Journal article Open Access

Ecg Heartbeat Classification: Conceptual Understanding through Cnn & Rnn – A Machine Learning Approach

P. Rama Santosh Naidu; G. Lavanya Devi; Kondapalli Venkata Ramana


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Basic CNN, Deep Residual CNN, Convolution layer, Max pool block</subfield>
  </datafield>
  <controlfield tag="005">20220111134854.0</controlfield>
  <controlfield tag="001">5836802</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">, Assistant Professor in Andhra University  College of Engineering (A), Andhra Pradesh, India.</subfield>
    <subfield code="a">G. Lavanya Devi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">, Assistant Professor in Andhra University  College of Engineering (A), Andhra Pradesh, India.</subfield>
    <subfield code="a">Kondapalli Venkata Ramana</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  and Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">636035</subfield>
    <subfield code="z">md5:0c13fd8ee0539de83aff17ab8bfad30c</subfield>
    <subfield code="u">https://zenodo.org/record/5836802/files/B82851210220.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-12-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5836802</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">143-147</subfield>
    <subfield code="n">2</subfield>
    <subfield code="p">International Journal of Innovative Technology and Exploring Engineering (IJITEE)</subfield>
    <subfield code="v">10</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">, Assistant Professor in Andhra University  College of Engineering (A), Andhra Pradesh, India.</subfield>
    <subfield code="a">P. Rama Santosh Naidu</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Ecg Heartbeat Classification: Conceptual  Understanding through Cnn &amp; Rnn – A Machine  Learning Approach</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2278-3075</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijitee.B82851210220</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In recent days Machine Learning has become major study aspect in various applications that includes medical care where convenient discovery of anomalies in ECG signals plays an important role in monitoring patient&amp;#39;s condition regularly. This study concentrates on various MachineLearning techniques applied for classification of ECG signals which include CNN and RNN. In the past few years, it is being observed that CNN is playing a dominant role in feature extraction from which we can infer that machine learning techniques have been showing accuracy and progress in classification of ECG signals. Therefore, this paper includes Convolutional Neural Network and Recurrent Neural Network which is being classified into two types for better results from considerably increased depth.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2278-3075</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijitee.B8285.1210220</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
36
17
views
downloads
Views 36
Downloads 17
Data volume 10.8 MB
Unique views 30
Unique downloads 17

Share

Cite as