictions apply.

III. RESOURCE DISCOVERY ECOSYSTEM

An overview of the resource discovery framework is pre
sented in Figure 1. The framework consists of three layers with
the purpose of providing a seamless resource discovery for (i)
extending the covered area with more deployed edge devices
such that more resources are available and (ii) developers to
create loT applications for a specific area.

The first layer consists of multiple static edge devices
deployed in a certain area (i.e., building, home, street, etc.).
Each such device contains sensors and resources that could
aid at building different loT applications. Since privacy is
imperative to such a framework, we classify resources on every
edge device as public (i.e., the resources are shared with other
neighbors) and private (i.e., resources can only be processed
locally). By applying our edge-to-edge decentralized metadata
replication system in such a neighborhood, we can discover
all resources shared in that specific area. For example, all

home) and connects in a P2P manner with other edge devices
from that specific building, forming what we call an edge
neighborhood.

In our example scenario, we assume that every apartment
has a fire detector resource designed to detect and respond
to the presence of fire. The fire detector is a public resource,
which means that all neighbors have the knowledge of which
apartment has this resource. The fire department can access
our proposed resource discovery platform that contains a list
of all available resources in the city and query to find all
buildings that already have a fire detector resource. Based on
this information, the department can create an application that
monitors these buildings by accessing the available resources
and in case of emergency react and dispatch a fire brigade
personnel for intervention. Furthermore, the fire department
can deploy new edge devices in buildings that lack from these
resources.

Data
Origination

Platform

Resource & Edge
Neighborhood
Management

Edge-to-Edge
Metadata
Replication

I
"'j'"

Sensors and actuators•
Fig. 1. Resource Discovery framework overview.

Edge Neighborhood Edge Neighborhood

•• ••___ -' .& .l I. •

" "

@ 1'1

---------- ---------t -------- ----------- :il

~ ~
~EJ ---------- ~U I

~:~-l~~-,,'O
~: ..~ ------- ~:"~ -9

a:
w

S
c
::::>o
...Jo

a:
w

S
w
Clc
w

a:
w

S
g
LL

II. MOTIVATING SCENARIO

We consider a smart city [12] environment as a motivating
scenario for our decentralized resource discovery framework.
Such a smart city is the result of combining successfully
the Edge Computing paradigm with loT devices such that
new loT applications can be created. Generally speaking, the
backbone of such a city is represented by loT applications
able to take advantage of all edge resources deployed at the
edge of the network and provide solutions for improving the
daily lives of people and monitoring environmental conditions
[13]. Concrete instantiations of this vision include applications
like a smart traffic lights and smart energy. However, with no
possibility of discovering the available resources at the edge
of the network, developing applications for different areas of
the city is considerably harder.

To motivate our proposed resource discovery framework, we
consider the following use case. In a smart city, there is a fire
department in charge of emergency scenarios involving smart
buildings. A smart building provides different resources to the
residents - each apartment has smart devices and sensors (i.e.,
temperature, presence, fire alarm, smoke detectors etc.). Since
resources may collect private data of a specific person (e.g.
a presence sensor), the data should not be accessed by other
users from a remote location. Hence, resources in the network
are divided into private and public resources. Furthermore,
each apartment is equipped with an edge node which controls
its surrounding resources (e.g., is a controller for a smart

can be discovered. For example, edge devices deployed in a
building will form such a neighborhood - similarly, devices
on a certain street, intersection or district can form such a
group neighborhood. Moreover, such edge neighborhoods are
expected to collaborate to fulfill loT application requirements.

In this paper, we propose a novel resource discovery ecosys
tem for resources in an loT network. We define an ecosystem
as a collaboration of edge devices, information and people
with the purpose of creating an loT platform that supports
the development of new loT applications. The system aims
to (i) aid developers in creating loT applications specific
for the available resources at the edge of the network, (ii)
provide service discovery for loT applications at the edge of
the network, (iii) offer a platform to find available resources
distributed over large areas and (iv) help public institutions
(e.g., a fire department) to identify areas where there is a need
of deploying new edge devices to enable required resources.
Furthermore, we describe a new decentralized edge-to-edge
metadata replication framework at the core of our ecosystem.

