Journal article Open Access
M. Salomi; R. Lakshmi Priya; Manimannan G; N. Manjula Devi
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Data Mining, Principal Component Analysis, k mean Clustering, Sillohoutte plot and Scatter plot</subfield> </datafield> <controlfield tag="005">20220111134849.0</controlfield> <controlfield tag="001">5835376</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Assistant Professor, Department of Statistics, Madras Christian College, Chennai (Tamil Nadu), India.</subfield> <subfield code="a">R. Lakshmi Priya</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Assistant Professor, Department of Statistics, Madras Christian College, Chennai (Tamil Nadu), India.</subfield> <subfield code="a">Manimannan G</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Bio Statistician, Department of Community Medicine, Karpaka Vinayakar Institute of Medical Sciences, Chengalpet, (Tamil Nadu), India</subfield> <subfield code="a">N. Manjula Devi</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Publisher</subfield> <subfield code="4">spn</subfield> <subfield code="a">Blue Eyes Intelligence Engineering and Sciences Publication(BEIESP)</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">500866</subfield> <subfield code="z">md5:ef62330b6be54f8bb58a2993559450f2</subfield> <subfield code="u">https://zenodo.org/record/5835376/files/D4921119420.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2020-11-30</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="o">oai:zenodo.org:5835376</subfield> </datafield> <datafield tag="909" ind1="C" ind2="4"> <subfield code="c">228-232</subfield> <subfield code="n">4</subfield> <subfield code="p">International Journal of Recent Technology and Engineering (IJRTE)</subfield> <subfield code="v">9</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Assistant Professor, Department of Statistics, Madras Christian College, Chennai (Tamil Nadu), India.</subfield> <subfield code="a">M. Salomi</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Data mining Application of Data Reduction and Clustering Domain of Textile Database</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="650" ind1="1" ind2=" "> <subfield code="a">ISSN</subfield> <subfield code="0">(issn)2277-3878</subfield> </datafield> <datafield tag="650" ind1="1" ind2=" "> <subfield code="a">Retrieval Number</subfield> <subfield code="0">(handle)100.1/ijrte.D4921119420</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>This research paper attempts to identify the textile data structure and hidden pattern of original database with certain important parameters. The main objectives of this study are to identify the first n number of factors that explained over the study period. Initially factor analysis is performed to extract factor scores. Principal extraction is performed through Data mining package with sixteen textile fabrics parameters. Factor extraction is aimed to uncover the intrinsic pattern among the textile parameters considered and an important point of factor analysis is to extract factor scores for further investigation. Thus, factor analysis consistently resulted in three factors for the whole datasets. The amount of total variation explained is over 75 percent in factor analysis with varimax rotation. The factor loadings or factor structure matrix with unassociated rotation methods are not always easy to interpret. The nonhierarchical k mean clustering is also used to identify meaningful cluster based on their parameter means of original database.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">issn</subfield> <subfield code="i">isCitedBy</subfield> <subfield code="a">2277-3878</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.35940/ijrte.D4921.119420</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
Views | 52 |
Downloads | 29 |
Data volume | 14.5 MB |
Unique views | 45 |
Unique downloads | 29 |