Journal article Open Access

Dynamic Cooperative Model for Ranking Construction Risks using Monte Carlo Simulation

Amr Mahmoud; Ahmed Elhakeem; Ahmed Elyamany


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Contingency Reserve, Monte Carlo Simulation, Risk Ranking, and Quantitative risk analysis</subfield>
  </datafield>
  <controlfield tag="005">20220113134859.0</controlfield>
  <controlfield tag="001">5844690</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Associate Professor, Construction and Building  Engineering Department, Arab Academy for Science, Technology &amp;  Maritime Transport, Cairo, Egypt</subfield>
    <subfield code="a">Ahmed Elhakeem</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Associate Professor, Construction Engineering  Department, Zagazig University, (Currently at The British University in  Egypt)</subfield>
    <subfield code="a">Ahmed Elyamany</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  and Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1055454</subfield>
    <subfield code="z">md5:fdba5d988a1385e567383c9bea9d161d</subfield>
    <subfield code="u">https://zenodo.org/record/5844690/files/L79531091220.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-10-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5844690</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">211-216</subfield>
    <subfield code="n">12</subfield>
    <subfield code="p">International Journal of Innovative Technology and Exploring Engineering (IJITEE)</subfield>
    <subfield code="v">9</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Graduate Student, Construction and Building  Engineering Department, Arab Academy for Science, Technology &amp;  Maritime Transport, Cairo, Egypt.</subfield>
    <subfield code="a">Amr Mahmoud</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Dynamic Cooperative Model for Ranking  Construction Risks using Monte Carlo  Simulation</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2278-3075</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijitee.L79531091220</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Construction projects suffer from diverse uncertainties that hinder the key objectives&amp;rsquo; achievement. These uncertainties represent risks that may appear through the project life cycle. This paper introduces a quantitative model to estimate and rank risks dynamically during the risk planning phase. Such ranking would help decision-makers appropriately respond to and/or control construction risks. The model provides proper risk contingency reserves for both project time and cost that meet decision-makers&amp;#39; selected confidence levels using Monte Carlo Simulation (MCS). In order to quantify the project uncertainty, severities of residual risks are determined and allocated at the project&amp;#39;s activities-level using a planning/scheduling spreadsheet model and a MCS tool suitable for spreadsheets. The model is able to calculate the contribution of each risk from the determined contingency at both the project level for both the time and cost at the decision-maker confidence level.The model represents a direct implementation for a Risk Planning Contingency Model (RPCM); which involves four modules as follows: (1) Risk Register (RR), (2) Risk Allocator (RA), (3) Risk Simulator (RS), and (4) Contingency Calculator (CC). These modules are hosted in a critical path model scheduling spreadsheet to facilitate risk management. In addition, a simulation engine add-in is used for analyzing the probability distribution for the project time and cost outcomes. In order to verify the proposed model, the process and analysis have been applied to a case study project. The results show that the RPCM is capable to rank and estimate the residual risks in an easy, fast, and effective way.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2278-3075</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijitee.L7953.1091220</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
32
10
views
downloads
Views 32
Downloads 10
Data volume 10.6 MB
Unique views 26
Unique downloads 10

Share

Cite as