Poster Open Access
Bittremieux, Wout; Laukens, Kris
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <controlfield tag="005">20200120133739.0</controlfield> <controlfield tag="001">584067</controlfield> <datafield tag="711" ind1=" " ind2=" "> <subfield code="d">4-8 June 2017</subfield> <subfield code="a">ASMS conference</subfield> <subfield code="c">Indianapolis, IN, USA</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">University of Antwerp</subfield> <subfield code="a">Laukens, Kris</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">2425934</subfield> <subfield code="z">md5:e12fabb8f7b9f1e3758ed058c9708d67</subfield> <subfield code="u">https://zenodo.org/record/584067/files/ASMS_2017_Mass_spectrometry_proteomics_Ready_for_the_deep_learning_(r)evolution.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="y">Conference website</subfield> <subfield code="u">http://www.asms.org/conferences/annual-conference/</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2017-06-08</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="o">oai:zenodo.org:584067</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">University of Antwerp</subfield> <subfield code="a">Bittremieux, Wout</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Mass spectrometry proteomics: Ready for the deep learning (r)evolution?</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by-sa/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution Share Alike 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>In the past few years deep learning (DL) has revolutionized machine learning research, achieving tremendous increases in performance on a variety of problems, ranging from image recognition to natural language processing. In bioinformatics deep neural networks have already been used to solve important problems in genomics, but they have not seen a lot of use in biological mass spectrometry (MS) yet. Nevertheless, there is a huge opportunity to apply DL to MS research as well. Here we show how powerful DL models can usher in a shift from a model-driven approach, using hard-coded rules based on expert knowledge, for example such as complex fragmentation rules, to a data-driven one, where underlying rules are automatically inferred by advanced machine learning models.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.789761</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.584067</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">poster</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 136 | 136 |
Downloads | 56 | 58 |
Data volume | 135.9 MB | 140.7 MB |
Unique views | 135 | 135 |
Unique downloads | 48 | 50 |