The rest of the paper is structured as follows. Section II
gives an overview of our approach along with a motivat
ing example used throughout the paper. Section III gives
an overview of the proposed resource discovery ecosystem.
Section IV defines a metadata model to describe network
based resources, and Section V describes in detail the proposed
resource discovery using metadata replication across the edge
nodes. Related work is considered in Section VI. Finally,
Section VII concludes the paper.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 14,2022 at 16:34:59 UTC from IEEE Xplore. Restrictions apply.

edge devices deployed in a building or devices on a certain
street, intersection or district can form such a neighborhood.
At this level, each node in his group contains a local storage
of shared resources (e.g., sensors, actuators, etc.) of each
other node in that particular group. This layer also provides a
local search mechanism for locally stored content where user
loT device may realize queries and select resources the edge
neighborhood.

The second layer represents the fog layer and is in charge
of offering the possibility of accessing the data available at
layer one to different parties. Fog Computing [14] extends the
Cloud Computing paradigm to the edge of the network, thus
enabling a new breed of applications and services. In this layer,
there is a fog node that manages one or more neighborhoods.
Each such fog node collects information about deployed edge
devices and the available resources from each neighborhood
and creates (i) a description of the resources discovered for
each particular group, (ii) an IP address of the group that
gives the opportunity of other edge devices (i.e., a laptop)
of users to connect and use the available resources, (iii) a list
of keywords that describe each resource in a group and help
to build easier queries, and (iv) assists on forming new edge
mesh networks to fulfill application requirements. Hence, this
layer assists the third layer with the possibility of doing queries
and select only the neighborhoods that will have the resources
from one particular area (e.g., find all neighborhoods that have
fire detectors in the city). Note that we ignore the effects of
network routing and assume that each device can connect to
each other.

The third layer is called the Cloud layer and represents
the location where a resource discovery platform is deployed.
Such a platform contains a list of all discovered resources
in the city and their description collected from the fog layer.
Users can connect to it and find resources by creating specific
queries. The user can create queries to find available resources
with specific requirements (e.g., fire detector, smoke detector,
etc.). Finally, when the results are returned, the user can
connect directly to each neighborhood, create and deploy an
loT application.

IV. loT RESOURCE DESCRIPTION

A resource can be described by providing certain core
information about the functionality and its properties. This
type of description is known as the metadata of the resource,
which may be provided by the manufacturer or application
developer. In order to accomplish our goal of describing
resources in a pervasive environment, we adopt a similar
approach to Barnaghi et al. [15]. We propose a resource
representation structure which provides seven main properties
as described below:

Resource identification provides basic information on the
resource such as resource name, a unique resource identifi
cation ID, and the edge node ID which handles the resource
description. Resources are described by a number of keywords
which helps developers to search resources within the edge
node. For example, knowing the location of the resources

is a way for the user to locate resources - in smart cities
for instance, the location parameter may be used to discover
resources such the temperature sensors in a certain area. In
addition, it provides a product description (e.g., device brand,
category, description, etc.).

Resource connectivity provides information such as the IP
address and port number to reach the resource through the
overlay network. In addition, it provides an information related
to the connectivity status (e.g., connected or disconnected).
As an example, a user application might request a specific
available resource from the edge node which in turn gets the
information how to reach the desired resource.

Resource capability describes the ability of the resource
perform some action (e.g., the resource may provide storage
capabilities to others). In addition, specific resources may
provide sensing operations to change the state of the resource
(e.g., increasing/decreasing temperature).

Resource accessibility provides information related to the
resource access policy. We define two types of resources that
participate in the edge network: i) public resources and ii)
private resources. All edge nodes that join the network can
discover and replicate public resources. Private resources are
not discoverable by other edge nodes - such resources are
accessible only locally.

Resource output provides information related to the output
of the resource (i.e., unit). For example, a specific user
application might require a temperature sensor which provides
values only in Fahrenheit. However, we note that metadata
does not contain any current value provided by the resource.

Resource location describes the properties of the resource
where it is located. It can be described through the given
geographical position or by a logical location. A resource can
only have a link to one location instance.

Resource administration domain defines the owner of the
resource shared in the edge network. For example, the fire
department can monitor the activity within the administrative
domain to ensure that the monitored resources remain consis
tent.

Representation of resources is mainly focused on repre
sentation models using ontologies. We propose that resource
description to be formatted in a JavaScript Object Notation
(JSON). The rationale of exchanging metadata over JSON is:

• Metadata using JSON may have a very rich description
of the resource while being lightweight and machine
readable.

• Size of metadata in JSON is small and replication process
across many nodes is possible. Hence, JSON documents
considerably reduce the network traffic between edge
nodes compare to the other formats (e.g., XML [16]).

