Journal article Open Access

Optimization of IDS using Filter-Based Feature Selection and Machine Learning Algorithms

Neha Sharma; Harsh Vardhan Bhandari; Narendra Singh Yadav; Harsh Vardhan Jonathan Shroff


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Intrusion detection systems, KDDCUP99, Machine Learning, Classification.</subfield>
  </datafield>
  <controlfield tag="005">20220111134851.0</controlfield>
  <controlfield tag="001">5836480</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">B.Tech, Information Technology, Manipal  University Jaipur, Rajasthan, India.</subfield>
    <subfield code="a">Harsh Vardhan Bhandari</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Assistant Professor, Manipal University Jaipur,  Rajasthan, India.</subfield>
    <subfield code="a">Narendra Singh Yadav</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">B.Tech, Information Technology, Manipal  University Jaipur, Rajasthan, India.</subfield>
    <subfield code="a">Harsh Vardhan Jonathan  Shroff</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  and Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">390165</subfield>
    <subfield code="z">md5:aede3c5c1fe5d493e15bae62d3d753c4</subfield>
    <subfield code="u">https://zenodo.org/record/5836480/files/B82781210220.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-12-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5836480</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">96-102</subfield>
    <subfield code="n">2</subfield>
    <subfield code="p">International Journal of Innovative Technology and Exploring Engineering (IJITEE)</subfield>
    <subfield code="v">10</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Assistant Professor, Manipal University Jaipur,  Rajasthan, India.</subfield>
    <subfield code="a">Neha Sharma</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Optimization of IDS using Filter-Based Feature  Selection and Machine Learning Algorithms</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2278-3075</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)100.1/ijitee.B82781210220</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Nowadays it is imperative to maintain a high level of security to ensure secure communication of information between various institutions and organizations. With the growing use of internet over the years, the number of attacks over the internet have escalated. A powerful Intrusion Detection System (IDS) is required to ensure the security of a network. The aim of an IDS is to monitor the active processes in a network and to detect any deviation from the normal behavior of the system. When it comes to machine learning, optimization is the process of obtaining the maximum accuracy from a model. Optimization is vital for IDSs in order to predict a wide variety of attacks with utmost accuracy. The effectiveness of an IDS is dependent on its ability to correctly predict and classify any anomaly faced by a computer system. During the last two decades, KDD_CUP_99 has been the most widely used data set to evaluate the performance of such systems. In this study, we will apply different Machine Learning techniques on this data set and see which technique yields the best results.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2278-3075</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijitee.B8278.1210220</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
37
22
views
downloads
Views 37
Downloads 22
Data volume 8.6 MB
Unique views 30
Unique downloads 20

Share

Cite as