Journal article Open Access

Feature Extraction and Classification Methods for Lung Sounds

Dr. Nishi Shahnaj Haider

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Artificial Neural Networks (ANN), Lung Sound (LS), Support Vector Machine (SVM), Wavelet Packet Transform (WPT), Wavelet Packet Decomposition (WPD)</subfield>
  <controlfield tag="005">20220112134851.0</controlfield>
  <controlfield tag="001">5839219</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  and Sciences Publication(BEIESP)</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">890198</subfield>
    <subfield code="z">md5:d21da7dac74f24e378a964de9c224dce</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-11-30</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">128-137</subfield>
    <subfield code="n">1</subfield>
    <subfield code="p">International Journal of Innovative Technology and Exploring Engineering (IJITEE)</subfield>
    <subfield code="v">10</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Assistant Professor Department of  Biomedical Engineering of Karunya Institute of Technology and Sciences,  Coimbatore, Tamil Nadu, India</subfield>
    <subfield code="a">Dr. Nishi Shahnaj Haider</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Feature Extraction and Classification Methods for  Lung Sounds</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2278-3075</subfield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijitee.A81001110120</subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The lung sounds is a non-stationary signal. It is a major challenge to analyze and differentiate the type of pulmonary disorder based on lung sounds. This paper presents a detailed review of existing methods of feature extraction and classification of Lung sounds for diagnosing the various types of pulmonary disorder. The different methods like spectral analysis, Cepstrum and Mel- Cepstrum, Hilbert Huang Transform, Spectrogram and 2D representation, Wavelet method, time expanded waveform analysis, Hidden Markov model, Auto Regressive model, and Neural Network are being discussed here. All the discussed methods automatically recognise the different types of lung sounds and pulmonary disorder based on features extracted from recorded lung sounds. The paper covered all the suited existing methods which can effectively detect the lung diseases. As per the result of this analysis, it has been found that still more work is required to be done in the screening and classification of chronic Lung diseases. Chronic lung diseases, having similar symptoms and which are very hard to be distinguished and classified. So, therefore, some suitable work needed to be done so that it could effectively support the physicians for taking diagnosis decisions and for giving the correct treatment without any delay in such chronic diseases also.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2278-3075</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijitee.A8100.1110120</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
Views 41
Downloads 20
Data volume 17.8 MB
Unique views 35
Unique downloads 20


Cite as