The proposed framework focuses on taking a set of resources
around an edge node and producing a document with public
resource descriptions that surround the edge node. Resource
descriptions can be constructed by the application developer
or the manufacturer itself.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 14,2022 at 16:34:59 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Edge-to-edge Metadata replication: High level architecture.

A. System architecture
Our system consists of three main components: the Edge

to-Edge Communication, the Metadata Container, and the
Local Search Engine facility as presented in Figure 2. We
assume that an edge node before joining the edge network
contains metadata descriptions provided by resources in its
surroundings. In this paper, we consider only built-in resources
in the edge device and stationary resources that support IP
based communication.

C. Metadata Container
This component is responsible for managing data in an

edge node. It provides a mechanism which synchronizes data
information with the Local Search Engine and the Edge-to
Edge Communication. As discussed at the beginning of the
section, we assume that each node before joining the edge
network contains (1) the metadata descriptions provided by
the resources in its surroundings, as presented in Figure 3. We
assume the metadata is transmitted only once to the nearest
edge node.

Metadata is collected from each resource supplied to the
edge node as a single JSON document. The process begins by
storing (2) found metadata to the Local Search Engine. Each

B. Edge-to-Edge Communication

The communication between edge nodes in the proposed
architecture is realised through implementing the Kademlia
Protocol [17]. Our study revealed several distributed hash table
solutions to consider for our framework such as Chord [18],
Pastry [19], and Tapestry [20]. We propose to use Kademlia as
the edge communication protocol due to is automatic spread
ing of contact information and minimal Remote Procedure
Calls. Moreover, one of the most important features of the
Kademlia network is the O(log (n)) lookup time. The process
of finding nodes and resource descriptions in this type of
network is fast and efficient [17].

Kademlia is a distributed hash table (DHT) for decentralized
peer-to-peer computer networks. A Kademlia network consists
of nodes where each of the nodes has a unique 160 bit ID as an
identifier. Nodes in the Kademlia network communicate using
User Datagram Protocol. Moreover, the participating nodes
exchange their information through node lookups. An overlay
network is formed where each node is identified by its own
node ID. The provided ID will serve as a direct map to the file
hashes and where to obtain the requested resource. Beside the
unique ID, it maintains a routing table and a DHT. A routing
table maintains a list for each bit of the node ID (e.g., node
ID consist 160 bits means that will keep 160 such lists). A
routing table is divided into created lists known as buckets
- each bucket contains contact information and the distance
from the current node. Contact information reside into one of
the buckets in which it contains the node ID, IP address, and
port number of the other node. Buckets in the routing table
are updated every time when a new node join the network.
In addition, new edge nodes can be bootstrapped by knowing
basic contact information of any other reachable DHT nodes in
the network. The DHT segment stores key/value pairs where
the key is the name of the public metadata document and the
value is the network location of the document.

Metadata exchange begins by asking each active node to pro
vide its public resources. The local search engine component
(4) subsequently allows edge nodes to store data locally and
provides a search mechanism for stored content. The user
interacts (5) with the Local Search Engine Component via
a RESTful APls.

romO
::J e!.

<Q.CfJ
::J CD
CD ~o::::r

Edge Node

Meladala
Container

Edge-la-EdgeEdge-la-Edge

(3) Meladata
Conlainer

Edge Node

bmO
::J e!.

<Q.CfJ
::J CD
CD ~o::::r

V. EDGE-TO-EDGE METADATA REPLICATION

Our motivating example differs from current loT resource
discovery in two major ways. First, resource discovery pro
vided by this framework is decentralized. Second, edge nodes
found in a certain proximity will connect forming an edge
to-edge network that we call an edge neighborhood. By
applying our proposed approach in such a neighborhood,
we can discover all resources shared in that specific area.
Hence, the focus of this framework is to discover resources
near a user and the resources which are shared in the edge
neighborhood. In the rest of this section, we discuss in detail
the proposed approach for resource discovery using metadata
replication across the edge nodes. Firstly, we elaborate the
interaction of each component in a proposed system and
secondly, we provide a detail description of each component
of the architecture.

