Journal article Open Access

Data mining Application of Data Reduction and Clustering Domain of Textile Database

M. Salomi; R. Lakshmi Priya; Manimannan G; N. Manjula Devi


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/5835376</identifier>
  <creators>
    <creator>
      <creatorName>M. Salomi</creatorName>
      <affiliation>Assistant Professor, Department of Statistics, Madras  Christian College, Chennai (Tamil Nadu), India.</affiliation>
    </creator>
    <creator>
      <creatorName>R. Lakshmi Priya</creatorName>
      <affiliation>Assistant Professor, Department of Statistics, Madras  Christian College, Chennai (Tamil Nadu), India.</affiliation>
    </creator>
    <creator>
      <creatorName>Manimannan G</creatorName>
      <affiliation>Assistant Professor, Department of Statistics, Madras  Christian College, Chennai (Tamil Nadu), India.</affiliation>
    </creator>
    <creator>
      <creatorName>N. Manjula Devi</creatorName>
      <affiliation>Bio Statistician, Department of Community Medicine,  Karpaka Vinayakar Institute of Medical Sciences, Chengalpet, (Tamil  Nadu), India</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Data mining Application of Data Reduction and  Clustering Domain of Textile Database</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Data Mining, Principal Component Analysis, k mean Clustering, Sillohoutte plot and Scatter plot</subject>
    <subject subjectScheme="issn">2277-3878</subject>
    <subject subjectScheme="handle">100.1/ijrte.D4921119420</subject>
  </subjects>
  <contributors>
    <contributor contributorType="Sponsor">
      <contributorName>Blue Eyes Intelligence Engineering  and Sciences Publication(BEIESP)</contributorName>
      <affiliation>Publisher</affiliation>
    </contributor>
  </contributors>
  <dates>
    <date dateType="Issued">2020-11-30</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5835376</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2277-3878</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijrte.D4921.119420</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This research paper attempts to identify the textile data structure and hidden pattern of original database with certain important parameters. The main objectives of this study are to identify the first n number of factors that explained over the study period. Initially factor analysis is performed to extract factor scores. Principal extraction is performed through Data mining package with sixteen textile fabrics parameters. Factor extraction is aimed to uncover the intrinsic pattern among the textile parameters considered and an important point of factor analysis is to extract factor scores for further investigation. Thus, factor analysis consistently resulted in three factors for the whole datasets. The amount of total variation explained is over 75 percent in factor analysis with varimax rotation. The factor loadings or factor structure matrix with unassociated rotation methods are not always easy to interpret. The nonhierarchical k mean clustering is also used to identify meaningful cluster based on their parameter means of original database.&lt;/p&gt;</description>
  </descriptions>
</resource>
52
29
views
downloads
Views 52
Downloads 29
Data volume 14.5 MB
Unique views 45
Unique downloads 29

Share

Cite as