UPDATE: Zenodo migration postponed to Oct 13 from 06:00-08:00 UTC. Read the announcement.

Poster Open Access

Mass spectrometry proteomics: Ready for the deep learning (r)evolution?

Bittremieux, Wout; Laukens, Kris

JSON Export

  "files": [
      "links": {
        "self": "https://zenodo.org/api/files/09b49839-99c3-4cfc-bb54-c75761dadf99/ASMS_2017_Mass_spectrometry_proteomics_Ready_for_the_deep_learning_%28r%29evolution.pdf"
      "checksum": "md5:e12fabb8f7b9f1e3758ed058c9708d67", 
      "bucket": "09b49839-99c3-4cfc-bb54-c75761dadf99", 
      "key": "ASMS_2017_Mass_spectrometry_proteomics_Ready_for_the_deep_learning_(r)evolution.pdf", 
      "type": "pdf", 
      "size": 2425934
  "owners": [
  "doi": "10.5281/zenodo.584067", 
  "stats": {
    "version_unique_downloads": 48.0, 
    "unique_views": 135.0, 
    "views": 136.0, 
    "version_views": 136.0, 
    "unique_downloads": 50.0, 
    "version_unique_views": 135.0, 
    "volume": 140704172.0, 
    "version_downloads": 56.0, 
    "downloads": 58.0, 
    "version_volume": 135852304.0
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.584067", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.789761", 
    "bucket": "https://zenodo.org/api/files/09b49839-99c3-4cfc-bb54-c75761dadf99", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.789761.svg", 
    "html": "https://zenodo.org/record/584067", 
    "latest_html": "https://zenodo.org/record/584067", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.584067.svg", 
    "latest": "https://zenodo.org/api/records/584067"
  "conceptdoi": "10.5281/zenodo.789761", 
  "created": "2017-05-29T14:02:49.176643+00:00", 
  "updated": "2020-01-20T13:37:39.358277+00:00", 
  "conceptrecid": "789761", 
  "revision": 10, 
  "id": 584067, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.584067", 
    "description": "<p>In the past few years deep learning (DL) has revolutionized machine learning research, achieving tremendous increases in performance on a variety of problems, ranging from image recognition to natural language processing. In bioinformatics deep neural networks have already been used to solve important problems in genomics, but they have not seen a lot of use in biological mass spectrometry (MS) yet. Nevertheless, there is a huge opportunity to apply DL to MS research as well. Here we show how powerful DL models can usher in a shift from a model-driven approach, using hard-coded rules based on expert knowledge, for example such as complex fragmentation rules, to a data-driven one, where underlying rules are automatically inferred by advanced machine learning models.</p>", 
    "license": {
      "id": "CC-BY-SA-4.0"
    "title": "Mass spectrometry proteomics: Ready for the deep learning (r)evolution?", 
    "relations": {
      "version": [
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "789761"
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "584067"
    "publication_date": "2017-06-08", 
    "creators": [
        "affiliation": "University of Antwerp", 
        "name": "Bittremieux, Wout"
        "affiliation": "University of Antwerp", 
        "name": "Laukens, Kris"
    "meeting": {
      "url": "http://www.asms.org/conferences/annual-conference/", 
      "dates": "4-8 June 2017", 
      "place": "Indianapolis, IN, USA", 
      "title": "ASMS conference"
    "access_right": "open", 
    "resource_type": {
      "type": "poster", 
      "title": "Poster"
    "related_identifiers": [
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.789761", 
        "relation": "isVersionOf"
All versions This version
Views 136136
Downloads 5658
Data volume 135.9 MB140.7 MB
Unique views 135135
Unique downloads 4850


Cite as