Communication (1) between edge nodes is achieved through
the Edge-to-Edge Communication component. This compo
nent specifies the structure of the network and their exchange
information (i.e., edge node ID, IP, port) through node lookups.
Each edge node stores locally exchanged information and
updates it whenever a new node joins the network. The
Metadata Container is responsible to manage data in the edge
node. It manages which resource descriptions can be shared in
the network and which can be accessed only locally. We merge
all descriptions of public resources into a single metadata
document and name it with the edge node ID. The metadata
document is published by the Edge-to-Edge Communication
(2) to the edge neighborhood.

Edge-to-Edge Communication is also responsible to obtain
(3) the public metadata documents of all active edge nodes.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 14,2022 at 16:34:59 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Interaction between Local Search Engine and Metadata Container.

-------- ------- ----E-dge -Nod;l ----- -- ----- ----- ---'\

metadata description is analyzed based on their accessing type
such as public or private. Private metadata documents will
remain locally in the edge node and no further operation will
be required. Public metadata documents are merged into a
single JSON document and shared (3) with other edge nodes.
For the first interaction between nodes, we conclude that
providing a single metadata document for all public resources
reduces unnecessary communication and search operations.
This document is updated whenever new public resources are
added.

The Metadata container is responsible to monitor the avail
ability of the local resources in its surroundings (i.e., con
nected/disconnected). The edge node transmits a message to
the rest of the nodes to update the availability of a specific
resource whenever the resource becomes unavailable. If the
resource remains inactive for a while, each edge node removes
it from its local storage. In addition, when a newly public
resource is added to the edge device, it broadcasts a message to
the others to obtain and store it locally. This broadcast message
provides basic information on how to obtain a description of
the resources from the edge device.

VII. CONCLUSION AND FUTURE WORK

Resource discovery is an important challenge in many
contemporary distributed systems. Building a network of edge
nodes where each stores information about its surrounding
resources, affords an unprecedented way to discover and utilize
them in applications. We introduced a three-layer resource
discovery platform for resources at the edge of the network
The platform provides a seamless resource discovery process
that application developers can access and use to extend the
covered area by deploying more edge nodes and assists in

VI. RELATED WORK

Resource discovery is a critical challenge for loT appli
cation performance, where it must ensure that performance
requirements are met and some quality of service constraint is
satisfied. We discuss related work in three parts. The first part
provides an overview on the replication of metadata, while
the second part outlines related work on nodal collaboration
techniques. Finally, we discuss resource discovery in loT.

Our resource discovery approach is based on browsing the
resources locally rather than using a keyword to search the
entire network [24]. By replicating metadata between the edge
nodes, we enable users to perform locally various complex
queries (i.e., location-based, keyword-based, etc.). A P2P
based distributed database solution that supports bidirectional
replication is provided by CouchDB [25]. Our architecture
has some similar components, but we emphasize metadata
replication as a single document, as opposed to database
replication. A metadata replication process has many benefits
such as enabling high availability by removing a single point
of failure [26] or to achieve higher reliability and workload
balancing among peers [27].

Researchers focus primarily on nodal collaboration in Fog
Computing [14], considering three main techniques such as
cluster [28], peer-to-peer and master-slave [29] conceptions.
Generally, in Fog Computing communication between nodes
is realized in P2P manner [30]. Due to their fully distributed
nature, P2P architectures have been shown to be both scalable
and reliable [31].

In loT systems, selecting appropriate resources and services
that satisfy users requirements is a challenge. Tanganelli et at
[24] proposed an Edge-centric distributed solution to federate
different loT gateways deployed in fog nodes close to loT
domains. The main goal of the proposed approach is providing
applications a service for global discovery and access of
loT resources in the federated domain without taking into
account their location. DHT based resource discovery has
also been proposed, for instance, see [32]. OpenloT [33]
proposes an open service framework for the Internet of Things,
which facilitates entrance into the loT-related mass market,
establishing a new ecosystem for the Internet of Things with
the widespread adoption of loT-related devices and software.
Wang et at [2] propose an architecture for service discovery
in smart cities. The proposed framework focuses on taking a
set of devices around a citizen, and proactively producing a
list of services that surround the user using his preferences.

Metadata
Container

Local Search
Engine

[User

D. Local Search Engine

Supporting queries such as showing all temperature sensors
in a certain area is becoming highly desirable for loT applica
tions. The local search engine may assist in the development
of new loT applications that target already available resources
at the edge neighborhood. In addition, it may also support the
discovery of resources at the edge of the network for a user loT
application. Our study revealed several search engines such as
Apache Solr [21] and MongoDB [22]. As the local search
engine, we identify ElasticSearch [23] as a likely candidate to
meet the desired component objective.

