Poster Open Access
Bittremieux, Wout; Laukens, Kris
<?xml version='1.0' encoding='utf-8'?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#"> <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.584067"> <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/> <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/> <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.584067</dct:identifier> <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.584067"/> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Bittremieux, Wout</foaf:name> <foaf:givenName>Wout</foaf:givenName> <foaf:familyName>Bittremieux</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>University of Antwerp</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:creator> <rdf:Description> <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/> <foaf:name>Laukens, Kris</foaf:name> <foaf:givenName>Kris</foaf:givenName> <foaf:familyName>Laukens</foaf:familyName> <org:memberOf> <foaf:Organization> <foaf:name>University of Antwerp</foaf:name> </foaf:Organization> </org:memberOf> </rdf:Description> </dct:creator> <dct:title>Mass spectrometry proteomics: Ready for the deep learning (r)evolution?</dct:title> <dct:publisher> <foaf:Agent> <foaf:name>Zenodo</foaf:name> </foaf:Agent> </dct:publisher> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2017</dct:issued> <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2017-06-08</dct:issued> <owl:sameAs rdf:resource="https://zenodo.org/record/584067"/> <adms:identifier> <adms:Identifier> <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/584067</skos:notation> <adms:schemeAgency>url</adms:schemeAgency> </adms:Identifier> </adms:identifier> <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.789761"/> <dct:description><p>In the past few years deep learning (DL) has revolutionized machine learning research, achieving tremendous increases in performance on a variety of problems, ranging from image recognition to natural language processing. In bioinformatics deep neural networks have already been used to solve important problems in genomics, but they have not seen a lot of use in biological mass spectrometry (MS) yet. Nevertheless, there is a huge opportunity to apply DL to MS research as well. Here we show how powerful DL models can usher in a shift from a model-driven approach, using hard-coded rules based on expert knowledge, for example such as complex fragmentation rules, to a data-driven one, where underlying rules are automatically inferred by advanced machine learning models.</p></dct:description> <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/> <dct:accessRights> <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess"> <rdfs:label>Open Access</rdfs:label> </dct:RightsStatement> </dct:accessRights> <dcat:distribution> <dcat:Distribution> <dct:license rdf:resource="https://creativecommons.org/licenses/by-sa/4.0/legalcode"/> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.584067"/> </dcat:Distribution> </dcat:distribution> <dcat:distribution> <dcat:Distribution> <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.584067"/> <dcat:byteSize>2425934</dcat:byteSize> <dcat:downloadURL rdf:resource="https://zenodo.org/record/584067/files/ASMS_2017_Mass_spectrometry_proteomics_Ready_for_the_deep_learning_(r)evolution.pdf"/> <dcat:mediaType>application/pdf</dcat:mediaType> </dcat:Distribution> </dcat:distribution> </rdf:Description> </rdf:RDF>
All versions | This version | |
---|---|---|
Views | 136 | 136 |
Downloads | 56 | 58 |
Data volume | 135.9 MB | 140.7 MB |
Unique views | 135 | 135 |
Unique downloads | 48 | 50 |