ElasticSearch is a document-oriented database which al
lows queries to be made through using JSON language and
makes full-text search accessible via RESTful API, while a
JSON-style domain-specific language allows writing complex
queries. ElasticSearch resource descriptions are inserted (3),
(4) based on their accessing types, as presented in Figure 3.
Moreover, locally stored content helps a roaming loT device
to realize queries and select resources in the edge network.
Hence, such requests (5) are therefore submitted and processed
by the edge node.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 14,2022 at 16:34:59 UTC from IEEE Xplore. Restrictions apply.

developing new loT applications that target already available
resources. We proposed a solution where all devices found in
certain proximity connect and form an edge-to-edge network.
We presented a new metadata model to describe the function
ality of the edge device resources and IP-enabled resources.
To discover all resource shared in such area, we proposed a
decentralized edge-to-edge metadata replication framework.

This paper is only a small step towards a general framework
for resource discovery in edge networks. Regarding future
work, we first plan to implement the proposed decentralized
edge-to-edge metadata replication framework discussed. It
remains an important open question what is a reasonable
number of edge nodes forming an edge neighborhood. We plan
to carry out a series of experiments taking into account various
factors, such as the number of metadata resource descriptions
and the number of concurrent requests that can be supported.
Beside a detailed evaluation, the platform itself as well as the
implementation of the fog node functionality remains to be
built. In addition, more work is needed to investigate current
technologies that enable loT applications to access resources.
We ignored network routing, but we consider this an important
aspect to be treated in future work.

ACKNOWLEDGMENT

Research partially supported by the TOW Research Cluster
Smart CT and the EU H2020 Marie Sklodowska-Curie grant
No. 764785 FORA-Fog Computing for Robotics and Indus
trial Automation.

REFERENCES

[I] Christos Tsigkanos, Laura Nenzi, Michele Loreti, Mmtin Garriga,
Schahram Dustdar, and Carlo Ghezzi. Inferring analyzable models from
trajectories of spatially-distributed internet-of-things. In Ith IEEEIACM
International Symposium on Software Engineeringfor Adaptive and Self
Managing Systems, SEAMS@ICSE 20i9, Montreal, Canada, May 25-26,
2019. IEEE Computer Society, 2019.

[2] Edward Wang and Richard Chow. What can i do here? iot service
discovery in smaJt cities. In Pervasive Computing and Communication
Workshops (PerCom Workshops), 2016 IEEE international Conference
on, pages 1-6. IEEE, 2016.

[3] Weisong Shi and Schahram Dustdar. The promise of edge computing.
Computer, 49(5):78-81, 2016.

[4] Soumya Kanti Datta, Rui Pedro Ferreira Da Costa, and Christian Bonnet.
Resource discovery in internet of things: Current trends and future
standardization aspects. In Internet of Things (WF-loT), 2015 iEEE
2nd World Forum on, pages 542-547. IEEE, 2015.

[5] Stefan Nastic, Sanjin Sehic, Due-Hung Le, Hong-Linh Truong, and
Schahram Dustdar. Provisioning software-defined iot cloud systems.
In 2014 2nd International Conference on Future Internet of Things and
Cloud (FiCloud), pages 288-295. IEEE, 2014.

[6] Elena Meshkova, Janne Riihijiirvi, Marina Petrova, and Petri Mahonen.
A survey on resource discovery mechanisms, peer-to-peer and service
discovery frameworks. Computer networks, 52(11):2097-2128, 2008.

[7] Nima Jafari Navimipour, Amir Masoud Rahmani, Ahmad Habibizad
Navin, and Mehdi Hosseinzadeh. Resource discovery mechanisms in
grid systems: A survey. Journal ofNetwork and Computer Applications,
41:389--410,2014.

[8] Nianyu Li, Christos Tsigkanos, Zhi Jin, Schahram Dustdar, Zhenjiang
Hu, and Carlo Ghezzi. Poet: Privacy on the edge with bidirectional data
transformations. In 20i9 IEEE International Conference on Pervasive
Computing and Communications, PerCom 2019, Kyoto, Japan, March
11-i5, 20i9. IEEE, 2019.

[9] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
computing: Vision and challenges. iEEE internet of Things Journal,
3(5):637-646, 2016.

[10] Marjan Gusev and Schahram Dustdar. Going back to the rootsthe evo
lution of edge computing, an iot perspective. IEEE internet Computing,
22(2):5-15,2018.

[11] Ju Ren, Hui Guo, Chugui Xu, and Yaoxue Zhang. Serving at the edge: A
scalable iot architecture based on transparent computing. IEEE Network,
31(5):96-105,2017.

[12] Annalisa Cocchia. Smart and digital city: A systematic literature review.
In Smart city, pages 13--43. Springer, 2014.

[13] Xhevahir Bajrami and I1ir Murturi. An efficient approach to monitoring
environmental conditions using a wireless sensor network and nodemcu.
Elektrotechnik und Informationstechnik, 135(3):294-30 I, 2018.

[14] F1avio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the
first edition of the MCC workshop on Mobile cloud computing, pages
13-16. ACM, 2012.

[IS] Suparna De, Payam Barnaghi, Martin Bauer, and Stefan Meissner. Ser
vice modelling for the internet of things. In 20ii Federated Conference
on Computer Science and Information Systems (FedCSIS), pages 949
955. IEEE, 201l.

[16] Audie Sumaray and S Kami Makki. A comparison of data serialization
formats for optimal efficiency on a mobile platform. In Proceedings of
the 6th international conference on ubiquitous information management
and communication, page 48. ACM, 2012.

[17] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. In International Workshop
on Peer-to-Peer Systems, pages 53-65. Springer, 2002.

[18] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. ACM SIGCOMM Computer Communication
Review, 31(4):149-160, 200l.

[19] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
IFIPIACM International Conference on Distributed Systems Platforms
and Open Distributed Processing, pages 329-350. Springer, 200 I.

[20] Ben Yanbin Zhao, John Kubiatowicz, Anthony D Joseph, et al. Tapestry:
An infrastructure for fault-tolerant wide-area location and routing. 200l.

[21] Apache solr, https:/llucene.apache.org/solr/.
[22] Mongodb, https://www.mongodb.com/.
[23] Elasticsearch, https://www.elastic.co/.
[24] Giacomo Tanganelli, Cm'lo Vallati, and Enzo Mingozzi. Edge-centric

distributed discovery and access in the internet of things. IEEE Internet
of Things Journal, 5(1):425--438, 2018.

[25] Couchdb, http://couchdb.apache.org/.
[26] Feng Wang, Jie Qiu, Jie Yang, Bo Dong, Xinhui Li, and Ying Li. Hadoop

high availability through metadata replication. In Proceedings of the first
international workshop on Cloud data management, pages 37--44. ACM,
2009.

[27] Benjamin Ahlborn, Wolfgang Nejdl, and Wolf Siberski. Oai-p2p:
A peer-to-peer network for open archives. In Parallel Processing
Workshops, 2002. Proceedings. International Conference on, pages 462
468. IEEE, 2002.

[28] Xueshi Hou, Yong Li, Min Chen, Di Wu, Depeng Jin, and Sheng Chen.
Vehicular fog computing: A viewpoint of vehicles as the infrastructures.
iEEE Transactions on Vehicular Technology, 65(6):3860-3873, 2016.

[29] Wangbong Lee, Kidong Nam, Hak-Gyun Roh, and Sang-Ha Kim. A
gateway based fog computing architecture for wireless sensors and
actuator networks. In Advanced Communication Technology (ICACT),
20i6 i8th International Conference on, pages 210-213. IEEE, 2016.

[30] Heng Shi, Nan Chen, and Ralph Deters. Combining mobile and fog
computing: Using coap to link mobile device clouds with fog computing.
In Data Science and Data Intensive Systems (DSDIS), 20i5 IEEE
International Conference on, pages 564-571. IEEE, 2015.

[31] Stratis Ioannidis and Peter Marbach. Absence of evidence as evidence
of absence: A simple mechanism for scalable p2p search. In IEEE
iNFOCOM 2009, pages 576-584. IEEE, 2009.

[32] Simone Cirani, Luca Davoli, Gianluigi Ferrari, Remy Leone, Paolo
Medagliani, Marco Picone, and Luca Veltri. A scalable and self
configuring architecture for service discovery in the internet of things.
IEEE Internet of Things Journal, 1(5):508-521, 2014.

[33] Jaeho Kim and Jang-Won Lee. Openiot: An open service framework
for the internet of things. In internet of Things (WF-IoT), 2014 iEEE
World Forum on, pages 89-93. IEEE, 2014.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on January 14,2022 at 16:34:59 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

